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Abstract

This paper introduces a new sufficient condition for Cauchyness on sequences in controlled metric spaces.
This sufficient condition can improve many pre-existing fixed point results under weaker hypotheses. Apply-
ing this sufficient condition, we establish some fixed point theorems involving nonlinear Ciri¢ type contraction
via control functions in controlled metric spaces and present numerical examples to show the validity.
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1. Introduction

The fixed point theory is very important and effective tool in mathematics and other science. Particularly,
it is widely applied in nonlinear analysis. Banach’s contraction principle [I] has become a fundamental tool
which provides existence of solutions for different types of differential equations and integral equations.

Many authors have generalized the Banach’s result under various contraction conditions [2] [3], 4, 5l [6].
Moreover, metric space has been extended into many abstract spaces. The notion of b-metric space defined
by Bakhtin [7] is a significant generalization of metric space. In 2017, by using the idea of b-metric space,
Kamran et al. [§] initiated the notion of extended b-metric space. In 2018, Mlaiki et al. [9] proposed another
generalization of b-metric space and named it controlled metric space.

Cauchyness on sequences plays a key role in proving the existence of fixed points in complete spaces. In
2017, Suzuki [10] and Miculescu and Mihail [I1] proposed a useful sufficient condition for the Cauchyness on
sequences in b-metric spaces. In 2018, Algahtani et al. [I2] discussed Cauchyness on sequences in extended
b-metric spaces. After that in 2020, Mitrovic et al. [I3] improved the result for Cauchyness on sequences in
[12], and their result is also generalization of the results of Suzuki [10] and Miculescu and Mihail [IT]. Their
results, which provide sufficient conditions for Cauchyness on sequences, give existence of fixed points under
weaker assumptions in b-metric spaces and extended b-metric spaces, and improve many of the fixed point
results presented previously.
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Given the strong motivation in previous studies on the sufficient condition for Cauchyness on sequences
in fixed point theory, this paper aims to extend the results of Suzuki [10], Miculescu and Mihail [I1] and
Mitrovic et al. [I3] to the controlled metric space. We establish a valid sufficient condition for a sequence
in controlled metric space to be a Cauchy sequence and give some examples to show the validity of the
obtained results. While the extended b-metric was defined by multiplying the whole right-hand side of
the triangular inequality by a function, the controlled metric was defined by multiplying each term on the
right-hand side of the triangular inequality by a function. Therefore, it is more difficult and complicated
to prove a sufficient condition for Cauchyness on sequences in controlled metric spaces. And our result can
be used to improve fixed point theorems in controlled metric spaces. Indeed, many previous fixed point
results in controlled metric spaces have been established under certain assumptions. For example, Banach
type result (Theorem 1 in [9]), Kannan type result ([14]), Reich type result (Theorem 8 in [15]), Fisher
type result ([16]), Geraghty type result (Theorem 2.1 in [I7]), rational type fixed point results (Theorem 4
and Theorem 5 in [18], Theorem 2.1 in [19]), nonlinear Banach type result (Theorem 2.1 in [20]), nonlinear
Kannan type result (Theorem 2.3 in [20]), nonlinear Chatterjea type result (Theorem 2.5 in [20]). Using our
result concerned with the sufficient condition for Cauchyness on sequences, we can show that these fixed
point results hold even under weaker assumptions. Applying the obtained results, we also prove some fixed
point theorems involving nonlinear Ciri¢ type contractions via some control functions, which give a partial
answer to the open questions presented in Mlaiki et al. [20].

2. Preliminaries

Definition 2.1. [7]. Let = # () and s > 1. A mapping @, : E X E — [0, o) is called a b-metric if
V¢, p, 0 € =, it satisfies:

(b1) @p(s, p) =0 & < = p;

(b )Wb(% p) = @u(p; );

( §, p) < [wb(§7 )+ wb(07 P)]
The palr (H, wy) is called a b-metric space (b-MS for short).

Definition 2.2. [§]. Let Z # @ and e : © X E — [1, 00). A mapping wgp : E x 2 —[0, 00) is called an
extended b-metric if V¢, p, o € Z, it satisfies:

(Ebl) wpp(s, p) =0 & ¢ =p;

(Eb2) wE(s, p) = @wrb(p; S);

(Eb3) wr(s, p) < e(s, p)lwrs(s, o) + @rp(o, p)].
The pair (2, wgp) is called an extended b-metric space (Eb-MS for short).

Definition 2.3. [9]. Let = 75 f and ¥ : Ex 2 — [1, c0). A mapping w, :
controlled metric if V¢, p, o € Z, it satisfies:

(C1) @e(s, p) =0 & c=p;

(C2) we(s, p) = @e(p, <);

(C3) @we(s, p) < V(s, o)we(s, o) + V(0, p)we(a, p).
The pair (2, w,)is called a controlled metric space (CMTS for short).

[1]
X

E —[0, o) is called a

Definition 2.4. [9]. Let (2, w.) be a CMTS and {¢} be a sequence in =. Then

1. {} is called convergent to ¢ € = if Ve > 0, there is N = N(e) €N such that w.(s, ¢) < &, V¥t > N.
This is written as lim;_o ¢ = ;
2. {} is called Cauchy if Ve > 0, there is some N = N(eg) €N such that w.(s, ¢5) < ¢,

Vt,s > N;
3. (B, w,) is called complete if every Cauchy sequence in = converges in E.

Miculescu and Mihail [I1] and Suzuki [10] obtained the following result in b-MS.
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Lemma 2.5. [10, [11]. Let {¢} be a sequence in a b-MS (2, wy). Assume that there exists X € [0, 1)
satisfying
@b (Sts St41) < A - @p(Se—15 2,

for every t €N, then {¢} is Cauchy.
Algahtani et al. [I2] provided the following result in Eb-MS.

Lemma 2.6. [12]. Let {¢} be a sequence in an Eb-MS (2, wgyp). Assume that there exists A € [0, 1)
satisfying
@Eb(Sty St+1) < A @wEb(St—15 St),

for every t eN. If

lim e(s, ¢5) < —, (2.1)

t,s—00

> =

then {st} is a Cauchy sequence.

Mitrovic et al. [13] proved that instead of condition (2.1f) in Lemma 6 can be used the weaker condition

lim supe(s, ¢s) < oco. (2.2)

t,s—00

3. Main result

In this section, we present a sufficient condition for Cauchyness on sequences in CMTS.
The following lemma can be easily obtained from the proof of fixed point result in [9].

Lemma 3.1. Let {¢;} be a sequence in a CMTS (2, w.). Suppose that there exists A € [0,1) satisfying
@e(Sty St+1) < A - we(Se-1, i),

for every t eN. If
0,
sup lim 2L+ 542)

) 3.1
s>1t—00 U(st, Si41) (3:-1)

(St41, Ss) <

>

then {c} is Cauchy.

Lemma 3.2. Let {s;} be a sequence in a CMTS (2, w.). And let A € [0,1) and K>0 such that
@Sty st41) < K- X,

for every t eN. If is satisfied, then {¢} is a Cauchy sequence.

Proof. We can obtain directly from Lemma 7.
Instead of condition ({3.1]), we will use weaker condition

D(St415 St42) 9

S , Gs) < 0O. 3.2
s>1t=00 V(st, Gi41) (St+1, ) (32)

Lemma 3.3. Let {¢;} be a sequence in a CMTS (2, w,). If there exists X € [0, 1) satisfying
wc(§t7 §t+1) S A wC<§t—17 gt)a (33)

for every t €N, then {¢} is Cauchy.
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_ s (e, St42) P
Proof. Let H = iglftlilgoiﬁ(<t»<t+l) V(St4+1, 6s) < o0 and L = tégnoo sup 9(s, s5) < oo. If H < 1, then the

condition ({3.1)) is satisfied for A € [0,1), and it corresponds to Lemma 7. Therefore, we consider the case
H>1. If A =0, the conclusion is immediate. So, we consider for A € (0,1). Repeating ({3.3))

@e(sts st41) < Mwe(<o, §1)- (3.4)

For all ¢, 7€N, using the triangular inequality and ¥(St4r—1, St4+r) > 1, we get:

WelSty Sttr) <U(St, St+1)@e(Sty Se1) + O(Set1, Str)We(Se1s Sttr)
Sﬁ(% §t+1)wc(§ta §t+1) + 19(§t+1, §t+r)19(§t+1, §t+2)wc(§t+1a §t+2)
+ (41, Sttr) P (St42, Sttr)P(St42, St+3)Te(St+2,5 St+3)
_|._

+ 0(§t+17 §t+r)19(§t+27 §t+r) e 'T9(§t+r—2, §t+r)19(§t+r—27 §t+r—1)wc(§t+r—27 §t+r—1)
+ (41, Strr)0(St42, Sttr) -+ O (Str—2, St )V (Stpr—25 Star—1)0(Str—1, Str)De(Sttr—15 Str)-

The above inequality implies that:

V(St+1, St42)
O(Sts St41)
P(St+2, St+3)
V(St415 St42)

We(Sty Sttr) <U(St, St+1) |@e(Sty Se41) + V(St415 Sttr)@e(St415 St42)

V(G415 St42)

)
I(St, St+1) (St+2, St4r)@e(St+2, St+3)

V(St+1, Str) -
+

V(St+1, §t+2)q9 V(St4r—1, St4r) 9

_l’_

(§t+17 gt—l—r) te (Ct—f—r—l; §t+r)wc(§t+r—1a Ct—l—r)

19(%, §t+1) 19(§t+r—2, Ct+r—1)
So, we obtain
@e(Sts Str) < sty se41)[@e(Sty 1) + H - @el(Se41, e42) + -+ H™H - we(Seqrmt, Ser)]- (3.5)
Let tp€N such that )
/\to < (36)

sup lim O(Seo (t41)s St (142))
8>1t—>00 ’19(§t0t7§t0(t+1))

Using (3.4), (3.5) and H>1, we have:

@e(Stots Sto(t+1)) <O(Stots Stor+1)[@e(Stots Stor+1) + H - @e(Stot+1, Stor+2) + -+ + HO™ - (St u1)-15 Sto(t41))]

19(%(t+1)7 €tos)

<O (Stots Stot+1) H' ™ [we(Stots Stor+1) + De(Stot+15 Stor+2) + -+ @elStgt41) =15 Sto(t4+1))]
<V(Stots Stot1)HO L me(Go, cr)[AOL 4 AL N0l

to—1 Aot
<L-H""
< @e(%0, 1)y
<K- /’Lt,
where K = L - Hto_lw and p = A, From ({3.6), we have
4GS ' S 1
sup lim (Sto(t+1) to(t+2))19(§to(t+1), Sts) < m

s>1t700  V(Stot, Spo(t41))
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By Lemma 7, {¢,:} is Cauchy. We also get:

e (Stolt/to)5t) SO(Stolt /0] Stolt/to)+1) H™  @e(so, s1) oL/ fo) 4 Xiolt/fol 1 g AP
Atolt/to]
<L- Htoilwc(%, Cl)ﬁ~

Thus, we have
tl—i;‘[&wc (gtO Lt/toj ) gt) = 0 (37)

And, by the triangle inequality (C3), we get:

@We (615 Ss) KOSty Sto[t/t0) ) Te(Sts Stolt/t0)) + V(Stot/t0]> Ss)Te(Stot /1] Ss)
<d(st, Sto \_t/toj)wc(gta Sto Lt/toj) + ﬁ(gtoLt/tojv §s)19(§toLt/t0Ja Sto \_s/toj)wc(gto [t/to]> CtoLs/toj)
+ 19(%0 [t/to]> §s)19(§t0 ls/to]> €s)wc(§t0 ls/to] > Ss)-

So, from (3.7) and the fact that {,.} is Cauchy, it follows that lim w, (¢,ss) = 0.
§—00

)

Example 3.4. Let Z = [0,1]. Define w,: =2 x Z — [0, c0) and ¥ : = x Z — [0, c0) by

wel(s, p) = (s —p)%, I, p)=c+p+1,forallg, pecZE.

Then, (2, w.) is a CMTS. Consider a sequence {¢;} defined by ¢; = (4/5)" for all ¢ > 0. Then, is
satisfied for all A € [16/25, 1) and t €N. And we obtain that

((4)t+1+ t+2
5

pE ey (ORSORDES

So, Lemma 7 is not applicable. On the other hand, by Lemma 9, the sequence {¢} is Cauchy in =.

U
sup lim Mﬁ(gﬂ, Gs) = sup lim
s>1t—00 V(g St41) s>1t—00

4. Fixed point theorems
For a CMTS (2, w.) and I' : 2 — E, we will use the following classes of control functions.
A={X: 2= (0,1), \(ITs) < A(s) foreachs € E},
B={\: 2—=1(0,1/2), AX(I's) < A(s) foreachs € E}.
We propose the following nonlinear Ciri¢ type fixed point result via the above control functions in CMTS.
Theorem 4.1. Let (2, w.) be a complete CMTS that w, is continuous. Let T' : = — = such that

wC(ng Fp) < )‘(g) : MC(§7 p)7 forallg, p e Ea (41)

where A € Band M.(s, p) = max{w.(s, p), we(s, I's), w(p, Tp),w(s, Tp),wc(p, I's)}.
For o € Z, we set ; = I'tsy. Suppose that

sup¥(si—1,st) = aexists and is finite, (4.2)
t>1

0 < A(sp) < i. (4.3)

Then I' has a unique fixed point.
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Proof. Let ¢y € 2. Consider the sequence {;} defined by ¢; = I'l¢y = I'¢;_; for all t eN. If ¢ = ¢_1, for
some t €N, then ¢;_1 is a fixed point of I". Suppose that ¢ # ¢ for all t €N.

By (4.1), we obtain

Wc(% §t+1) ZWC(FS}—L F§t) < )\(Ct—l) : Mc(Ct—l; §t)
<A(s0) - Me(s—1, st)s

where

MC((t—la gt) :max{wc(gt_l, §t)7wc(§t—1> th—l)awc(gta th)awc(gt—l’ th)awc(gla th—l)}

:max{wc(gtfla Ct)ﬂﬂc(%, §t+1)>wc(§t717 §t+1)}-

Then we consider three cases:

Case 1. If Mc(s—1, st) = we(Se—1, st), then we(s, s+1) < A(so) - @e(Se—1, ). Since A(so) € (0, 1/2), by
Lemma 9, {¢;} is Cauchy.

Case 2. If Mc(si—1, st) = welst, Se+1), then we(st, s+1) < A(so) - welst, se+1) < @elst, Se+1), which is a
contradiction.

Case 3. If M.(¢—1, st) = we(St—1, St+1), then we have

@e(Sty St41) < A(S0)@e(St—15 St+1) < A(0)[F(st—1, st)@e(St—1, ) + sty Ser1)@e(Sts Set1)]-

By , we get:
@e(Sty St1) < a(o)[@e(st—1, st) + @e(St, Sev1)]-
Thus,
@e(Sty St+1) <y - @elSt-1, St),

where v = 13[2(/\?@)0)'

By (4.3), we have A(gp) - 2a < 1. This implies that a - A(¢p) <1 —a- A(s) and v < 1. So, from Lemma 9,
{st} is Cauchy. Summarizing the three cases, we conclude that {¢} is Cauchy. Since Z is complete, there
exists ¢ € = such that tlim G =¢.

—00
Now, we will show that ¢ = I'c. Assume that ¢ # I'c. By (4.1), we get:

@e(St41, I's) = we(Tst, T's) < A(sp) - Me(se, ) < Mso) - Me(st, <), (4.4)
where
Me(st, §) = max{we(st, §), @e(St St+1), @e(s, I's), welst, I's), we(s, se41)}-
Since w, is continuous, taking the limit as ¢ — oo in the both sides of (4.4)), we have

we(s, I's) < A(<o) - we(s, I's) < we(s, I'q).

This is a contradiction, and so ¢ =T's.
For uniqueness, assume that ['c = ¢ # p = I'p. Then

@e(S, p) =we(T's, Tp) < A(s) - max{wc(s, p), we(s, '), @we(p, 'p), @e(s, Ip), @we(p, T's)}
<) - wels, p) < we(s, p),

which is a contradiction.

Example 4.2. Let Z={a, b, ¢}. w.: 2 x 2 — [0, 00) is symmetric and is defined by
we(a, b) = 2, we(a, ¢) = 3, we(b, ¢) = 3 and we(s, ) =0 for all ¢ € =.

And ¥ : E x E — [1, 0o) is symmetric and is defined by

3(a, a) = 9(b, b) = d(c, &) = Db, &) = 1,0(a, ¢) = 2 _3
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GivenI' : 2 —w=ZasTa=cand I'b =Tc=0b.
Consider A : = — [0, 1/2)as
49 45 47
=— b
100" (b)

A(a) = 100" (c) = 100"

Then:

1. (2, w,) is a complete CMTS.
2. For ¢ =a and p = b, (4.1)) is satisfied. In fact, it holds that

98 49

we(I's, I'p) = we(c, b) = % <e—==—". maX{ k

2 2
500 - 100 57 ana 57 20} - A(a) ' MC(CL, b) - )\(§) ’ MC(§, p)

Similarly, we can be checked that (4.1]) holds for all other ¢, p € E. It is obvious that A € B.

1
2c°

1. For o = a, supd(s—1,5) = a = 2 and 0 < () = A(a) = % < o=
>1

For ¢o = b, supd(si—1,5) = a =1 and 0 < A(sp) = A(b) = #5 <
t>1

1
2 2a
For ¢y = ¢, sup¥(si—1,5) = a =1 and 0 < A(sp) = A(¢) = % <3 =

t>1
Therefore, (4.2) and (4.3) are satisfied.

So, all hypotheses of Theorem 11 are satisfied and the mapping I' has a unique fixed point.

Theorem 4.3. Let (£, w.) be a complete CMTS and T : 2 — Z such that
@c(I's, Tp) < A(¢) - max{we(s, p), @we(s, T'¢), @e(p, T'p)}, Vs, p € B (4.5)

where A € A. For ¢y € E, we set ¢, = I'tqy. Suppose that for all ¢ € =

tli)rgoﬂ(g, Gt)exists and is finite, andtllglof}(ct, ¢) < o) (4.6)
Then I' has a unique fixed point.
Proof. By similar way to Theorem 11, we can get a sequence {¢; = "¢y} such that 1tlim G =¢€E=.
—00
Assume that ¢ # I's. Then we have
0 <wc(s, I's) <I(s, G1)@e(S, st4+1) + I(se+1, I'S)we(St41, I's)
<SO(Ss t41)@e(s St41) + Va1, TO)Msr) max{eoe (s, ), @e(se, T'sr), we(s, T'o) }
Sﬂ(gv §t+1)wc(§, §t+1) + 19(95_,_1, FC)/\(C()) maX{wC(gta C), wc(gh §t+1)7 wc(§7 F§)} (47)

Taking the limit as ¢t — oo in (4.7) and using , it holds that 0 < w.(s, I's) < w.(s, I's), which is a
contradiction. Thus, ¢ = I's. The proof of uniqueness omits.

From Theorem 13 we get the nonlinear Banach type fixed point result under weaker hypotheses than
Theorem 2.1 in [20] without the condition

19(§t+1» §t+2) 1
— (G, Ss) < .
s>1t=00 V(st, Si41) (er1s <) A(so)

And we have the following nonlinear Kannan type fixed point result under weaker hypotheses than
Theorem 2.3 in [20] without the condition

V(St+1, St+2) 9

1-— /\((0)
s>1t—00 I(Sts St+1) )

(St+15 Ss) < o)
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Corollary 4.4. Let (Z, w.) be a complete CMTS and I" : Z — = such that
w@e(I's, Tp) < A(Q)[we(s, <) + we(p, [p)], Vs, p €E (4.8)

where A € B. For ¢y € 2, we set ¢; = I''y. Suppose that for all ¢ € =

tlggoz?(g, Gt)exists and is finite, andtlggoﬁ(gt, ¢) < (4.9)

Aso)

Then I' has a unique fixed point.
Proof. We have
we(I's, Ip) SA(S)[we(s, T's) + @elp, Ip)] < 2A(u) max{we(s, I'c), we(p, Ip)}
<2A(u) max{we(s, p), we(s, I's), we(p, T'p)}-
Since A € B implies 2\ € A, I" satisfies . By Theorem 13, I' has a unique fixed point.

Example 4.5. Let Z={a, b, ¢}. w.: 2 x 2 — [0, 00) is symmetric and is defined by
we(a, b) = %, we(a, ¢) = &, we(b, ¢) = 3 and we(s, ) =0 for all ¢ € =.
And ¥ : E x E — [1, 0o) is symmetric and is defined by

Y(a, a) =9(b, b) =I(c, ¢) = I(b, ¢) =

L >

,9(a, ¢) =2,9%(a, b) = -

GivenI' : 2 —w=ZasTa=cand I'b =Tc=0b.
Consider A : 2 — [0, 1/2) as
99 45 49
Ma) = 2 Ab) = —2 Ae) = —.
(@) = 550 M) = 100> M) = 109

Then, (=, w,) is a complete CMTS. 1t is obvious that A € B.

For ¢ = a and p = b, (4.8)) is satisfied. In fact, we have
399 (11

P _ |
20 = 200 (20 +0) M) [@e(s, T) + we(p, Tp)]

Similarly, we can be checked that (4.8) holds for all other ¢, p € Z.

we(I's, I'p) =

For ¢o = a, lim¥(s, ) = J(a, ¢) =2 and limI(g, ¢) =I(c, a) =2 < 200 =
t—o00 t—o0

For ¢y = b, tli}rgloﬁ(g, &) =9(b,b) = 5 and hm 19(§t, ¢)=9(b,b) =3 <P = ﬁ = /\(1%).

T _ 100 _ 1 _ _1
For ¢y = ¢, tligloﬁ(g, &) =(c,b) = 3 2 and hm 19(§t, ¢) =9(b,c) = 3 <® TN T N

So, (4.9) is satisfied.

On the other hand, we have

101 1=A(s .
(St+1, Ss) = 3 > 55 = /\(g(o)o), for ¢o = a;

sup lim Isin, si42) g
s>1t—00 9(st, St+1)

m>1

sup lim st 5e+2) 9
s>1100 I(St, St+1)

m>1

4 55 1=A(s .
(§t+17 §s) == 3 > 15 - )\(gg))O)a fOI’ 0 = b>

V(Str1,St42) _ 4 51 _ 1=X(s0) _
ililftgn& I(st, str1) I(St41, Ss) = 3> 19 = o) for o = c.

m>1

Therefore, Theorem 2.3 in [20] is not applicable. In other hand, by Corollary 14, I" has unique fixed point
c=0b.
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5. Conclusion

In this paper, I introduced a new sufficient condition for the Cauchyness on sequences in controlled metric
spaces. This result can be effectively used to show the existence of fixed points in controlled metric spaces,
and under the weaker assumption, it can improve the previous fixed point theorems. As application of
obtained result, I presented some fixed point results involving nonlinear Cirié type contractions via control
functions, which give a partial answer to open questions in [20].
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