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OPEN-LOOP CONTROL OF QUANTUM PARTICLE
MOTION: EFFECTIVE SPLITTING IN MOMENTUM SPACE

BABAR AHMAD1, SERGEI BORISENOK1,2, SAIFULLAH1, YURI
ROZHDESTVENSKY3

Abstract. In this paper an effective quantum particle beam-splitter in
the momentum space is realized in the frame of open-loop control scheme.
We demonstrate for small interaction time that the splitting effect ±40~k
with summarized relative intensity in both main components is about 50
per cent from initial intensity of the atomic beam.
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1. Introduction

In nanolithography the optical control of atomic motion is one of the main
problems. In principle, we can make such a control for atom dynamics be-
cause there is an exchange of momentum between the atoms and the optical
fields. The momentum exchange can be created with practical devices: atomic
mirrors and atomic beam splitters which are main elements of atomic interfer-
ometer. The most interesting possibility here is to obtain the splitting of the
initial atomic wave packet coherently into two main momentum components
only by controllable way. It is needed both for increasing of atomic interfer-
ometer sensitivity and for the creation of periodic nanostructures by atomic
wave packet lithography [1]. Previously, successful splitting of an atomic wave
packet has been achieved by using Raman pulses, magneto-optical beam split-
ter, diffraction in an optical standing wave, adiabatic passage. More recently,
coherent splitting has been realized by scattering of an atomic wave packet
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in standing wave with modulated intensity [2] and by using chirped standing
wave fields [3].

In this paper we concentrate on the possibility to split an atomic wave
packet in standing wave with modulated amplitude because this beam-splitter
has a number of advantages by comparing with others. The first one is the
simplicity for an experimental realization because it is quite easy to obtain the
time modulation of intensity with any shape. The second advantage is that
the scale splitting of an atomic wave packet can be controlled by changing the
values of both an amplitude and the frequency of the modulation. Actually,
we demonstrate for small interaction time, which is required for clear and large
splitting, the beam-splitting effect ±40~k with summarized relative intensity
in both main components about 50 per cent from initial intensity of the atomic
beam.

The principal opportunity to split the beam in the momentum space was
demonstrated in [4]. To achieve the effective splitting, we apply the scheme
of open-loop control, or feedforward control, i.e. a control signal depends only
on the time. Our control goal is to obtain the large angle splitting for the
initial wave packet after some time of the interaction between the atoms and
the field of modulated standing wave.

2. Physical background and mathematical model for beam splitting
in the momentum space

Atom lithography is an active field now a days. The resolution of an optical
lithography technology is limited by diffraction, which for the case of deep
ultraviolet light approaches 200 nm. The progress of recent device technology
requires smaller patterning of 10 nm size. However, when one tries to make
very small devices, the resolution of the resistance is limited by the spread of
the secondary electron in an electron beam lithography, as well as in X-ray
lithography.

The ability to generate ultracold atoms using lasers has opened up new
possibilities. The long de Broglie wave of cold atoms makes possible an inter-
ferometric manipulation with atomic wave packets, which is designed by an
optical standing wave. In this case, atoms can be controlled directly to form
a desired pattern. To produce the pattern with high resolution, we need to
split the wave packet into two coherent momentum components only. For the
model with only two states (i.e. an approximation of two level atom states),
we have to split the population of the lower state (because the population of
the exited state usually loses the coherency very fast by spontaneous decay)
in several momentum components (in an ideal case – only two). At the same
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time to form the pattern with small step we need to control the scale of split-
ting between two main coherent components in momentum space. Therefore,
an atomic beam splitter is the main element for the practical realization of
nanoscale lithography with the controlled step by coherent scattering of an
atomic wave packet.

Let’s consider now a two level atom in a far detuned standing wave with
the intensity modulated in time as I = I0f(ε,∆ · t, φ0)cos(kx), where ε is an
amplitude, ∆ is the frequency of the modulation, and φ0 is an initial modu-
lation phase. The standing wave with the frequency ω1 applies between two
states of atom system, where the state 1 is ground and the state 2 is the exited
one. Here, ω0 is the frequency of atom transition and the difference ω1−ω0 is
the detuning. We will assume that the beam from an atom source propagates
along z-axis and crosses the optical wave, stadning along x-axis, by right an-
gle. The spontaneous emission from the upper level in this system can not be
neglected. After some time t of the interactions between the atoms and the
field of the standing wave, the initial atomic wave packet is splitted in few
coherent momentum components.

Dynamics of the atom in the modulated standing wave is described with
nonstationary Schroedinger equation for the wave function Ψ(r, t) of the two
level atom:

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t), (1)

where Ĥ is a Hamiltonian which takes into account both the atom movement
along the standing wave and the dipole interaction between the atom and the
optical field. For sufficiently large detuning, when it is much larger than Rabi
frequency and the natural width of the atomic transition, Ω >> R0, Γ (where
R0 is the Rabi frequency, Γ is the natural width of the transition), the excited
state 2 can be adiabatically eliminated. As the result, we obtain the equation
for the amplitude of the probability of the ground state Ψ1(x, t):

i~
∂Ψ1(x, t)

∂t
= − ~

2

2m
4xxΨ1(x, t) +

R2
0

Ω
[f(ε,∆ · t, φ0)]2cos2(kx)Ψ1(x, t) , (2)

and m is the atom mass.
After the Fourier transform the same equation in the momentum space is

given by:

i
∂Ψ1(p, τ)

∂τ
= (p2 + R2)Ψ1(p, τ) +

R2

2
[Ψ1(p + 2, τ) + Ψ1(p− 2, τ)] , (3)

where

R2 =
R2

0

2ΩωR
[f(ε, (∆/ωR) · τ, φ0)]

2 ,
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ωR = ~k2/2m is called a recoil frequency, τ = ωRt. Here we normalised atom
momentum along x-axis to ~k and the other quantities (the interaction time,
the Rabi frequency and the detuning) we normalised to the recoil frequency
ωR. We have to point out that equations (2)-(3) are valid in the approximation
when both the changing of atom momentum along z-axis and the initial value
along x-axis can be neglected.

3. Shell model for the splitting process: parametric control

To explain the effect of splitting in the momentum space we start from the case
of parametric control with a constant R. We invent a complex shell model for
Ψ1-function. Initially the atomic beam has a Gaussian distribution centered
at p = 0. Thus, from the structure of the RHS (3) we can expect the non-zero
meanings of Ψ1 functions to be concentrated in the neighbourhoods of the
points p = 2n, where n = 0,±1,±2, .... Then we can predict the continuous
dependency on p with the discrete number n: Ψ1(p+2n, τ) = yn(τ). Dynamics
Eq. (3) can be re-written in the form:

i
dyn(τ)

dτ
= (4n2 + R2)yn(τ) +

R2

2
[yn−1(τ) + yn+1(τ)] (4)

with the initial conditions: y0(0) = 1 ; yn6=0(0) = 0 .
Now we want to limit our shell number. In the case of three shells only Eq.

(4) becomes very simple:

i
dy0(τ)

dτ
= R2y0(τ) + R2y1(τ) ; (5)

i
dy1(τ)

dτ
= (R2 + 4)y1(τ) +

R2

2
y0(τ) .

We demand for the elder shells : y±2 = y±4 = ... ≡ 0 for any moment τ . Eq.
(5) can be easily solved:

y0(τ) = e−i(R2+2)τ
[
C1eiωτ + C2e−iωτ

]
; (6)

y1(τ) =
1

R2
e−i(R2+2)τ

[−(ω − 2)C1eiωτ + (ω + 2)C2e−iωτ
]

,

with ω =
√

2R4 + 16/2. For the initial conditions y0(0) = 1 and y1(0) = 0
the constants are: C1 = (ω + 2)/2ω and C2 = (ω− 2)/2ω. The corresponding
population amplitudes of the shells 0 and ±1 are given by:

a0(τ) = y0(τ)y∗0(τ) = 1− R4

R4 + 8
sin2

(√
2R4 + 16τ

2

)
; (7)

a1(τ) = y1(τ)y∗1(τ) =
R4

2R4 + 16
sin2

(√
2R4 + 16τ

2

)
.
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Surely, the normalization a0 + a−1 + a+1 = a0 + 2a1 = 1 is saved for any
moment τ . Now we can see that in the 3-shell model the regular splitting is
realized when the time τ = (2k + 1)π/

√
2R4 + 16, k = 0, 1, 2, ....

The same effect can be reproduced in the case of five shells. To simplify
the final expression we will omit the coefficients 4 and 16 in RHS, because the
numerical meaning of R2 is about 300 (i.e. R2 >> 4 and 16). Then we apply
Laplace transform:

i(sY0(s)− 1) = R2Y0(s) + R2Y1(s) ;

isY1(s) = R2Y1(s) +
R2

2
[Y0(s) + Y2(s)] ; (8)

isY2(s) = R2Y2(s) +
R2

2
Y1(s) .

Then:

Y0(s) =

(
s + 3

2 iR2
) (

s + 1
2 iR2

)

(s + iR2)
(
s + 2−√3

2 iR2
)(

s + 2+
√

3
2 iR2

) ;

Y1(s) = − iR2

2
(
s + 2−√3

2 iR2
)(

s + 2+
√

3
2 iR2

) ; (9)

Y2(s) = − R4

4(s + iR2)
(
s + 2−√3

2 iR2
)(

s + 2+
√

3
2 iR2

) .

With the inverse Laplace transform we restore the time-dependent solution in
the momentum space:

y0(τ) =
1
3

[
exp(−iR2τ) + exp

(
− iR2τ

2(2 +
√

3)

)
+ exp

(
− iR2τ

2(2−√3)

)]
;

y1(τ) =
√

3
6

[
exp

(
− iR2τ

2(2−√3)

)
− exp

(
− iR2τ

2(2 +
√

3)

)]
; (10)

y2(τ) = −1
3
exp(−iR2τ) +

1
6

[
exp

(
− iR2τ

2(2 +
√

3)

)
+ exp

(
− iR2τ

2(2−√3)

)]
.
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The amplitudes are harmonical:

a0(τ) = y0(τ)y∗0(τ) =
1
9

[
1 + 2cos

(√
3

2
R2τ

)]2

;

a1(τ) = y1(τ)y∗1(τ) =
1
3
sin2

(√
3

2
R2τ

)
; (11)

a2(τ) = y2(τ)y∗2(τ) =
1
9

[
1− cos

(√
3

2
R2τ

)]2

.

Surely, again the normalization a0+a−1+a+1+a−2+a+2 = a0+2a1+2a2 = 1
is satisfied. The splitting effect is obtained, when cos(

√
3R2τ/2) = −1, then

the population of the ±2 shells is: 2a2 = 8/9, and in the same time a1 = 0
and a0 = 1/9 only (see Fig.1).

Figure 1. Splitting effect for the model of 5 shells.



214 Babar Ahmad, Sergei Borisenok, Saifullah, and Yuri Rozhdestvensky

However, if the number n of a shell is increased such that 4n2 >> R2 (i.e.
for R ' √

300 we have n >> 10), then R2 in (4) can be excluded as a small
parameter, and for the elder shells

i
dyn(τ)

dτ
' 4n2yn(τ) (n >> 10) . (12)

This function is almost independent of the neighbour shells and it has the
solution

yn(τ) ' e−4in2τyn(0) . (13)

But yn(0) = 0 for any n 6= 0, thus, the elder shells do not participate in the
re-distribution of the initial Gaussian population. Thus, the simple parametric
control with the fixed R is not enough to split the beam efficiently. Another
scheme of time-dependent R (corresponding to the most general open-loop
control) should be applied.

4. Numerical simulation results for open-loop control with
harmonical modulation

Now let us consider the two level atom in a far detuned standing wave with an
intensity, which is modulated in time harmonically as I = I0(1+εcos(∆t))2cos2(kx),
where ε is the amplitude and ∆ is the frequency of the modulation.

We assume also that an initial wave function Ψ1(p, τ = 0) has Gaussian
profile with the width δp:

Ψ1(p, τ = 0) =
1√
2π

exp
[
− p2

(δp)2

]
. (14)

We remind that now we use the dimensionless time τ = ωRt.
Fig.2 shows the numerical solution of an equation for amplitude of the

probability of ground state |Ψ1(p, τ)|2 in momentum representation for the
cases unmodulated and modulated standing wave. We assume that initial wave
packet has the width equals δp = 0.5~k and ε = 0.8, ∆/ωR = 29. As we can
see from this picture, the scattering result strongly depends on the amplitude
modulation exiting in this system. If for an unmodulated case, it is well-known
scattering picture observed (Fig.2), when an initial wave packet is splitted
into a number of momentum components. However, for modulated standing
wave the scattering picture is changing dramatically and two main momentum
components centered on ±40~k can be observed (Fig.3). Such behaviour of the
momentum components is due to specific parametric resonance, which occurs
in this system by the well defined amplitude and frequency modulation. We
have to point out that the values of the modulation obtained for the amplitude
and frequency modulation are strongly different from [2], and we can interpret
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such resonances as Bragg resonances of high orders in modulated standing
wave.

Figure 2. The dependence of the distribution function on an
atom momentum for an interaction time τint = 0.567. The
unmodulated standing wave with the dimensionless Rabi fre-
quency R0 = (320)1/2.
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Figure 3. The dependence of the distribution function on an
atom momentum for an interaction time τint = 0.567. The
modulated standing wave with the dimensionless Rabi fre-
quency R0 = (280)1/2.
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