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Abstract

In this paper, we give a security enhancement of ElGamal cryptosystem based on the use of the group of
units U(n), where n = pt or 2pt, where p is an odd prime number and t is a positive integer dynamically
determined by users using a modification of the Diffie-Hellman key exchange protocol. The paper presents
in details the procedures of the key generation, encryption, decryption and digital signature for the proposed
cryptosystem. As applications, we apply procedures of this cryptosystem over plaintexts and implemented
its algorithms in the SageMath Software. Finally, we provide results concerning its complexity evaluation,
its expansion rate, and its performance timing. The results show that this system is suitable for scalable
real-time encryption applications as it is indicating the successful optimization performance and robust
integration of security features.
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1. Introduction

The ElGamal cryptosystem is a public key cryptosystem introduced by Taher ElGamal in 1985 [4]. The
structure of this system depends on the cyclic group Z∗

p, where p is a large prime number, and its security is
based on a well known unsolvable problem in number theory called the discrete logarithm problem (DLP),
that is presented by finding an integer x satisfying the congruence

gx ≡ y (mod p),

where g and y are elements in the group Z∗
p, that is generated by g. The hardness of solving this problem

is based on the order of the group Z∗
p, that is given by the Euler’s totient function of p, i.e. φ(p) = (p− 1)

(Euler’s totient function of a positive integer n is the number of positive integers less than n and relatively
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prime to n). Therefore, it is very important to choose a large prime number p in order to increase the
security of this cryptosystem.

An important scheme associated to ElGamal cryptosystem is the digital signature scheme, which is a
cryptographic method used to authenticate the messages between senders and receivers. In fact, this scheme
ensures both integrity and non-repudiation.

After 1985, Miller [19] and Koblitz [15] independently proposed the use of elliptic curves in cryptography.
They use the group of points on an elliptic curve over a finite field, denoted by E(Fq), to form DLPs, which
are believed to be significantly harder than in classical groups of similar size. Thus, the combination of
ElGamal’s encryption scheme with elliptic curve groups leads to the Elliptic Curve ElGamal Cryptosystem
(ECEG) in which the principles of the classical ElGamal cryptosystem remain the same, but the underlying
operations shift from modular exponentiation to scalar multiplication on elliptic curve points. For more
details on the elliptic curves (as Diophantine equations), elliptic curve cryptography and ECEG, see e.g. [7],
[8] and [16]. Many authors provided several enhancements or modifications of ECEG, see e.g. [1], [6], [13]
and [14].

However the ElGamal cryptosystem has been very secure against may third parties’ attacks, many au-
thors have suggested several improvements or modifications to the structures of the encryption and decryp-
tion procedures in order to make this cryptosystem is very solid against any present and future attacks. For
instance, starting from 2016 Hecht [10] generalized the ElGamal cryptosystem by using a non-commutative
general linear group GF(2518) in the structure of procedures. The modification gives a hard problem for
searching to a subgroup membership into a non-commutative structure. In 2022, Ranasinghe and Athuko-
rala [22] gave an improvement of ElGamal cryptosystem by using properties of the prime factorization of
plaintexts and using modular exponentiation twice. They showed that this system is secure against many
known attacks. Moreover, in 2022 Koppaka and Lakshmi [17] developed the ElGamal cryptosytem by com-
bining its algorithms with hyperchaotic sequences to secure data and to reduce the times of key generation,
encryption and decryption in cloud environments. Last but not least, in 2024 Amirkhanova et al. [2] in-
troduced a novel quantum-resistant cryptosystem based on combing the ElGamal cryptosystem algorithms
with a Lattice-based cryptography problem represented by the Short Integer Solution. Indeed, there are
many other developments regarding the ElGamal cryptosystem, one can see e.g. [5], [11], [12], [18] and the
references given there.

As mentioned earlier that increasing the order of the group increases the security of ElGamal cryptosys-
tem, and a well know group that could have a larger order of Z∗

p is the abelian group of units U(n), that is
defined by

U(n) = {u ∈ Zn | gcd(u, n) = 1}.

It is proved that U(n) is a cyclic if and only if n = pt or n = 2pt for p is an odd prime number and t is a
positive integer. It is clear that the order of this group is given by Euler’s totient function:

ϕ(pt) = ϕ(2pt) = pt−1(p− 1).

Moreover, there are more interesting results related to the group of units, and for latter use we list the
following results (for more details about the above results and the following results and their proofs, see [9],
[21] and [23]):

Lemma 1.1. Suppose that p is an odd prime number and g is a primitive root of p (i.e. g is a generator of
the group of units U(p)), then at least one of the integers g or g + p is a primitive root of p2.

Lemma 1.2. If p is an odd prime number and g is a primitive root of p2 (i.e. g is a generator of the group
of units U(p2)), then g is a primitive root of pt for t > 2 (i.e. g is a generator of the group of units U(pt)).

Lemma 1.3. Let p be an odd prime number and g is a primitive root of pt for t ≥ 2. If g is odd, then it is
a primitive root of 2pt. Otherwise, pt + g is a primitive root of 2pt.
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In this paper, we propose an enhancement of the ElGamal cryptosystem concerning the mathematical
structure of its key generation algorithm, encryption and decryption algorithm and digital signature algo-
rithm. This development is based on replacing the group Z∗

p by the group U(n) for n = pt or n = 2pt, where
p is a large prime number and t > 2 is derived from a shared secret between communicating parties using
a modification of the Diffie-Hellman key exchange protocol. This modification to the classical ElGamal
cryptosystem is designed to enhance security by inserting additional complexity through the use of a group
of larger order and the use of a dynamically generated modulus.

Furthermore, regarding the enhancement of the digital signature scheme of ElGamal cryptosystem, this
proposed cryptosystem incorporates of a hash function (e.g. SHA-256) into the digital signature scheme.
Note that, the hash functions are important in cryptography, and they are kind of signatures for a text or
a data file. In fact, a hash function is one way function, that maps or compresses an arbitrary size of a text
or data file into a fixed size values(called by digest or hash). Also, in the hash function, different inputs
cannot have the same output. One of the well used cryptographic hash function is called by the SHA-256,
that generates a unique 256-bit signature (a hash value) for a text (that has 64 hexadecimal characters).

Finally, this modification and enhancement of the classical ElGamal cryptosystem is implemented and
verified using the SageMath Sofware by taking the advantage of its symbolic computation capabilities. The
implementation is performed for encrypting/decrypting and signing texts and gray-scale images.

In the next section, we introduce the algorithms of the key generation, encryption, decryption and digital
signature algorithm of our proposed cryptosystem. For more details about these algorithms in the classical
ElGamal cryptosystem, see e.g. [4].

Remark 1.4. Since the enhanced ElGamal cryptosystem is based on the group of units U(n) for n = pt or
2pt with t > 2, in the rest of the paper we only focus on the case where n = pt and the other case can be
treated similarly.

Regarding to the group of units U(pt) with t > 2, we see from Lemmas 1.1, 1.2 and 1.3 that if g
is a generator to the groups U(p) and U(p2), then it is a generator to the groups U(pt). Therefore, for
the simplicity of presenting the encryption, decryption and signature scheme algorithms of our proposed
cryptosystem, in the next sections we assume that a generator g to U(p) is also a generator to U(p2), so
that it is a generator to U(pt) where t > 2 is derived by a modification of the classical Diffie-Hellman
key exchange protocol, that we call the Modified Diffie-Hellman key exchange protocol (MDHKEP). The
MDHKEP has the exact structure of the classical Diffie-Hellman key exchange protocol with replacing the
modulo p by modulo p4), for more detail about the classical Diffie-Hellman key exchange protocol, we refer
to the original article by Diffie and Hellman [3].

2. Main Phases of the Enhanced ElGamal Cryptosystem’s Algorithms

Without loss of generality and in order to present the algorithms smoothly, we assume two parties
presented by Alice and Bob, who want to communicate using this cryptosystem. Indeed, we assume that
Bob who does the encryption with his signature on the message, and Alice does the decryption with the
verification of the signature. Suppose that Bob wants to encrypt a message M (that could be a text or an
image) for Alice, then they preform the following steps:

2.1. Key Generation

Since this cryptosystem is based on using the group of units U(pt), where p is a large prime number and
t > 2 is derived from a shared secret between the communicating parties (e.g. Alice and Bob) using the
Modified Diffie-Hellman key exchange protocol (MDHKEP), in this step the key generation is performed in
three phases after the agreement of the public parameters. The first phase concerns generating the public
and private keys, that are used in the MDHKEP. In the second phase, these parties compute the shared
secret, that leads to the derivation of the value of t. Finally, they use the group of units U(pt) to generate
their main public and private keys, which are used in the encryption, decryption and signature scheme
procedures. These phases are described below after selecting the public parameters:
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(a) Public parameters: Suppose that the communicating parties; Alice and Bob agree on:

• A large prime number p.

• A generator g of the groups U(p) and U(p2) (g is also a generator of U(pt) for t > 2, see Remark
1.4).

• Fixed parameters R, t0 ∈ N with t0 ≥ 4 agreed on. These are used in determining t for encryption
and decryption procedures.

(b) MDHKEP’s private and public keys:

• Alice selects a private key at such that 2 ≤ at ≤ p4 − 2.

• Bob selects a private key bt such that 2 ≤ bt ≤ p4 − 2.

• Alice computes A ≡ gat (mod p4) and publishes the value of A.

• Bob computes B ≡ gbt (mod p4) and publishes the value of B.

(c) Shared secret and the exponent t:

• If Bob wants to send a message to Alice, he firstly has to determine the shared secret K by using
Alices’ public key A as follows:

K ≡ Bat(mod p4).

• He uses the fixed parameters R, t0 ∈ N to compute the value of t as follows:

t ≡ t0 + (K mod R).

Hence, n = pt and φ(n) = (p− 1)pt−1, where t ≥ 4 since t0 ≥ 4.

Similar steps can done by Alice using Bob’s public key B to compute the exponent t.

(d) Main private and public keys:

• Alice selects a private keys a with 2 ≤ a ≤ n− 2.

• Alice computes r1 ≡ ga (mod n) and publishes (g, r1).

• Bob selects a private keys b with 2 ≤ b ≤ n− 2.

• Bob computes r2 ≡ gb (mod n) and publishes (g, r2).

2.2. Encryption (by the sender Bob)

Bob uses Alice’s public key (g, r1) and preforms the following steps:

(a) Message preparation: Convert the plaintext message M into a sequence of ASCII encoded integers
m1,m2, . . . ,mk.

(b) Encryption process: For each mi with 1 ≤ i ≤ k, choose a random ephemeral key fi ∈ [1, pt − 2] to
compute:

C1,i ≡ gfi(mod n), C2,i ≡ mi · rfi1 (mod n)

The ciphertext corresponding to the plaintext message M is the ordered collection of pairs (C1,i, C2,i),
for i = 1, 2, . . . k.
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2.3. Signature Scheme (by Bob)

Bob uses his private key b with the generator g and does the following:

(a) Hashing M : Given a message M (a string), the sender (Bob) performs the following steps:

• Compute its SHA-256 hash (given in hexadecimal ).

• Convert the hex string to an integer.

• Reduce the resulting integer modulo φ(n), denote the result by H.

(b) Signature of M :

• Choose a random integer ks such that gcd(ks, φ(n)) = 1 and 1 ≤ ks ≤ φ(n)− 2 to compute

S1 ≡ gks(mod n), S2 ≡ ks
−1 · (H − b · S1)(mod φ(n)). (2.1)

• The signature pair (S1, S2) is sent along with the ciphertext to receiver for verification.

2.4. Decryption (by the receiver Alice)

Alice uses her main private a and preforms the following:

(a) Decryption process: For each ciphertext pair (C1,i, C2,i) with 1 ≤ i ≤ k, compute

mi ≡ C2,i · (Ca
1,i)

−1(mod n).

This can be verified as follows:

C2,i · (Ca
1,i)

−1(mod n) ≡ mi · gaki · (gaki)−1 ≡ mi(mod n).

(b) Message recovery: Recover the message M from the decrypted ASCII codes mi.

2.5. Signature Verification (by Alice)

Given a message M (a string), Alice performs the following steps:

(a) Hashing M :

• Compute its SHA-256 hash (given in hexadecimal ).

• Convert the hex string to an integer.

• Reduce the resulting integer modulo φ(n), denote the result by H.

(b) Verifying the signature: Using Bob’s public key r2, the signature pair (S1, S2), and the computed
hash H, Alice verifies the validity of the signature by checking if the the following congruence holds,
then signature is valid and accepted; otherwise it is rejected:

gH ≡ rS1
2 · SS2

1 (mod n). (2.2)

If the congruence holds, the signature is accepted as valid; otherwise, it is rejected. Once can easily
verify the validity of the above congruence as follows.

Starting from the right hand side of congruence (2.2) with the substitution of the signature construction
given in (2.1), we get that

rS1
2 · SS2

1 =rg
ks

2 · gks (ks
−1·(H−b·gks ))

=rg
ks

2 · gksks
−1·(H−b·gks )

≡rg
ks

2 · g(H−b·gks )(mod n) since gksks
−1

≡ g · gφ(n)w ≡ g(mod n)

≡g(b·g
ks ) · gHg(−b·gks )(mod n) since r2 ≡ gb(mod n)

≡gH(mod n),

which verifies the left hand side of congruence (2.2).
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2.6. Illustrative Example

Let’s illustrate a complete example of the enhanced ElGamal cryptosystem. Suppose that Bob wants to
send the message ElGamal Cryptosystem to Alice using the enhanced ElGamal cryptosystem, they have to
perform each of the above phases as follows (calculations are performed using SageMath Software [24]):

Phase I. Key generation:

(a) Public parameters: Suppose that Alice and Bob agree on a prime modulus p = 11, a generator
g = 2, the parameters R = 5 and t0 = 4.

(b) MDHKEP’s private and public keys:

• Alice selects a private key at = 3.

• Bob selects a private key bt = 6.

• Alice computes A ≡ gat(mod p4) ≡ 23(mod 14641) ≡ 8 and publishes 8 as her MDHKEP’s
public key.

• Similarly, Bob’s MDHKEP public key is B = 64.

(c) Shared secret and the exponent t:

• The shared secret K is obtained by both of them as follows:

K = Bat = Abt ≡ 262144(mod 14641) ≡ 13247.

• Therefore, the exponent t is given by

t ≡ t0 + (K mod R) ≡ 4 + (13247 mod 5) ≡ 6.

Hence, n = 116 = 1771561, φ(1771561) = 1610510.

(d) Main private and public keys:

• Alice selects a private keys a = 7.

• Bob selects a private keys b = 9.

• Alice computes
r1 ≡ ga(modn) ≡ 27(mod 1771561) ≡ 128

and publishes (g, r1) = (2, 128) as her cryptosystem’s public key.

• Similarly, Bob’s public key is (g, r2) = (2, 512).

Phase II. Encryption procedure:

(a) Message preparation: Bob converts the plaintext message: ElGamal Cryptosystem into the follow-
ing ASCII representation mi with 1 ≤ i ≤ 20:

{69, 108, 71, 97, 109, 97, 108, 32, 67, 114, 121, 112, 116, 111, 115, 121, 115, 116, 101, 109}.

(b) Encryption process: For each mi, Bob chooses a random ephemeral key fi, e.g.

{3, 4, 2, 5, 1, 3, 4, 2, 5, 1, 3, 4, 5, 1, 3, 4, 5, 3, 2, 5}.

Note that it is better to select distinct values fi for every mi. Then, he computes the corresponding
ciphertext in the order pairs (C1,i, C2,i) using Alice’s public key (g, r1) = (2, 128) and the congruences:

C1,i ≡ gfi(mod 1771561), C2,i ≡ mi · rfi1 (mod 1771561).

In the following table, we summarize the results of computations:
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Table 1: Encryption Results.

Char mi fi C1,i rfi1 mod n C2,i

E 69 3 8 325591 1207047

l 108 4 16 929745 1205044

G 71 2 4 16384 1163264

a 97 5 32 312773 222444

m 109 1 2 128 13952

a 97 3 8 325591 1465790

l 108 4 16 929745 1205044

(space) 32 2 4 16384 524288

C 67 5 32 312773 1468620

r 114 1 2 128 14592

y 121 3 8 325591 422169

p 112 4 16 929745 1380902

t 116 5 32 312773 850448

o 111 1 2 128 14208

s 115 3 8 325591 240184

y 121 4 16 929745 890802

s 115 5 32 312773 537675

t 116 3 8 325591 565775

e 101 2 4 16384 1654784

m 109 5 32 312773 432598

Phase III. Signature scheme:

(a) Hashing the message: For the message “ElGamal Cryptosystem”, Bob gets the reduced integral
hashing value of the message as follows:

• Compute its SHA-256 hash:

4ca0f4cc886bbbf987b930da47065c228fd93e5a441ceee5eecd1b72d9246fd7.

• Convert the hash into an integer:
Hhash = 34660161562997314982973272287990635094863892316291611627474
216503583399243735.

• Reduce the above value modulo φ(n) = 1610510:

H ≡ Hhash(mod 1610510) ≡ 382265.

(b) Signature of the message:

• Bob chooses a random integer ks = 123457 such that gcd(ks, φ(n)) = 1 and

k−1
s (mod φ(n)) = 123457−1(mod 1610510) ≡ 1387543.
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• Compute S1:
S1 ≡ gks(mod n) ≡ 2123457(mod 1771561) ≡ 1024822.

• Compute S2:

S2 ≡ k−1
s · (H − b · S1)(mod φ(n)) ≡ 1387543 · (−8841133)(mod 1610510)

≡ 556511.

• The signature pair, that is transmitted with the encrypted message, is given by

(S1, S2) = (1024822, 556511).

Phase IV. Decryption procedure:
Once Alice receives the ciphertext given in the pairs (C1,i, C2,i) with 1 ≤ i ≤ 20 as recorded in Table 1,

she uses her main private a = 7 to compute mi:

mi ≡ C2,i · (Ca
1,i)

−1(mod 1771561).

Then she recovers the plaintext from the decrypted ASCII codes mi. The results of computations are
summarized the following table:

Table 2: Decryption Results.

C1,i Ca
1,i(mod n) (Ca

1,i)
−1(mod n) C2,i mi Char

8 325591 826073 1207047 69 E

16 929745 1099839 1205044 108 l

4 16384 1215245 1163264 71 G

32 312773 1240381 222444 97 a

2 128 1425553 13952 109 m

8 325591 826073 1465790 97 a

16 929745 1099839 1205044 108 l

4 16384 1215245 524288 32 (space)

32 312773 1240381 1468620 67 C

2 128 1425553 14592 114 r

8 325591 826073 422169 121 y

16 929745 1099839 1380902 112 p

32 312773 1240381 850448 116 t

2 128 1425553 14208 111 o

8 325591 826073 240184 115 s

16 929745 1099839 890802 121 y

32 312773 1240381 537675 115 s

8 325591 826073 565775 116 t

4 16384 1215245 1654784 101 e
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32 312773 1240381 432598 109 m

Phase V. Signature verification:
After obtaining the plaintext “ElGamal Cryptosystem” and receiving the signature pair (S1, S2) =

(1024822, 556511), Alice verifies the message as follows:

(a) Hashing the message: For the message “ElGamal Cryptosystem”, Alice gets the reduced integral
hashing value of the message in the same approach performed by Bob in Phase III.(a). Namely, she
gets that

H ≡ Hhash(mod 1610510) ≡ 382265.

(b) Verification Equation: By using Bob’s public key r2 = 512, Alice verifies the validity of the signature
by checking whether the following congruence holds:

gH ≡ rS1
2 · SS2

1 (mod n).

If the congruence holds, the signature is accepted as valid; otherwise, it is rejected. In fact, the left
hand side is

LHS = gH = 2382265(mod 1771561) ≡ 302235.

On the other hand, the right hand side is

RHS = rS1
2 · SS2

1 = 5121024822 · 1024822556511(mod 1771561) ≡ 302235.

Thus, the signature is valid.

3. Performance and Complexity Evaluation

In this section, we present a comprehensive comparison regarding the performance and complexity evalu-
ation between our proposed cryptosystem (denoted by OUR), the classical ElGamal cryptosystem (denoted
by EGC) by ElGamal [4] and a modification of ElGamal (denoted by MEGC) that is introduced by Mohit
and Biswas [20] in which they modify the classical ElGamal cryptosystem with some change in the process
of encryption and using a random session key for the encryption to give a more practical cryptosystem than
the existing one. Furthermore, they modified the digital signature scheme of the ElGamal cryptosystem by
changing the signature generation phase such as the calculation of two signatures.

3.1. Experimental Setup

For the comparison, we use the following parameters and tools:

• Prime modulus p ≈ 100 bits and a generator g ∈ U(p) and U(p2).

• A message size of 1000 characters, and each character random ephemeral keys fi ∈ [2, 15] are generated.

• All of the following results are computed using the SageMath program [24] using the same hardware
and software setup. Note that, algorithms and data supporting the following findings are available on
a reasonable request.

3.2. Encryption and Decryption Results
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Table 3: Performance Comparison of ElGamal Cryptosys-
tems.

Metric EGC MEGC OUR

Prime Size 100-bit 100-bit 100-bit

Message Length (chars) 1000 1000 1000

Encryption Time (sec) 0.042 0.056 0.047

Decryption Time (sec) 0.018 0.029 0.019

Ciphertext Size (KB) 11 15 18

Signature Time (sec) 0.021 0.033 0.038

From the results of Table 3, it is clear that the classical ElGamal cryptosystem (EGC) is the fastest for en-
cryption, decryption and signature scheme processes since it uses a simpler group Z∗

p comparing to the other
cryptosystems. However, it offers the least ciphertext efficiency. After that, the OUR cryptosystem comes
in the middle regarding the encryption and decryption timing, however it uses a very large multiplicative
group U t

p with t > 2. Regarding the ciphertext size and signature timing, OUR scheme is slower due to
the use of the group Upt , that produce a very secure cryptosystem as it enables both strong encryption and
integrated signature with more robust algebraic structure.

3.3. Complexity Evaluation

For the computational complexity comparison, we assume that P , M and I denote the count of modular
exponentiation, modular multiplication and modular inverse, respectively. The total count of the computa-
tions for each of the three cryptosystems is summarized in the following table:

Table 4: Computational Complexity Comparison.

Phase EGC MEGC OUR

Key Generation 2P 2P 4P (including MDHKEP)

Encryption 2P +M 2P +M 3P +M

Decryption P + I P + I P + I

Signature Generation 2P +M + I 2P +M + I 2P +M + I

Signature Verification 3P +M 3P +M 3P +M

From Table 4, we see the additional 2P in the key generation of OUR scheme comes form using the MDHKEP
to generate keys for determining the exponent t. Similarly, this extra key generation step over U(pt) leads
to an additional P in the encryption process of OUR scheme. However, OUR scheme remains linear in
complexity and similar to the other two cryptosystems in the decryption and signature procedures. Indeed,
OUR scheme adds complexity for security purpose without major runtime penalties.

3.4. Ciphertext Expansion

In the following table, we present the results of comparing the three cryptosystems regarding to the
ciphertext expansion factors for a fixed plaintext of size (1 KB).
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Table 5: Ciphertext Expansion Rate.

Metric EGC MEGC OUR

Plaintext Size (KB) 1 1 1

Ciphertext Size (KB) 11 15 18

Expansion Factor 11x 15x 18x

It is clear that OUR cryptosystem has a higher expansion factor comparing to the other two cryptosystems
since it uses a larger modulus pt with t > 2. However, this leads to larger ciphertext overhead, but it enables
to enhance the security and joint support for encryption process and signing procedure. Note that, this
result does not give how each cryptosystem scales with increasing the size of the plaintext. For that, see
Figure 1 below.

3.5. Experimental Figures

Here, we give experimental figures regarding to the ciphertext expansion rate, encryption time and
decryption time versus the increase of file size.

Figure 1: Expansion Rate vs. File Size for ElGamal Cryptosystems.

From Figure 1, we see that OUR cryptosystem has the highest expansion rate since it uses a very large
prime power with the group of units U(pt), which reflects a cryptosystem that balances ciphertext size and
security. However, other cryptosystems have low expansion rates, but at the cost of weaker integration.
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Figure 2: Encryption Time vs. File Size for ElGamal Cryptosystems.

Figure 3: Decryption Time vs. File Size for ElGamal Cryptosystems.

From Figures 2 and 3 respectively, it is clear that EGC has the fastest encryption and decryption
times due to its small modulus and minimal computation. After that comes OUR, that is faster than
MEGC. However, OUR has a very large modulus pt with t > 2 and more keys used in the encryption
and decryption procedures (that lead to more security than the other cryptosystems), it still faster than
the MEGC. Therefore, this supports OUR’s suitability for scalable real-time encryption and indicates the
successful optimization performance.

3.6. Security Comparison

The security of the three cryptosystems (EGC, MEGC and OUR) is based on the hardness of solving
the discrete logarithm problem (DLP) over appropriately chosen cyclic groups, but they differ in structures,
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computational domains and performances. In Table 6, we summarize the key aspects that evaluate and
compare the security of these three cryptosystems:

Table 6: Security Comparison

Aspect EGC MEGC OUR

Security
Problem

DLP in Z∗
p or elliptic

curve group
DLP with random ses-
sion key in encryption

DLP in U(pt) combined
with MDHKEP-derived
ephemeral keys

Forward Se-
crecy

Not supported (fixed
public key y ≡ gx

(mod p))

Partially supported
(session randomness
in encryption)

Fully supported (the
encryption and decryp-
tion exponents e, d are
session-dependent by
MDHKEP)

Key Reuse
Attack Re-
sistance

Vulnerable if keys are
reused

Improved by enforcing
session randomness

Strong, since every ses-
sion regenerates fresh
keys using DHKEP

Signature
Security

Standard ElGamal sig-
nature, vulnerable to
certain attacks if ks is
reused

More robust, modi-
fied signature with two
components

Supports secure signing
(with the hashing func-
tion SHA-256 ), resis-
tant to reuse attacks due
to session-derived expo-
nents

Attack Sur-
face

Attacks on DLP if the
ephemeral fi is weak

Same as EGC, but
more resistant to
ephemeral key reuse

Strengthened by the
MDHKEP; secure under
DLP assumption with
larger group

In summary, OUR provides the strongest security among the three cryptosystems. Its security depends on
the hardness of solving two discrete logarithm problems over the group of units U(pt): one is associated
with the private key generation, and the other is with the MDHKEP-based ephemeral exponent t. This
dual reliance enhances its long-term confidentiality and provides greater robustness against potential attacks
compared to EGC and MEGC.

4. Conclusion and Future work

We presented a security enhancement of the classical ElGamal cryptosystem by using a large prime
power modulus pt where t > 2 is derived from a shared secret obtained by a modified Diffie-Hellman key
exchange protocol. The system’s security is also based on the DLP with much more complexity. Namely,
this system has a richer algebraic structure, that increases the resistance to attacks. Furthermore, this cryp-
tosystem enhances of the digital signature scheme of the classical ElGamal cryptosystem by incorporating
the hash function (SHA-256) into the digital signature scheme, that gives more integrity for the signature
of messages. Also, this cryptosystem is successfully implemented and performed using the SageMath soft-
ware regarding to the performance of the cryptosystem’s main phases given in Section 2. As a result, this
cryptosystem is compared to the classical ElGamal cryptosystem (EGC) and another modification of the
ElGamal cryptosystem (MEGC) regarding to the complexity evaluation (the results are given in 3.3), cipher-
text expansion rate(the results are given in 3.4), and performance timing (the results are given in 3.5). The
results of comparisons show that our cryptosystem is suitable for scalable real-time encryption applications
as it is indicating successful performance optimization and robust integration of security features. For future
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work, we will modify the mathematical structure of our cryptosystem for which it can be applied on image
encryption.
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