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Kummer Surface Arithmetic for Primality Testing
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Abstract

We use the arithmetic of the Kummer surface associated to the Jacobian of a hyperelliptic curve to study
the primality of integers of the form λm,n := 4m2 · 5n − 1. We provide an algorithm capable of proving the
primality or compositeness of most of the integers in these families and discuss in detail the necessary steps
to implement this algorithm in a computer. The algorithm depends on an initial choice of a pair of integers.
If λm,n is prime there is always a pair that works. We prove that the proportion of pairs that do not work
to show compositeness for this algorithm is very small and decreases exponentially with n.
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Introduction

Determining the primality of an arbitrary integer n is a fundamental problem in number theory. The
first deterministic polynomial time primality test (AKS) was developed by Agrawal, Kayal and Saxena [3].
Lenstra and Pomerance in [25] proved that a variant of AKS has running time (log n)6(2+log log n)c where c
is an effectively computable real number. The AKS algorithm has more theoretical relevance than practical.

Primality proving for general integers is possible, but slow. If rather than working with general integers,
one fixes a sequence of integers, for example Fermat or Mersenne numbers, one can often find an algorithm
to determine primality using more efficient methods; for these two examples Pépin’s [26] and Lucas-Lehmer’s
[24] tests respectively provide fast primality tests.

Using elliptic curves, in 1985, Wieb Bosma in his Master Thesis [5] found analogues of Lucas tests for
elements in Z[i] or Z[ζ] (with ζ a third root of unity) by replacing the arithmetic of (Z/nZ)× with the
arithmetic of elliptic curves modulo n with complex multiplication (CM). Further, Pomerance proved in [27]
that for each p > 31 there is a proof of its primality using a suitable choice of an Elliptic curve E/Fp and a
Fp-rational point Q ∈ E(Fp) of order 2

r > (p1/4 + 1)2.
Interesting primality tests similar to what we present here using abelian varieties are with curves of

genus 0 and 1. Hambleton in [23] generalized Lucas-Lehmer primality tests by using the group structure
of Pell conics. Using genus 1 elliptic curves, Gross [21] developed a primality test for Mersenne integers.
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Further, Abatzoglou [1] used elliptic curves to perform deterministic primality proving for special sequences
of integers. Furthermore, Denomme and Savin in [9] used complex multiplication of an elliptic curve to
construct primality tests for different families of integers. These primality tests were later generalized using
various one-dimensional group schemes by Gurevich and Kunyavskĭı [22].

In [2, Remark 4.13] Abatzoglou, Silverberg, Sutherland and Wong pose the question of whether one can
use higher-dimensional abelian varieties to create primality tests. The goal of this paper is to propose such
a primality test, based on the arithmetic of the Jacobian of certain genus 2 hyperelliptic curves with real
multiplication and their associated Kummer surfaces. Specifically, in this paper, we use the Kummer surface
associated to the Jacobian J of the hyperelliptic curve y2 = x5 + h to study the primality of integers of the
form:

λm,n := 4m2 · 5n − 1, m, n ∈ Z≥1.

The algorithm presented here will be shown to be deterministic when λm,n is prime. This algorithm
depends on a choice of a pair of integers (α, β) and assumes that m is small for computational efficiency. One
can show that when λm,n is prime there is always a pair that makes the algorithm work, further, we show
that the number of choices that do not work to show compositeness is small and decreases exponentially in
n.
Faster methods to show primality for these integers can be developed using genus 0 or 1 curves, the objective
of this paper is to explore similar approaches to do primality testing extended to abelian varieties of higher
dimensions.

This paper consists of three sections. In the first, we explain the algorithm from a theoretical point of
view. The general idea is that when λm,n is prime, the group of rational points of the Jacobian J /Fλm,n of

the curve H given by y2 = x5 + h it is a cyclic Z[
√
5]-module of known order (see Proposition 1.5). We can

construct explicitly [
√
5] ∈ EndFλm,n

(J ) (see Section 2.2 and Equations 7 for a full worked example). On

the other hand, if λm,n is not prime we can still consider the scheme J /S and construct [
√
5] ∈ EndS(J )

where S := SpecZ/λm,nZ as we will see in the first section. With this, we choose some base point Q ∈ J ,
and study the integer inf{k : [

√
5]kP = 0 in J (Z/λm,nZ)} where P = 4m2Q to determine the primality

or compositeness of λm,n. This leads to Theorem 1.7, which is the main theoretical result underlying the
algorithm. Further work that might be interesting as well would be to find Abelian varieties of higher
dimensions that determine the primality of λm,n when it is not of the form N ± 1 and a factorisation of a
sufficiently large part of N is known.

In Section 2 we make this primality test explicit. The primality test depends on some auxilary data,
namely the choice of two integers α and β such that h := β2 − α5 is coprime with λm,n. This corresponds
to the point Q = (α, β) on the curve y2 = x5 + h. We use in this section the Kummer surface K associated
to J . We will see that K is a simpler geometrical and arithmetical object compared to J , which preserves
the necessary information to determine compositeness or primality of λm,n. We show in this section how to
obtain explicit representations for the [

√
5] endomorphism and for the point P = 4m2Q, which are necessary

to actually perform the algorithm. After doing these precomputations, the algorithm itself is reasonably
straight-forward, see Algorithm 1.

The algorithm has an indeterminate case, corresponding to case 3 in Theorem 1.7. If this happens, one
has to change the auxiliary data (α, β) and run the test again. This means recomputing the representations
of [

√
5] and the new Q. This is an expensive computation. However, in Section 3 we show that the probability

of this happening is vanishingly small for even moderately sized m and n, at least under the assumption
that λm,n is prime. Specifically, we show that if λm,n is prime and at least 100, and if the coordinates (α, β)
of Q are chosen randomly from all integers between 0 and λm,n for which the integer h = β2 − α5 is not a
multiple of λm,n, then the probability of ending up in the indeterminate case is less than 2m · 5−n/2. Thus
in practice, for large n the algorithm essentially always proves primality or compositeness without need to
chance the auxiliary data.
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1. Theory

In this section, we fix the positive integers n,m ∈ Z≥1 and we consider the number

λm,n = 4m25n − 1.

If n is even, then λm,n = (2m5n/2 − 1)(2m5n/2 + 1) is composite, so we will always assume that n is odd.
Additionally, any factors 5 in m can be absorbed in n, so we will assume that 5 ∤ m.

We also fix some non-zero integer h which is coprime with λm,n, and we consider the hyperelliptic curve
H defined by y2 = x5+h. Our primality test uses that the Jacobian of this curve admits real multiplication
by

√
5. We often need to consider the reduction of H and its Jacobian modulo λm,n, even in cases where

this number might be composite, and so we use the language of schemes. Therefore, in the rest of this
section, we always view H as a projective curve (or more precisely, an arithmetic surface) over the scheme
S := SpecZ[ 1

10h ,
√
5]. Over this base scheme, J is smooth with complete, geometrically connected curves as

fibers, and so its relative Jacobian J := Jac(H/S) is well-defined (see [4, Chapter 9, Proposition 4]). The

following proposition shows that EndS(J ) = Z
[
1+

√
5

2

]
, and in particular we have a [

√
5]-map on J defined

over S.

Proposition 1.1. Consider ω = dx
y as a differential on J . There is a unique ring isomorphism Z

[
1+

√
5

2

]
∼−→

EndS(J ), α 7→ [α] such that [α]∗ω = αω for all α ∈ Z
[
1+

√
5

2

]
.

Proof. In [7], Chapter 15, it is proven that the Jacobian of HQ is simple, and has endomorphism ring Z[ζ],
where ζ ∈ Q is a fifth root of unity. The action of ζ on J is induced by the map HQ → HQ sending (x, y) to
(ζx, y). From this description, one easily computes that [ζ]∗ω = ζω, and so the same holds for all α ∈ Z[ζ].
We have a canonical morphism of rings ϕ : EndS(J ) → EndQ(JQ) = Z[ζ], and this morphism is injective.

Thus we need to show that ϕ has image Z
[
1+

√
5

2

]
.

Let R be the image of ϕ. First we show that R ⊂ Z
[
1+

√
5

2

]
. Indeed, the above morphism ϕ sends an

endomorphism E of J to the eigenvalue of ω under the action of E on the cotangent space at the origin. If
E is defined over S, then so are both ω and E∗ω, and so the eigenvalue of ω is defined over S as well. Thus,

we get ϕ(E) ∈ Z[ 1
10h ,

√
5] ∩ Z[ζ] = Z

[
1+

√
5

2

]
as claimed.

Now we show that Z
[
1+

√
5

2

]
⊂ R. For this, let S′ = SpecZ[ 1

10h , ζ]. The canonical map S′ → S is an

(unramified) étale covering of degree 2, hence Galois, and the Galois action is given by ζ 7→ ζ4. Note that
EndS′(JS′) = Z[ζ], since the endomorphism ζ is defined over S′. Since we have that

1 +
√
5

2
= ±(ζ + ζ4) + 1,

(the sign depends on the choice of ζ) and the right hand side is clearly Galois invariant, the theory of Galois

descent for endomorphisms on abelian varieties shows that the endomorphism of JS′ corresponding to 1+
√
5

2

descends to an endomorphism of J over S. Hence 1+
√
5

2 ∈ R, and we are done.

Note that over Z[ 1
10h ,

√
5] we may factor λm,n as

λm,n = (2m
√
5
n
+ 1)(2m

√
5
n − 1).

These two factors are coprime over Z[ 1
10h ,

√
5] because their difference is a unit.

Lemma 1.2. Assume that h and λm,n are coprime. The canonical map

Z
λm,nZ

−→
Z[ 1

10h ,
√
5]

(2m
√
5
n − 1)
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is an isomorphism of rings, and its inverse is given by the map

Z[ 1
10h ,

√
5]

(2m
√
5
n − 1)

−→ Z
λm,nZ

√
5 7→ 2m · 5(n+1)/2,

1

10h
7→ m2 · 5n−1h−1

Proof. Easy computation.

Remark 1.3. In what follows we will always assume that λm,n is coprime with h, and identify Z/λm,nZ
and Z[ 1

10h ,
√
5]/(2m

√
5
n−1). In practice this just means that we have selected a ‘canonical’ square root of 5

in Z/λm,nZ, namely 2m · 5(n+1)/2. In particular, the base changes of H and J to Z/λm,nZ are well-defined:
formally, they are the base change of H and J via the map Spec(Z/λm,nZ) → S corresponding to the ideal
of Z[ 1

10h ,
√
5] generated by 2m

√
5
n − 1. We will denote these base changes by Hλm,n and Jλm,n . Note that

this base change depends on a choice, as we could as well have chosen the ideal corresponding to 2m
√
5
n
+1.

Base change gives a canonical map Z
[
1+

√
5

2

]
→ EndZ/λm,nZ(Jλm,n). In other words, for any α ∈ Z

[
1+

√
5

2

]
we have a canonical endomorphism [α] of Jλm,n defined over Z/λm,nZ. In what follows, the endomorphism

[
√
5] will play an important role, and the main consequence of the results above is that we can make a

consistent choice of these endomorphisms, defined over Z/λm,nZ, for each choice of m and n.

We now study the 2-torsion, the 5-primary part and the structure of the group J (Z/λm,nZ) in the
case where λm,n is prime. The main strategy for the primality test here is to iterate certain point P ∈ J
with [

√
5] ∈ End(J ). We know the number of steps that this iteration will take to reveal the identity of

J (Z/λm,nZ) when λm,n is prime because the 5-primary part will be known. This will be a basis of Theorem
1.7. We start with the 2-torsion.

Proposition 1.4. Suppose λm,n is prime. Then J [2](Fλm,n)
∼= Z/(2)× Z/(2).

Proof. We know that J [2](Fλm,n) ⊂ J (Fλm,n) consists of divisor classes D − 2∞ where D is the sum of a
pair of distinct Weierstrass points of H and D is fixed under the action of the absolute Galois group of Fλm,n .
Since gcd(λm,n− 1, 5) = 1, there is a unique α ∈ Fλm,n with α5 = −h. Then the Weierstrass points of H are
the point ∞ at infinity and the points of the form (ζjα, 0) for 0 ≤ j ≤ 4. Exactly two of these Weierstrass
points are defined over Fλm,n , namely (α, 0) and ∞. The other four are defined over the quadratic extension
of Fλm,n , because ζ lies there. Since λm,n ≡ 4 mod 5, ζ and ζ4 are Galois conjugate, as are ζ2 and ζ3.
Hence, the Galois action fixes the points ∞ and (α, 0), it interchanges the pair (ζα, 0) and (ζ4α, 0), and it
interchanges the pair (ζ2α, 0) and (ζ3α, 0). Therefore there are exactly three unordered pairs of Weierstrass
points stable under the Galois action, namely

{(α, 0),∞}, {(ζα, 0), (ζ4α, 0)} and {(ζ2α, 0), (ζ3α, 0)}.

This means that the group J (Fλm,n) has exactly three points of order 2. Together with the identity element,
this shows that #J [2](λm,n) = 4, and so J [2](Fλm,n)

∼= Z/(2)× Z/(2).

Observe that we can obtain explicitly the Fλm,n-rational zero α of x5 + h ∈ Fλm,n [x] as follows. We
know that there is a d ∈ Z such that the map x 7→ (xd)5 defined over Fλm,n is the identity map. By
Fermat’s little theorem, d satisfies 5d ≡ 1 mod (λm,n − 1) and λm,n − 1 = 4m2 · 5n − 2. To calculate d, let
N = 2m2 · 5n − 1 and write λm,n − 1 = 2N . Using the Chinese Remainder Theorem we evaluate 5−1 with
the isomorphism τ : Z/2NZ → Z/2Z × Z/NZ, using the fact that 5−1 ≡ 2m2 · 5n−1 mod N and 5 is odd.
Hence, τ(5−1) = (1, 2m2 · 5n−1) = (1, 0) + (0, 2m2 · 5n−1) and therefore:

d = 5−1 = τ−1(1, 0) + τ−1(0, 2m2 · 5n−1) = N + 2m2 · 5n−1 = 12m2 · 5n−1 − 1.

Using this we have that x5d = x in Fλm,n , and particularly if x = −h, we obtain:

α = (−h)d = (−h)12m
2·5n−1−1. (1)
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Proposition 1.4 allow us to deduce the full group structure of J (Fλm,n). For an abelian group G and a
prime p, we will denote by G[p∞] its subgroup of elements whose order is a power of p.

Proposition 1.5. Assume that λm,n is prime. Then we have

J (Fλm,n)
∼=

(
Z/4m25nZ

)2
as abelian groups.

Proof. For the proof, we will write H, J and F for Hλm,n , Jλm,n and Fλm,n respectively. First we calculate
the zeta function of H. We refer to a paper by Tate and Shafarevich [28] in which they give an explicit
description for the numerator of the zeta function of the curve C/Fp given by ye = xf + δ in the case
µ = lcm(e, f)|pk + 1 for some k. In our case p = λm,n = 4m2 · 5n − 1, µ = 10 and k = 1. By [28] the
numerator of the zeta function of H/F is in this case given by λ2

m,nT
4 + 2λm,nT

2 + 1, which tells us the
characteristic polynomial χJ (T ) of Frobenius of J equals T 4 + 2λm,nT

2 + λ2
m,n = (T 2 + λm,n)

2. With this
information, we obtain

#J (F) = χJ (1) = 16m4 · 52n.

A finite abelian group is the product of its Sylow subgroups for all primes dividing the order of the group.
Therefore, to show that J (F) and (Z/4m25nZ)2 are isomorphic as groups, it is sufficient to show that
they have the same p-Sylow group for all primes. We first look at the odd primes. Let p be odd, and
let k be the p-adic valuation of #J (F) (i.e. the integer k such that pk divides #J (F) but pk+1 does
not). Since #J (F) = 16m4 · 52n is a square, k is even. Lemma 3.1 of [29], together with the factorization
χJ (T ) = (T 2 + λm,n)

2, tells us that

J (F)[p∞] = (Z/pk/2Z)2

as expected.
The case p = 2 requires more work. First, Proposition 1.4 shows that J (F)[2] = (Z/2Z)2. Therefore, we

get that
J (F)[2∞] ∼= (Z/2aZ)× (Z/2bZ)

for certain a, b ≥ 1. Without loss of generality, we may assume that a ≥ b. We want to prove that a = b.
Suppose towards a contradiction that a > b. Let

ϕ : J (F)[2∞] → (Z/2aZ)× (Z/2bZ)

be an isomorphism of groups. Let P ∈ J (F)[2∞] be an arbitrary element of order 2a. Then ϕ(P ) is of
the form (s, t) with s ∈ Z/2aZ of order 2a and t ∈ Z/2bZ arbitrary. Then 2a−1s ∈ Z/2aZ has order
2, and is therefore equal to 2a−1. And 2a−1t = 0, since a − 1 ≥ b. Hence, we see that ϕ(2a−1P ) =
(2a−1s, 2a−1t) = (2a−1, 0), which is independent of the choice of P . Since ϕ is an isomorphism, we conclude
that 2a−1P = 2a−1Q for any two points P and Q in J (F) of order 2a.

Now consider the endomorphism θ = [1+
√
5

2 ] ∈ EndF(J ) that we know exists by Proposition 1.1. A
short computation shows that θ ◦ (θ − 1) = idJ . In particular θ and θ − 1 are both automorphisms. This
implies that θ preserves the order of elements of J , and also that θ has no non-trivial fixed points (because
otherwise θ− 1 would not be injective). Now let P ∈ J (F) be a point of order 2a. Then also θ(P ) is a point
of J (F) of order 2a. By the above independence, we now have that

2a−1P = 2a−1θ(P ) = θ(2a−1P ).

But 2a−1P ̸= 0, so 2a−1P is a non-trivial fixed point of θ, which is not possible. This contradiction shows
that a > b is not possible. We conclude that a = b, so that

J (F)[2∞] ∼= (Z/2aZ)2.

The result follows.
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We will also need to understand the action of [
√
5] on the 5-power torsion.

Proposition 1.6. Assume that λm,n is prime and that n > 1. Consider J (Fλm,n)[5
∞] as a Z[

√
5]-module

via the map [
√
5] as above. Then we have

J (Fλm,n)[5
∞] = 4m2 · J (Fλm,n)

∼= Z[
√
5]/(

√
5
2n
)

as Z[
√
5]-modules.

Proof. For the proof, we will write H, J and F for Hλm,n , Jλm,n and Fλm,n respectively.
The first claimed equality follows directly from Proposition 1.5. Moreover, that same proposition tells

us that
J (F)[5∞] ∼= (Z/5nZ)2

as abelian groups. In particular, the endomorphism [5n] = [
√
5]2n acts as the zero map on J (F)[5∞], so we

may view J (F) as a module over Z[
√
5]/(

√
5
2n
). This ring is an artinian principal ideal ring (its ideals are

of the form (
√
5
k
) for k = 0, . . . , 2n), and the structure theorem for modules over such rings shows that any

finitely generated module over such a ring is is a product of cyclic modules. Hence, we may write

J (F)[5∞] ∼=
r∏

i=1

Z[
√
5]

(
√
5
ei
)

for certain integers e1 ≥ · · · ≥ er ≥ 1. To get the number of elements correct, we need that e1+ . . .+er = 2n.
Since [5n−1] = [

√
5]2n−2 does not act as the zero map on J (F)[5∞], we need that e1 ≥ 2n− 1. Since n > 1,

we have e1 ≥ 3, and we see that the factor Z[
√
5]/(

√
5
e1
) contains exactly 24 elements of order 5. But from

the structure of J (F)[5∞] as abelian group, we know that in total it contains 24 elements of order 5. Hence
we have r = 1, and so e1 = 2n, and the result follows.

We now arrive at the main theorem of this section.

Theorem 1.7. Let n,m ∈ Z with n odd and 5 ∤ m s.t m2 < (
√
5
n−1)4+1
4·5n . Set as before λm,n = 4m2 · 5n − 1,

and assume that gcd(λm,n, h) = 1. Let Q ∈ J (Z/λm,nZ) be any point, and define P = 4m2 ·Q. Let

r = inf
{
k : [

√
5]kP = 0 in J (Z/λm,nZ)

}
∈ N ∪ {∞}.

Then we have:

1. If r > 2n, then λm,n is composite.

2. If 4 · log5( 4
√

λm,n + 1) < r ≤ 2n, then either

2a) λm,n is prime, or

2b) for the smallest prime p|λm,n, we have that [
√
5]r−1P = 0 mod p.

3. If r ≤ 4 · log5( 4
√
λm,n + 1), then either

3a) λm,n is composite, or

3b) λm,n is prime and there exists a point Q′ ∈ J (Z/λm,nZ) with Q = [
√
5]2n−r(Q′).

Proof. 1. If λm,n is prime, then by Proposition 1.6, we have Q = 4m2P ∈ J (Fλm,n)[5
∞]. By that same

proposition, this group is annihilated by [
√
5]2n. Hence, if λm,n is prime then [

√
5]2nP = 0 and so

r ≤ 2n.
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2. Let p be the smallest prime dividing λm,n, and assume that [
√
5]r−1P ̸= 0 in J (Fp). We show that

λm,n = p. Indeed, the group J (Fp) is a Z[
√
5]-module via the action of [

√
5], and the assumption

that [
√
5]r−1P ̸= 0 while [

√
5]rP = 0 in J (Fp) implies that P generates a Z[

√
5]-submodule of J (Fp)

isomorphic to Z[
√
5]/(

√
5
r
). In particular we have that

#J (Fp) ≥ 5r > ( 4
√
λm,n + 1)4.

On the other hand the Hasse-Weil inequality gives

#J (Fp) ≤ (
√
p+ 1)4.

Comparing these inequalities, we find that p >
√

λm,n. This is possible only if p = λm,n, and in
particular λm,n is prime.

3. Suppose λm,n is prime. By Proposition 1.6, 4m2J (Fλm,n) = Z[
√
5]/(

√
5
2n
) as Z[

√
5]-modules. Since

[
√
5]rP = 0 and [

√
5]r−1P ̸= 0, there is a point P ′ ∈ J (Fλm,n) with P = [

√
5]2n−rP ′. Choose integers

a and b such that 4m2a+ 5nb = 1 (such integers exist because 4m2 and 5n are coprime). Then define
Q′ = aP ′ + [

√
5]r(bQ) ∈ J (Fλm,n). Then we have

[
√
5]2n−rQ′ = [

√
5]2n−raP ′ + 5nbQ = aP + 5nbQ = (4m2a+ 5nb)Q = Q

as needed.

2. Implementation

In this section, we describe how to implement Theorem 1.7 as an algorithm to test primality of numbers
of the form λm,n = 4m2 · 5n − 1. The algorithm depends on the auxiliary data of the hyperelliptic curve
H : y2 = x5 + h with h ∈ Z and a base point Q0 = (α, β) ∈ H(Q) whose image in J has infinite order (e.g.,
h = −α5 + β2 with α, β ∈ Z, h ∤ λm,n and [(α, β)−∞] ∈ J (Q) of infinite order).

This algorithm consists of three parts. First one has to compute an explicit expression for the [
√
5]

morphism of the Jacobian J of H. Secondly, one has to compute the expression P0 = 4m2 · Q0 ∈ J (Q).
Finally, one has to apply [

√
5] iteratively on P0 and compare the result to the cases in Theorem 1.7. Note

that the first step does not depend on m and n, and the second step does not depend on n. Hence, for a
fixed choice of m and a fixed choice of the auxiliary data, one only has to perform steps 1 and 2 once, and
the output of these steps can then be used to test primality of λm,n for any value of n. This is important,
because the first two steps are reasonably time and resource intensive, and require computations in the
Jacobian of H which requires specialized mathematical software like MAGMA. The third step, on the other
hand, consists of applying explicit polynomials repeatedly to an explicit vector of numbers, and therefore
can be done in general purpose programming languages like Python (see [13]).

As mentioned in the introduction, the algorithm has an indeterminate case, corresponding to case 3 in
Theorem 1.7. If this happens, one has to change the auxiliary data and run the test again. However, in
Section 3 we show that the probability of this happening is vanishingly small for even moderately sized m
and n, at least under the assumption that λ is prime.

2.1. Using the Kummer surface K of J instead of J
In order to do explicit computations with elements of the Jacobian, one needs a way of representing

the elements of J . One way of doing this would be to embed J in projective space. The Jacobian of the
curve H embeds into P8, see [20] for explicit formulas (if H did not have a rational Weierstrass point, one
would even need P15, see [19]). Unfortunately, this large number of coordinates turns out to be impractical
computationally. Another option is to use the fact that elements of J (Q) are represented by divisors of the
form P1 + P2 − 2 · ∞ for some P1, P2 ∈ H(Q), for example using Mumford coordinates, see [8]. However,
when using these coordinates one often has to distinguish between divisors based on whether 0, 1 or 2 of the
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points P1 and P2 are equal to ∞. In our case, this leads to complicated formulas involving these different
cases.

To avoid these difficulties, we work not with points on the Jacobian J , but with points on the associated
Kummer surface K = J /⟨[±1]⟩ given by modding out the involution on J . This object is not an algebraic
group anymore, because addition is not well-defined. However, each endomorphism of J descends to an
endomorphism of K, because every endomorphism of J commutes with the [−1] map (e.g point doubling in
K [7, Chapter 3, Theorem 3.4.1, example 3.6.2]). In particular, there is still a [

√
5] map K → K. Moreover, K

embeds as a quartic surface in P3 (see [7, Chapter 3, Equation 3.1.8]), so we can represent points on K with
four coordinates. A nice additional benefit of using the Kummer surface is that the [

√
5] endomorphism on

K is defined already over Q, rather than over Q(
√
5), so the formulas we find involve only rational numbers.

See [7, Chapter 3] and [17, Section 5] for more background on the Kummer surface and its embedding into
P3. For the rest of the section, we fix the quotient map κ : J → K and the embedding ι : K → P3 as defined
in [18, Section 2]; these maps are implemented in MAGMA.

2.2. Computation of [
√
5] on the Kummer surface K

Because we consider K as embedded in P3, the morphism [
√
5] : K → K can be written in the form

φ̂ : K ⊂ P3 → K ⊂ P3

P := [x0 : x1 : x2 : x3] 7→ [φ̂0(P ) : φ̂1(P ) : φ̂2(P ) : φ̂3(P )]
(2)

where the φ̂i are homogeneous polynomials of some degree N ≥ 1 (it seems that in our case, we can always
take N = 5). Note that these polynomials are not uniquely determined, for two reasons: one can multiply
the four polynomials by a constant, and one can add to each φ̂i an arbitrary homogeneous polynomial of
degree N that vanishes identically on K.

To determine explicit polynomials φ̂i, we use an interpolation strategy. That is, we first generate a large
number of pairs of points (P,Q) with P,Q ∈ K such that Q = [

√
5]P , and then we solve a linear system of

equations to obtain the coefficients of the φ̂i. Let ζ be a fifth root of unity. Recall that the action of ζ on
J is induced by the map HQ −→ HQ given by (x, y) 7→ (ζx, y) Roughly, the steps are the following.

1. Generate a sufficiently large set S ⊂ J (Q(ζ)) using Q0 and the action of ζ on J . For example
S = {[a + bζ + cζ2 + dζ3]Q0} for a, b, c, d ∈ {−B, . . . , B} for some sufficiently large integer B. If P
and −P are both in S, drop one of them.

2. Calculate the pairs (P, [
√
5]P ) ∈ J (Q(ζ))2 for each P ∈ S.

3. Calculate the set T = {(κ(P ), κ([
√
5](P ))) : P ∈ S}, as a subset of (P3)2.

4. Construct a projective system of linear equations L using the set T . Use this system to deduce the
coefficients of four homogeneous polynomials of degree N that express φ̂ : K → K in P3. (If N is
unknown, simply choose large enough N .)

5. Remove any common factors in the φ̂i (in case N was larger than needed).

6. Check the validity of the φ̂i with a generic point computation, which uses the quartic equations defining
K.

We now explain these steps in more detail.
For step 1, we use the implementation of Jacobians in MAGMA [6]. In this computer algebra system,

points on the Jacobian are represented in Mumford coordinates. The idea of this representation is to
encode the divisor class [(x1, y1)+ (x2, y2)− 2∞] as a pair of polynomials ⟨u(X), v(X)⟩ such that u(xi) = 0,
v(xi) = yi, deg u ≤ 2 and deg v ≤ 1. For generic choices of (xi, yi), these are given explicitly by

⟨u(X), v(X)⟩ := ⟨X2 −AX +B,CX +D⟩
= ⟨X2 − (x1 + x2)X + x1x2,

y1−y2
x1−x2

X + x2y1−x1y2
x1−x2

⟩.
(3)
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The other non-generic cases [(x1, y1)−∞], [2(x1, y1)−2∞] and [0] are represented respectively by ⟨X−x1, y1⟩,
⟨X2−(x1+x2)X+x1x2,

f ′(x1)
2y1

X− f ′(x1)
2y2

x1+y1⟩ and ⟨1, 0⟩ where Y 2 = f(X) is the equation of the hyperelliptic
curve H associated to J . The addition of points on J is already implemented in MAGMA, so we only need
to implement the action of [ζm] on J . It is easy to see from the application of the action on each point in
the support of any divisor in J , that for Mumford representation [ζm] acts as:

[ζm]⟨X2 −AX +B,CX +D⟩ = ⟨X2 − ζmAX + ζ2mB, ζ−mCX +D⟩. (4)

Using this, one can compute the action of [α] on J for any α ∈ Z[ζ]. For example, since
√
5 = 1+2ζ2+2ζ3,

we have that

[
√
5]⟨u(X), v(X)⟩ = ⟨u(X), v(X)⟩+ 2ζ2⟨u(X), v(X)⟩+ 2ζ3⟨u(X), v(X)⟩. (5)

Having implemented the action of Z[ζ] on J , it is easy to compute the set S in step 1. We start with
the point Q0 = (α, β) ∈ H, which we identify as usual with the point [(α, β)−∞] on the Jacobian, and we
compute the points [a + bζ + cζ2 + dζ3]Q0 ∈ J (Q(ζ)) for a, b, c, d ∈ {−B, . . . , B} for some integer B (in
our implementation, B = 4 has always been sufficient). Since we are interested in points on K, for each
pair P and −P in S we remove one of them. Of course, one could speed this up by avoiding these double
computations from the start, by only computing [a + bζ + cζ2 + dζ3]Q0 for tuples (a, b, c, d) with the first
non-zero coordinate positive.

For step 2, we use the action of [
√
5] as described in Equation 4 to compute [

√
5]P for each P ∈ S.

In step 3, we use MAGMA’s implementation of the map κ : J → K ⊂ P3 to compute the pairs
(κ(P ), κ([

√
5]P )) for each P ∈ S. Explicitly, this gives us a large collection T of pairs (v,w), where v

and w are vectors of length four and coefficients in Q(ζ). Each v gives projective coordinates of a point of
K, and the corresponding w gives projective coordinates of its image under [

√
5].

For step 4 we use this set of pairs T to construct a system of linear equations that the coefficients of the
φ̂i satisfy. For this, we must first know or guess the degree N of the polynomials φ̂i. In our case, it seems
that N = 5 always works. Consider the set m of the monomials of degree N in four variables x0, x1, x2, x3.
The polynomials φ̂i we want to find, take the form

φ̂i =
∑
µ∈m

ai,µ · µ

for some unknown coefficients ai,µ. For each pair (v,w) ∈ T , writing v = (v0, v1, v2, v3) and w =
(w0, w1, w2, w3), we have the relation

[φ̂0(v) : φ̂1(v) : φ̂2(v) : φ̂3(v)] = [w0 : w1 : w2 : w3]

as points of P3. Thus, for each pair (v,w) there is a non-zero constant λv such that∑
µ∈m

ai,µ · µ(v) = λvwi (6)

holds for i = 0, 1, 2, 3. This defines a linear system of equations in 4 ·#m+#T unknowns (namely the ai,µ
and the λv) with a total of 4 ·#T linear relations between them.

To solve this system in MAGMA, we construct the matrix M given by Mj,k := µk(vj) where m =
{µk}k=1,2,...,#m and T = {(vj ,wj)}j=1,2,...,#T . Furthermore, build the diagonal matrices ∆i using the i-th
coordinate of each image point wj = ((wj)0, (wj)1, (wj)2, (wj)3), that is, ∆

i
j,j = (wj)i and ∆i

j,j′ = 0 if j ̸= j′.
With this we obtain the system:

L :=


M 0 0 0 −∆0

0 M 0 0 −∆1

0 0 M 0 −∆2

0 0 0 M −∆3

 .
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The kernel of L gives the coefficients ai,µ and the constants λv satisfying Equation 6. But note that not
every solution is useful, as there will be solutions where one or more of the φ̂i are identically zero on K. For
example, there is always the trivial solution where all variables are zero, but this solution is never useful.
One should choose an element of the kernel for which each φ̂i is non-zero on K. This can be read off from the
λv: these must be non-zero. Note that [

√
5] and [−

√
5] induce the same map K → K, so a Galois argument

shows that [
√
5] : K → K is defined over Q. Hence, one should get a solution whose coefficients are in Q.

After scaling, these coefficients can be taken to be coprime integers.
For step 5, one should check that the φ̂i are coprime. If not, a common factor can be divided out. This

happens only if N is chosen too large.
Step 6 is a check to ensure that the polynomials φ̂i indeed represent [

√
5]. This check is necessary,

because it is theoretically possible that the set of points S used for the interpolation is not ‘generic’ enough:
if all points of S happen to map into a curve on K of low degree, then the equations φ̂i are only guaranteed
to be correct on this curve and not on all of K. Therefore, we check that the polynomials φ̂i act correctly
on a generic point on K. To do this, we then consider the hyperelliptic curve HF over F := Q(J ) given
by the equation y2 = x5 + h, its Jacobian JF and its associated Kummer surface KF . By construction
there is a generic point P = [(x1, y1) + (x2, y2) − 2∞] ∈ JF (F ). Using Equation 5, we can then compute
Q = [

√
5]P ∈ JF (F ). With this we can check that

[φ̂0(κ(P )) : φ̂1(κ(P )) : φ̂2(κ(P )) : φ̂3(κ(P ))] = κ(Q)

as points in P3(F ). If this is the case, then the polynomials φ̂i correctly represent the action of [
√
5]. If not,

one has to start with a larger set S in step 1.
One can construct the function field of F of J in MAGMA via the description

F = Frac
(
Q(ζ)[A,B,C,D]/(Ψ1,Ψ2)

)
,

where Ψ1 and Ψ2 are the polynomials in A,B,C,D satisfying the congruence

X5 + h− (CX +D)2 ≡ Ψ1X +Ψ2 mod X2 +AX +B.

This congruence is used since it is easy to check that for all divisors of J in Mumford coordinates ⟨X2 +
AX + B,CX +D⟩ as in Equation 3 for any genus 2 H given by Y 2 = f(X), one has that X2 + AX + B |
f(X)− (CX +D)2.

We implemented this procedure in MAGMA. Our implementation can be found on GitHub, see [11].
As an example, we obtained the following polynomials representing the map [

√
5] : K → K for the Kummer

surface K associated to the hyperelliptic curve H given by y2 = x5 + 2.

φ̂0 := 320x30x
2
1 + 80x20x1x

2
3 + 40x20x

2
2x3 + 80x0x

2
1x2x3 − 120x0x1x

3
2

+ 5x0x
4
3 + 40x31x

2
2 + 10x1x2x

3
3 + 10x32x

2
3

φ̂1 := 640x30x1x2 − 320x20x
3
1 − 160x20x2x

2
3 + 120x0x

2
1x

2
3 − 40x0x1x

2
2x3

+ 120x0x
4
2 − 80x31x2x3 + 40x21x

3
2 − 5x1x

4
3 + 10x22x

3
3

φ̂2 := 320x30x
2
2 − 320x20x

2
1x2 − 40x20x

3
3 − 320x0x

4
1 − 200x0x1x2x

2
3

+ 40x0x
3
2x3 + 80x31x

2
3 − 120x21x

2
2x3 + 5x2x

4
3

φ̂3 := 512x50 + 320x20x
2
1x3 + 320x20x1x

2
2 − 40x0x1x

3
3 − 360x0x

2
2x

2
3

+ 64x51 − 40x1x
3
2x3 + 24x52 + x53.

(7)

We have uploaded formulas for [
√
5] for various values of h to GitHub, see [12].
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2.3. Computation of P0 = 4m2Q0

The other ingredient that is needed to make Theorem 1.7 into an algorithm is the point P0 = 4m2Q0,
or rather, its image in K. This image will be the starting vector for the iterative application of [

√
5]. Again,

we use MAGMA to obtain this. Note that instead of computing κ(4m2 ·Q0) directly, it is more efficient to
compute 4m2κ(Q0), i.e. first take the image of Q0 in K and then multiply by 4m2. The result is a vector
of 4 projective coordinates with coprime coefficients in Z. For example in MAGMA:

> alpha := -1; beta := 1; m := 1; h := beta^2 - alpha^5;

> J := Jacobian(HyperellipticCurve([1,0,0,0,0,h]));

> K := KummerSurface(J);

> K;

Kummer surface of Jacobian of Hyperelliptic Curve defined

by y^2 = x^5 + 2 over Rational Field

> Q0 := elt<J| Polynomial([-alpha,1]),Polynomial([beta]),1>;

> Q0;

(x + 1, 1, 1)

> 4*m^2*K!Q0;

(2624400 : -3559904 : 1744784 : 4190401)

We note that the size of this vector κ(P0) can be estimated using the theory of heights. Namely, consider
the (logarithmic) canonical height ĥ(Q0) of Q0. Then the canonical height of P0 is ĥ(P0) = 16m4 · ĥ(Q0)
because of the quadratic behaviour of the canonical height. Thus, one expects that also κ(P0) has logarithmic
height approximately 16m4 · ĥ(Q0), so the largest of the four coordinates of κ(P0) (after scaling so that
the coordinates are coprime integers) should have absolute value around exp(16m4 · ĥ(Q0)), so just about
16m4 · ĥ(Q0)/ log(10) decimal digits.

For Q0 = (−1, 1), so h = 2, we have ĥ(Q0) ≈ 1.0279805. For m = 1 we expect coordinates of size 107.1,
and we find

κ(4P ) = [2624400 : −3559904 : 1744784 : 4190401]

with indeed 8 digits as expected. For m = 2, we expect coordinates of size 10114.3, and we find

κ(16P ) = [4046394669688530407248378946538416871445705653541548795862

35105531112025243056923459621450802999130059192965945600 :

1517458072687990649583893248327329169920989863562377996111

86211315039106660124123347467785740933508167817531798016 :

− 519775702244808047789789255873896726222838826011524190361

702788673015740605567989171463669584295088827451720640256 :

7706059316740568145063375589890362492447388361047523236626

20042074686653408771113007590496528284727186389858585601]

which has coordinates with 114 decimal digits each. For m = 3, one expects 579 digits per coordinate, and
indeed we get coordinates of this size. This illustrates how quickly the size of the starting vector grows
with m: the number of digits grows with the fourth power of m. It also illustrates that one should choose
Q0 = (α, β) in such a way that its canonical height is small, in order to obtain a small starting vector κ(P0).

We have computed κ(P0) for various choices of Q0 and m. The results are available on GitHub, see [15].

2.4. The algorithm

Using the explicit representations of [
√
5] : K → K and of κ(P0) = 4m2κ(Q0) obtained in the previous

subsections, we can implement Theorem 1.7 as an algorithm. This step of using the representation of [
√
5]

to iterate a point does not need specialized mathematical software, and can be done in a general purpose
programming language like C or Python. The procedure in pseudocode is shown in Algorithm 1.
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We explain the steps. Line numbers 2 through 8 check that h and λ = λm,n are coprime, as this is used
in the theory (if h and λ are not coprime, then the hyperelliptic curve H will fail to have good reduction
at some primes dividing λ). Of course, if this finds a non-trivial factor of λ then we are immediately done:
λ is composite. So the only inconclusive case here occurs if h is a multiple of λ. Of course this should not
happen in practice, as h is usually taken small while λ is big.

From line 9 on the core of the algorithm starts. We begin the iteration by taking the point κ(P0),
considered as a vector consisting of four coprime integers, and take each component modulo λ. This is v0.
After this, we recursively compute vr by applying the polynomials φ̂i to vr−1 and reducing the result modulo
λ again. This computes the image of κ([

√
5]rP0) modulo λ. At each step, we check whether [

√
5]rP0 = 0 in

J by checking if vr is the point (0 : 0 : 0 : 1) projectively. This is because the map κ : J → K sends 0 to
(0 : 0 : 0 : 1), and 0 is the only point in J mapping to (0 : 0 : 0 : 1).

If after 2n iterations the point (0 : 0 : 0 : 1) is not reached, then λ is composite, per Theorem 1.7.1. We
return this result in line 19. If we reach (0 : 0 : 0 : 1) in at most 4 log5(

4
√
λ+1) steps, then the primality test

is inconclusive: this is case 3 of Theorem 1.7. In all other cases, we are in the second case of Theorem 1.7,
and we have to decide between cases 2a and 2b of that theorem. This means we have to check whether vr−1

is projectively equal to (0 : 0 : 0 : 1) modulo some prime p dividing λ. This is done by computing the gcd
d[i] of the first three components of vr−1 with λ. If d[0], d[1] or d[2] is a non-trivial factor of λ, then λ is not
prime. Note that it is possible that one or two of the d[i] are equal to λ, corresponding to vr−1[i] being zero
modulo λ, but it is not possible that all three are equal to λ. Therefore, if none of the d[i] give a non-trivial
factor of λ, then at least one of the d[i] is 1, and so vr−1 is not (0 : 0 : 0 : 1) modulo any primes p dividing
λ. By Theorem 1.7.2, we then conclude that λ is prime.

2.5. Implementation

We implemented the pseudocode above in Python 3. The code can be found on GitHub [10]. We used
this script, running on Python 3.6.4 in Darwin 18.7.0 x86 64 (macOS Mojave 10.14.6) Intel Core M 1.2

GHZ, to compute for m ∈ {1, 3, 7, 11} the values n < 500 with m2 < (
√
5
n−1)4+1
4·5n for which λm,n is prime.

The results are in the following table. The column n0 gives the smallest integer value for n for which

m2 < (
√
5
n−1)4+1
4·5n holds, i.e. the smallest n for which the primality test applies. The columns Q0 and

h indicate the curve and starting points used for the particular value of m. We used the starting points
Q0 from different hyperelliptic curves to demonstrate several [

√
5] formulas, every row took 60 seconds in

average to compute.

m n0 n ∈ {n0, . . . , 500} such that λm,n is prime Q0 = (α, β) h

1 2 3∗, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339 (1,2), (-1,3)* 3, 10∗

3 3 7, 39 (-1,1) 2

7 4 39, 53 (2,1) −31

11 4 19, 55, 89, 91, 119, 123, 177, 225, 295 (-1,3) 10

Table 1: Implementation example

The one entry marked with ∗ means that for that pair (m,n) the test had to choose another pair (α, β)
to determine primality successfully, because the initial choice of Q0 lead to an indeterminate outcome. It is
seen in the table that this only occurred once, for a very small value n. In Section 3 we will show that this
is the expected behavior: the chance of reaching the indeterminate outcome decreases exponentially with n.

All the κ(P0) points for each m ∈ {1, 3, 7, 11} and each curve y2 = x5 + h where h ∈ {2, 3, 10,−31}
can be found in [15] (Python). Explicit formulas for the [

√
5] endomorphisms for each h can be found in

[12]. Furthermore, a MAGMA script to generate other choices of κ(P0) for different m using other curves is
in [14]. Their respective explicit [

√
5] endomorphisms (or other endomorphisms) are calculated using [11].

CSV files with other low-height vectors for several m can be found on Github [16].
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Algorithm 1: Primality test for λm,n := 4m25n − 1.

INPUT: m,n ∈ N with m2 < (
√
5
n−1)4+1
4·5n , h := −α5 + β2, polynomials φ̂0, . . . , φ̂3 obtained from

Subsection 2.2, κ(P0) from Subsection 2.3
OUTPUT: if λm,n is prime: prime or unknown

if λm,n is composite: composite or unknown
1 λ := 4m25n − 1
2 d := gcd(h, λ)
3 if 1 < d < λ then
4 return composite (factor d)
5 end
6 if d = λ then
7 return unknown /* Choose a different (α, β) such that λ ∤ h */
8 end
9 v0 := κ(P0) mod λ

10 reached identity := false
11 for r = 1, . . . , 2n do
12 vr:= (φ̂0(vr−1), φ̂1(vr−1), φ̂2(vr−1), φ̂3(vr−1)) mod λ
13 if vr[0] = vr[1] = vr[2] = 0 then
14 reached identity := true
15 break

16 end

17 end
18 if reached identity = false then
19 return composite /* This corresponds to Case 1 of Theorem 1.7 */
20 end

21 if r > 4 log( 4
√
λ+ 1)/ log(5) then

22 for i = 0, 1, 2 do
23 d[i] := gcd(vr−1[i], λ)
24 if 1 < d[i] < λ then
25 return composite (factor d[i]) /* Case 2b of Theorem 1.7 */
26 end

27 end
28 return prime /* This corresponds to Case 2a of Theorem 1.7 */

29 end
30 return unknown /* Case 3a or 3b; retry with another α, β (rebuild φ̂ and κ(P0)) */

3. The probability of getting an indeterminate case

Algorithm 1 has an indeterminate case, corresponding to Case 3 of Theorem 1.7: there is no difficulty
distinguishing between Cases 2a and 2b, as explained in the previous section, but there is no good way to
distinguish algorithmically between Case 3a and 3b. Therefore, we refer to Case 3 of Theorem 1.7 as the
indeterminate case of the algorithm. The goal of this section is to make precise and prove the statement
that this indeterminate case is very rare, at least for the case that λm,n is prime. Essentially, the idea is that
for a fixed λm,n only a very small fraction of the possible starting data (α, β) leads to the indeterminate
case, while all other pairs prove primality of λm,n.

In this section, we fix m and n, and we assume that λ = λm,n is prime. We would like to know the
probability that, starting from random (α, β) (random in the sense made precise below), the primality test
fails to prove that λ is prime. According to Theorem 1.7, this is equivalent to asking for the probability that
the image of the point (α, β) in H(Fλ) lies in [

√
5]k(J (Fλ)) for some k ≥ 2n−4 log5(

4
√
λ+1). Note that this
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only depends on α and β modulo λ, so a sensible interpretation of “random (α, β)” is that the pair (α, β)
is to be regarded as uniformly distributed along pairs of integers in {0, 1, . . . , λ− 1} such that h = β2 − α5

is not 0 modulo λ. Note that h, H and J all depend on (α, β), so they are also random variables.
We prove the following.

Theorem 3.1. Let m and n be fixed positive integers. Set as before λ = 4m25n − 1. Assume that λ > 100
and that λ is prime. Let k ≥ 2n− 4 log5(

4
√
λ+ 1). Then

P
(
(α, β) ∈ [

√
5]kJ (Fλ)

)
≤ 2m

5n/2
.

In particular, the probability of reaching the indeterminate case of Algorithm 1 (i.e. line 30) for randomly
generated starting data (α, β) (in the sense explained above) is at most 2m · 5−n/2.

Here, as in the rest of this paper, we regard H(Fλ) as a subset of J (Fλ) via the Abel-Jacobi map, i.e.
the point (α, β) of H corresponds to the divisor class of [(α, β)]− [∞] as a point on J .

Proof. The proof of this theorem will take up the rest of the section.
We introduce the following sets:

X = {P ∈ H(Fλ) : P ∈ [
√
5]k(J (Fλ))}

and
Y = {D ∈ J (Fλ) : ∃P,Q ∈ X : D = P +Q}.

In words, X is the set of Fλ-points of H which are in the image of [
√
5]k when regarded as an Fλ-point of

J , and Y is the set of elements of J (Fλ) that can be written as the sum of two points in X. Since X and
Y depend on J and H, they should be regarded as random sets. Notice that the probability in the theorem
is P( (α, β) ∈ X )

Notice that (α, β) can be any element of H except the point at infinity, and all other points are equally
likely. Therefore, if we have a bound #X ≤ B for some constant B, then we get an upper bound for the
probability that we are looking for, namely

P
(
(α, β) ∈ X

)
≤ B − 1

#H(Fλ)− 1
. (8)

The −1 in the numerator and denominator accounts for the fact that (α, β) cannot be the point at infinity
(which is always in X).

Therefore, we want to bound #X. We first relate it to #Y .

Lemma 3.2. We have

#Y =
1

2
(#X)2.

Proof. We know the elements of Y in terms of elements of X: there is the identity element 0, there are
#X − 1 elements of Y of the form P + 0 with P ∈ X \ {0}, there are #X − 2 elements of Y of the form
P + P with P ∈ X \ J [2](Fλ) (by Proposition 1.4 there is exactly one non-trivial 2-torsion point in J (Fλ),
and since it is fixed by [

√
5] it is an element of X), #X − 2 elements of the form P0 + P where P0 is the

non-trivial 2-torsion point and P ∈ X is not 2-torsion, and finally there are (#X − 2)(#X − 4)/2 elements
of the form P +Q, where P and Q are in X, P and Q are not 2-torsion, and P ̸= ±Q. By the uniqueness
of the decomposition D = P +Q for D ̸= 0, we find that

#Y = 1 + (#X − 1) + (#X − 2) + (#X − 2) +
(#X − 2)(#X − 4)

2
=

1

2
(#X)2.
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Lemma 3.3. We have

#X ≤
√

2#J (Fλ)

5k
=

√
2(λ+ 1)

5k/2
≤ 4

√
2m(λ+ 1)

5n/2
= 4

√
2 ·m35n/2

Proof. By construction, we have Y ⊆ [
√
5]k(J (Fλ)). From Proposition 1.6 the kernel of [

√
5]k has size 5k, so

the image of [
√
5]k has index 5k. This gives #Y ≤ #J (Fλ)/5

k. Since #X =
√
2#Y and #J (Fλ) = (λ+1)2,

the first inequalities follow.
We now estimate 5k/2. Since k ≥ 2n− 4 log5(

4
√
λ+ 1), we get that

5k/2 ≥ 5n · (λ1/4 + 1)−2 = 5n(λ+ 1)−1/2 · (1 + λ−1)1/2

(1 + λ−1/4)2
≥ 1

2
· 5n · (λ+ 1)−1/2,

where we use that for λ > 100 we have (1+λ−1)1/2

(1+λ−1/4)2
> 1/2. Filling in λ = 4m25n − 1 we get

5k/2 ≥ 1

2
· 5n · (4m25n)−1/2 =

5n/2

4m
.

Filling this in gives the remaining estimate.

We want to combine the upper bound Lemma 3.3 with equation 8. All we need is to know #H(Fλ).
This is 1 + the number of solutions to the equation y2 = x5 + h in Fλ. But since λ is 4 mod 5, the fifth
power map is a bijection Fλ → Fλ, and so for every y ∈ Fλ there is a unique x ∈ Fλ such that y2 = x5 + h.
Therefore #H(Fλ) = λ+ 1 = 4m25n. Filling all this into Equation 8, we get

P
(
(α, β) ∈ X

)
≤ 4

√
2 ·m35n/2 − 1

4m25n − 1

=
m

5n/2
·
√
2 · 1− (4

√
2m35n/2)−1

1− (4m25n)−1

≤ m

5n/2
· 4
3

√
2.

Theorem 3.1 now follows since 4
3

√
2 < 2.

A short computation shows that m2 < (
√
5
n−1)4+1
4·5n implies 4m2 < 5n. Therefore, for the pairs m,n that

we look at, the upper bound in Theorem 3.1 is non-trivial. In particular, for such m,n with λm,n prime
there always exist (α, β) which proves primality deterministically. Thus, in this case the algorithm finishes
in finite time. Moreover, Theorem 3.1 shows that the probability of failure of a given starting point decreases
exponentially with n. Already for n ∼ 100, the probability of failure is so small that it seems unlikely to
ever occur in practice.
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