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Abstract

This paper introduces the concept of wp-semiring and investigates its algebraic properties. Closed weakly
Stone and dense elements according to wp-complementation are defined, and their properties are proved.
Connections between wp-semiring and other ring-like structures are verified. Structures of closed and dense
elements are shown as orthopseudoring and presemiring, respectively.
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1. Introduction

Golan J. S. introduced the concept of semiring in [6]. A semiring is a very important algebraic
structure in both theoretical and applied fields. It is considered a generalization of a distributive lattice and
ring. So, it has common properties with lattices and rings. In addition to semirings and their derivative
structures, which have many applications in computer science, as referenced in [1], [7], [4], [3],[10], and
[12]. An ordered semiring is a semiring equipped with an ordered relation connected with the operations of
semiring with some conditions, see [6], [7]. In this work, we define an ordered semiring in which each element
has wp-complemented (wp-semiring) as a generalization of a pseudocomplemented semiring introduced by
P. Nasehpour in [11]. The concept of weak pseudocomplementation is introduced in [9], by Kwuida under
the name of dual weakly complementation on a bounded lattice. This operation and its dual are raised
from the formal concept analysis (FCA) theory and its applications, as a generalization of operations of
concept algebra. In the case of a distributive lattice the dual weak complementation considered as a gen-
eralization of pseudocomplementation. In this situation, the pseudocomplementation is the largest one of
dual weak complementation elements. Here we extend this concept to an ordered semiring and then we get
pseudocomplemented semiring of P. Nasehpour as a special case. This generalization get more application
in broad fields of data analysis, information and computer science in integration with (FCA) theory. The
algebraic properties of the wp-semiring structure are proved. Closed and dense elements with respect to
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weak pseudocomplementation are defined. The algebraic structures of sets of all closed and dense elements
represent relations between a wp-semiring, orthopseudoring, Boolean ring, and presemiring. The reader is
supposed to know the basics of lattice theory, see [2].

Section 2 lists the most important previous definitions and terminology on which the rest of the paper
is built. In section 3, wp-semiring is defined, and its important properties are shown. Definitions of closed,
weak Stone, and dense elements are introduced. In Section 4, the algebraic structure of the sets of all closed
is investigated. Section 5 proved properties of weakly Stone and dense elements. The results are supported
by illustrative examples throughout the article.

2. Preliminaries
In this section, we list some primary concepts and terms used in the remaining parts.

Definition 2.1. [6] A structure © = (O;+,-) of nonempty set O and two binary operations ”+” and
7.7 is called a semiring if (O;+)and (O;-) are commutative monoids with two different identities 0 and 1,
respectively and it satisfies that:

i) w-(ut+v)=(w-u)+ (w-v), for any u,v,w € O
ii) u-0=0, for any u € O

A semiring © = (O; 4+, ) is simple if any u € O, has that v 4+ 1 = 1. It is multiplicatively idempotent
if any v € O has u - u = u? = u.

An ordered semiring O = (O; +, -, <) is a semiring O = (O; +, -) equipped with partial ordered relation
7 <” gatisfies that:

i) If u <w, then w+u < w+ v;
i) If u <vand 0 < w, then u-w < v-w;

for any u,v,w € O.
A positive ordered semiring is an ordered semiring with 0 < v for all u € O. In this case u,v < u+ v for
all u,v € O, see [7] and [4].

Definition 2.2. [5] A structure P = (P;+,-) of nonempty set P and two commutative binary operations
”+” and ”-” is called an orthopseudoring if the operation”-” is associative and idempotent,each element
u € P is additive inverse of itself, e.i. © 4+« = 0 and it satisfies that for all u,v € P:

) u+0=0,u-0=0-wand u-1=u;

i) u+(1+v)=(u+1)+u;

i) (14+(u-v)) - u=u+(u-v-u);

iv) (14u)- (14 (u-v)=1+u;

v) A+u-(1+v) - 14+v-(1+u) =1+ (u+v).

111

Boolean ring B = (B;+, -) is an orthopseudoring with the following more conditions:

) (uat(u-v)) + (u-v) =y
i) (u+v)+v=u+ (v+v);
i) u- (14+v)=u+ (u-v).
A presemiring is an algebraic structure B = (P;+, ) of nonempty set P and two associative and com-

mutative binary operations ”"4” and ”-” with w - (u 4+ v) = (w - u) + (w - v) for all u,v,w € P, refer to

[3].
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3. Definition and Basic Properties
Here, weakly p-semiring is introduced and its algebraic properties are verified.

Definition 3.1. Let O be an ordered semiring and v € 9. Then u is a weak pseudocomplemented element
(wp-complemented) iff there exists an element u“» € O satisfies that:

Wpl) u < u*n@r;
W,2) If u < v and v*» exists, then u“» > v“r;
Wp3) u-u“» =0.

Consider an ordered semiring 9, a set of all elements which have a wp-complemens is denoted by
Wp(9). Since 0“» = 1, then 0 € O and Wp(9) is nonempty set. An element u € O is closed element, if
u = v*? for some v € O. The set of all closed elements is denoted by C“?(9O). A dense element v € O is an
element with u“» = 0. The set of all dense elements is denoted by D“?(9). An ordered semiring O is called
weakly pseudocomplemented( Wp-semiring) iff O = W),(O).

Example 3.2. Tables|l|and describe an ordered semiring O = (O; +, -, <). The ordered relation < on O is
given in Figure (1) (in the last page) and Table[3|gives wp-complemented elements of 9. C*»(O) = {0,z,y,t}
and D7 (D) = {s,t,w}.

Table 1: + operation on . Table 2: - operation on 9.
+ |10 | x|y |s|t v |w |z |1 . Olz|ly|s|t]|v]|w]|z=z 1
0 O | x|y | s t v |w |z |1 ojlojoOo|0|0]O0]|O 0]10]O0
T T T t s t v |w | s |1 z | 0|0 |0 |z|zxz| x| =x 0| x
Y Y t Y s t w | w | z |1 y 0O|l0|O0|y|wy]|O Y Y Y
s s s s | s | s 1 1 (s |1 s|Oo|lx|y|s|t]=x t z | s
t t t t s t | w|wl|s |1 t 0lz |yt t | = t y t
v v v |lw|l|lw|v | |w]|1l]1 v Olzlolz 1l z v v 0 v
w|lw|w|lw|l|w|lw|w]|1l]1 w |0 |z |yt t v | wl|y|w
z z s z | s s 1 1 z |1 P 0|0 |y |z|y]oO Y P P
1 1 1 1 (1] 1 1 1 111 110z |y |s|t|o]w]|z 1
Table 3: Wp-complemented elements of
element |0 | x|y |s|t|w
wp-comp. |t |y | x 0
Proposition 3.3. Let O be a positive ordered semiring. Then for every u,v € W,(O):
i) u“rerYr = yr;
i) u¥r - u¥r¥r = (;
i) If 1 € Wp(9O), then 1¥r = 0;
w) If v <u“r, thenv-u =0, for allv e O;
v) u<ovr Gff v <uvr;
vi) If 0 € W, (9), then 0 < u < 0%r.
Proof. i) From Definition(3.1), u®“r < u*r“r“r. Also, u < u“?“r implies u*r > u*r*“r“r. Accordingly

uvr = y¥r%rWp

ii) Set u = u*? in Definition(3.1), axiom W),3) we get u*» - u“»“» = 0.
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iii) Assume 1 € W,(9). Since zero is the only element that has 1-0 = 0. Then 1%» = 0.
iv) Let v < u“? for some v € O. Then using Definition (3.1), Wp3), v-u < u“? -u = 0.S0, v-u = 0.
v) u < o iff uvr > orr > o,

)

vi) Since O is positive, then 0 < w,u*?. From v) wu < 0“7. Hence, 0 < u < 0“».
O]

A dual weakly complementation operation on a lattice (L, +, -) is a unary operation has W,1 and W2
in Definition (3.1) and the condition: (u+v) - (u+ v“?) = u, for all u,v € L. A dual weakly complemented
distributive lattice is a bounded distributive lattice with dual weakly complementation operation, for more
details refer to [13], [14], [9].

Theorem 3.4. Let O be a positive weakly p-semiring. Then the following conditions are equivalent:

i) 0% = 1;

i1) 1 is the largest element of O;
iit) u-v <u,v for all u,v € O;
i) O is a simple ring.

Moreover, if O is multiplicatively idempotent, then it is equivalent that
v) O is a bounded distributive dual weakly complemented lattice.

Proof. i) <— ii) : Immediately from vi) in Propostion (3.3).

i1) «— 4i3) : If 1 is the largest element of O, then v <1, w<1andsou-v <wuand u-v <v. Conversely,
ifu-v<u,v,thenu=wu-1<1forall ue 9.

i1i) «— iv) : Let u-v < wu,v for all u,v € O. Then 1 <u+1=1-(u+1) <1, foral ue O. So, O is
simple. Conversely, if O is simple, then u = u-(v+1) = uw-v+u, and v = v-(u+1) = v-u+v. Thus u-v < u,v.

iv) «— v) : It is enough to prove only the absorption laws u + (v - v) = v and u - (v + v) = u, and the
distributive law (w +u) - (w +v) = w + (u - v) as follows:
u+(u-v) =u-(14+v) =u,and u- (u+v) =u?+ (u-v) =u+ (u-v) = u-(1+v) = u. Thus, the absorption
laws hold.
(w+u) - (w+v) = w?+ (w-v) + (u-w)+(u-v) =w+ (w-v)+ (w-u) + (u-v) =w- (1+v)+ (w-u) + (u-v) =
w4+ (w-u)+ (u-v) =w-(1+u)+ (u-v) =w+ (u-v). Thus distributive law is hold. Also, we have,
(v4u) - (v+u?) =v+ (u-u?) =v+0=wv. As aresult “» is a dual weak complementation on this lattice.

O

For brevity, we will refer to a positive wp-semiring as pwp-semiring and to simple positive wp-semiring
as spwp-semiring. We will be denoted to the last condition in Theorem (3.4) as:

D1 w.v is the largest lower bound of v and v, for any u,v € ©.

7

Example 3.5. Let O’ = (O;+,-,<’) be a spwp-semiring with operations ” + ”and ” -7 represented in
Tables (1| and [2. The ordered relation <’ on O’ is given in Figure (2) (in the last page) and Table {4 gives
wp-complements of elements in O’. C“? (D) = {0,z,y,v, 2,1} and D*?(D) = {s,t,w, 1}.

Table 4: Wp-complementes of £’

element |0 |z |y |s|t|v|w]|z|1

wp-comp. |1 |z |v|[0|0|y |0 |x
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Corollary 3.6. Let O be a spwp-semiring and u - v is the largest lower bound of u and v, for any u,v € O.
Then :

i) u¥r P = (u+ )P ;

it) (u? - 1)+ (u-147)) = u¥r;
1) (u+uvr)<r =0;
?:’U) (uwpwp + ,Uwpwp)wp — (U + U)wp;.

Proof. i) Suppose u,v € O so u,v < u+ v and (u 4 v)“» < u*r,v*?. Thus (u + v)“r < u¥ - V*r.
Now if w < u®?, v“r, then w*? > u“r¥r p“r“?, Accordingly w*r > u*r“r + v*“r“? > y + v. Hence
w < w¥r?r < (u+ v)¥. Therefore, u“? - v*“r = (u 4 v)“r.
i) It is trivial.
iii) Set v = u“? in i), we get (u + u®r)“r =y~ - urr = (.

jV) (uwpwp + U"-’p"-’p)wp = WpWpWp . WpWpWp — Wp . yWp — (u + U)"-’p_
O

Example 3.7. Tables[f|and [6] describe a multiplicatively idempotent spwp-semiring O” = (O; +, -, <"). The
ordered relation 7 <’ ” on 9" is represented Figure (3) (in the last page) and Table 7| gives wp-complements
of elements.

Table 5: + operation on O”. Table 6: - operation on O”.

+ 10| x|yl s t v | w | z 1 . Ol x|y | s t v | w | 2z 1
0|0 | x|y | s t | v |w| z |1 O[O0l 00| O 00 0]0]O0
z | x| v |1 t z | 0|y | s | w z | 0|l x| 0| x| v |v]|]wv]|0]| =
y Yy 1 z X v w t 0 S Y 0 O Y z z 0 Y z Y
s|s|tlez|lw |y | z[0]1]w s | O0lxz|2z|1|w|lv]|t|y]| s
t t z v Y 1 s z | w 0 n 0l vl z | w 1 T S y t
v v |0 jwlz]s |z ] 1]t ]y v | 0|l v |[O0O|wv |z |xz|x|0]w
w | w |y t 0| 1 s v z w 0] v |y 7 s z 1 > | w
z z s 0 1 | w | t v Yy | x Z 0] 0] 2]y Y 0 z |y | 2
1 1 |w/| s v 0 ] z | x t 1 0z |y S 7 o w2 1

Table 7: WP-complements of

element Olxz|y|s|tlv|lw]|z]|1l
weak p-comp. |1 |2z |v |[0|0]|y]| O
In this case the weakly p-semiring 9” = (O; +, -,“? ) becomes a weakly distributive lattice under the new

ordered relation ” < ” represent in Figure(4) (in the last page)

Definition 3.8. [§] A kernel operator p on an ordered semiring O is a monotone (u < v = k(u) < K(v)),
contraction (k(u) < u) and idempotent (k(k(u)) = k(u)) operator.

Lemma 3.9. Let k be a kernel operator on a spwp-semiring £ and u-v is the largest lower bound of u and
v, for any u,v € O. Then:

i) K(k(u) - K(v)) = K(u-v) ;
it) k(k(u) + k(v)) = k(u) + K(v).
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Proof. ( i) )We have u-v < u, v, then k(u-v) = k(k(u-v)) < k(k(uw)-K£()) = k(k(Kk(u) -kK(V))) < K(k(u-v)) =
ii) Since k(u), k(v) < k(u) + K(v), then k(u) = k(k(k(u))) < k(Kk(k(uw) + K(v))) and k(v) = K(Kk(k(w))) <
k(k(k(u) + K£(v))). Thus, k(u) + k(v) < K(Kk(Kk(uw) + k(v

Consider x be a kernel operator on a spwp-semiring 9 and w - v is the largest lower bound of u and v,
for any u,v € 9. Define unary operation "“~” on O as:

u¥s = k(u“r) for all u € O.

Moreover, define binary operation ”-,,_ " as:

U -, V= K(u-v) for all u,v € O.
Theorem 3.10. Let x be a kernel operator on a spwp-semiring O, with ®1 and k(u -v) = u - v for all
u,v € k(D). Then (K(O);+, w,) is a Spwp-semiring.

Proof. Suppose k be a kernel operator on 9. Clearly the operations + and -, are associative, 0 is the
additive identity and 0 # k(1). Since u -, k(1) = k(u - k(1)) = k(k(u) - k(1)) = K(u-1) = k(u) = u. Then
(1) is the multiplicative identity element.
Uy, (W+w)=r(u-(v+w)) =r((u-v)+ (u-w))
= r(k(u-v) + K(u - w))
(u-v) + K(u-w)

= (U ‘Wi U) + (U Wi ’LU)

= K

For any u € (D), u+,, 0 = k(u-0) = k(0) =0. If u < v, then u+w <v+w and u-w < v-w. Thus
k(u-w) < k(v-w) and hence u -, w < v -, w. To prove that u*~ is wp-complement of u we get:

u?sr = g(k(ur)) = k((k(u*?))*“r) > K(ur“?) > k(u) = u. Assume u < v so u®? > v*». Then u¥s =
K(u“r) > k(vr) = v, (U -, u?s) = p((u - u¥~) = k(0) = 0. Since u < 1 for any u € O, then k(u) < ( )
and 0“¢ = k(1). Therefore (k(9D);+, -w, ) is Spwp-semiring. O

Example 3.11. Consider the topological space (for more details about topological spaces refer to [15])
T = {¢,{1},{3},{1,3},{1,4},{2,3}{1,2,3},{1,3,4},U}, where U = {1,2,3,4}. Define a kernel operator
p:PU)— P(U) as p(A) = ({B : Bis an open set, B C A} (for more details of topological spaces refer
o [15]). We get the multiplicatively idempotent spwp-semiring (p(U); U, -o,) with set inclusion as ordered
relation. The operations ”U” and ”-,,” are calculated in Tables |8 and @ wp-complements are shown in
Table [0

Table 8: U operation on p(U)

U ¢ (7 [ {3y [ {13y [ {14y [ {23} | {123} [ {134}

¢ ¢ {1} | {3} | {13} | {14} | {23} | {123} | {134}
y | {iy | {0y [ {13} | {13} | {14y [ {123} | {123} | {134}
{34 | {3} | {13} | {3} | {13} | {134} | {23} | {123} | U
{13} | {13} [{1,3} | {13} | {13} | {134} | {123} | {123} | {134}
{14} | {14}y | {14} [{134) | {134} | {143 | U U | {134}
(23} | {23} [ {123} | {23} | {123} | U | {23} [{123}| U
{123} | {123} | {123} | {123} | {123} | U |{123} {123} | U
{134} | {134} | {134} | {134} | {134} | {134} | 1 1| {134}

U U U U U U U U U

] S]] ] ) ) e S S e
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Table 9: -, operation on p(U)

we | @ 1) | {3} [ {13} | {14} | {23} | {123} | {134} | U

¢ 9| ¢ | & | & ¢ ¢ ¢ ¢ ¢
{1y Jo {1y o | {1} [ {1} | o | {1} | {1} | {1}
8} o] o |3 {32 ] ¢ | {3} ] {3t | {3} | {3}
{13y o {1} | {3} [ {13} | {1} | {3} | {13} | {13} | {13}
{14} | o | {1} ] 0 | {1} ({14} | ¢ | {1} | {14} | {14}
{23t |0 ¢ [{3}] {3t | o [{23}] {23} | {3} | {23}
{123} | o | {1} | {3} | {13} | {1} | {23} | {123} | {13} | {123}
{134} | ¢ | {1} | {3} | {13} | {14} | {3} | {13} | {134} | {134}

U | ¢ | {1} | {3} | {13} | {14} | {23} | {123} | {134} U

Table 10: Wp-complemented elements of (p(U);U, -w,)

clement | & | {1} | (3] | {13} | {14} | {23} | {123} | {134} | U
wp-comp. | U | {23} | {14} | ¢ ¢ ¢ ¢ ¢ ¢

4. Closed Elements

In the present section, closed elements of weak pseudocomplementation (wp-complementation) are
introduced. Essential properties and algebraic structures are proved.

Proposition 4.1. Let O be a spwp-semiring with O1. Then:

i) u € C(O) iff ur“r = u;

it) If u,v € C¥?(9), then u-v € C*7(O);

iii) If u+u“» =1, then u € C*»(9)

w) If u € C¥r(9O), then ((u*r - u) + (u - uvr))r¥r =1;
v) If u <wv and u*r - w < v“? - w, then

(@ )+ (- )5 < (0 ) + (0 0) 5,
for all u,v,w € C¥(O).

Proof. 1) Let u € C¥?(9O). Then there exists v € O such that u = v*». So, u*? = v¥r“r and u“r¥r =

vy = ¥ = y. In the opposite direction, if u = u“r¥r = (u“?)“r, then u € C“7(9).

ii) Let u,v € C*?(9O). Then u = s“» and v = r*» for some s,7 € O. We have u-v = §¥7 - r*» = (s +1r)¥r
and s+ € O. Hence u-v € C¥(9O).

iii) Assume u + u*? = 1, then u“?“? - (u 4 u*?) = u®»*r - 1. Thus (u“rP*r - u) + (u“r“? - u¥r) = u¥r*r. So,
u=u+ 0= u»*». Therefore, u € C*? (D).

iv) Let u € C¥ (D). Then ((u*r - u“?) + (u - u“r?r))¥rr = (4 4 u)“rr = (u¥r - u“r“r)¥r = 0“r = 1.

v) Let u <wvand u*r-w < v*“?-w. Then u-w*“? < v-w*? and so (u*? -w) + (u-w*r) < (V7 -w)+ (v-wWr).

O

Theorem 4.2. Let O be a spwp-semiring with O1. Then (C“?(O);W,-) is an orthopseudoring such that
utv = ((u - v) + (u-v“°))»“r, for all u,v € C¥?(O).
Proof. Suppose O is a spwp-semiring with O1 and u,v € C“?(9). It is enough to prove that:

1) uw (1Wo) =uor = ((u? - v¥r) + (u - v9r¥r))rr
= ((u¥r®r - v) + ((u®r - v“P))“rr = ur Yoy = (uW 1) Wo.
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i) uWu=((ur - u)+ (u u“r))
i) uW(u-v-u)=((ur-(u-v))+
= ((u-v)r-u) = (1w (U v)) - u.
iv) 1Wu)- (1 (u-v) =u*?-(u-v)» =u» =1 u.
v) lWu-(1ww))- 1Ww- (1Uu))— (1w (u-v?) - (1W (v-u“r)))
= (u-v“P)¥r . (v-uvr)¥r = ((u . v‘*’p) + (v - uwp))‘*’p
= ((u-v“?) 4+ (v-u“P))rrr = 11 (uW0)).

0.
(1 (- 0))Jrn = (- () )

O

Example 4.3. Consider the spwp-semiring 9" = (O;+, ., <”) in Example (3.7). Tables[L1]and [12] represent
the orthopseudoring (C*?(9); W, -) of closed elements.

Table 11: & operation on C“?(9O). Table 12: - operation on C“?(9).
Wl0|lx|ly|lv|z]|1 Olz|y|lv]|z|1
0|0|z|y|lv|z|l 0|0jxz|0|0]0]0
zlz|lx|1l|v|1]1 z|0]0]0|z|0|=z
yly|ljy|l]=z]1 y | 0]0|y|0]yly
v izlv|l|lov|l]|1 v | 0lxz|0]v]|0|w
zlz|1]z]|1|2z]|1 z|0]|0|y|O0|z]|z=
11111 (1]1 110z |y|lv]|z]|1

From Theorem (3.4) and the results in [9] we get the following corollary.

Corollary 4.4. Let O be a multiplicatively idempotent spwp-semiring. Then (C“?(O);V,-,“? ) is an ortho-
lattice such that uV v = (u“r - v¥?)“?  for all u,v € C¥r(O).

Theorem 4.5. Let O be a spwp-semiring, with O1 and conditions:
) (e v) + (o) = u;
) (- 0) ) - (- 09)) = (w5 0) F v 4 (- 0);
1) (uer - v)“r v 4 (U - v)“r +0)? = u - v;
w) u-(u-v)¥r =u-o“r
for all u,v € O. Then (C*?(9O);+,)is a Boolean ring.
Proof. Let u,v € C*»(9). Then

(ut (u-v)) W (u-v) = (W (u-0)) + (u-(u-0)*) W (u-v)
(u- (w-0)*7)"P W (u-v) = (u- (u-0)*) W (u-v)
= (((u- (w-0)*)*) - (u-0)) + ((u- (w-0)*7) - (u-v)*r)rer
(u-v) + (- (u-v)*r))re
since (u- (u-v)*?)? > (u-v)“P“? >y v

= (- )) + (- )*rr =
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(uWv)Wo = ((u*?-v) + (u-v*?))P“P Yo
= (- 0) + (- v*7))*7 - 0) 4 (U7 - v) + (w - *P)P9P) - 7)) )rer
= (((u"-’p . U)WP . (u . Uwp)‘*’p . ’U) + (((u‘*’p . v)‘*’p . (u . U“p)‘*’p) + U)wp)wpwp

since(u - V)9 > PP =

— (((u‘“p . v)‘*’p . ’U) + (((u“’p . U)Wp + ’U) . (u WP Wp)‘*’p)wpwp

(-0 ) (0 ) 0 4 (o)) 0

((u-v) + (u-v™r))=re

u=ud0=uWw(vyuv)

Wt (o) = (6 - (e 0) + (- (o))
— (u . (u . U)wp)"-’pwp

=u-v? =u-(1+v)
O

Example 4.6. Let O” = (O; +, -, <") be a spwp-semiring with operations ”+”and ”-” represented in TablesF]
and @ Its ordered relation ” <” 7 is given in Figure (3) represents and Table gives wp-complements.
Tables [14] and |15 represent the Boolean ring (C*?(9O);W, -) of closed elements.

Table 13: wP-complements £ ¢

element |0 | x|y |s|t|ov|lw]|z|l1l
wp-comp. |1 |y |2|0]0]0[0]O0

Table 14: & operation on C“?(9O). Table 15: - operation on C“?(9).
Wl0|xz|y|l 10z |y |1l
00|z |y|1l 0/0(0]|0|0
z|lx|xz|1]|1 z |0z |0 |
yly|lly]|l y|0]0]yly
171|111 110z |y |1

Corollary 4.7. Let O be a multiplicatively idempotent spwp-semiring with conditions:

i) (u-v)+ (u-v¥r) = u;
i) (e - 0) + ) - (u-v))er = ((ur - 0)% + ) + (u-0v*7));
i11) (u“? - v)“r v 4 (U - v)“r + V) = u - v;

w) u-(u-v)? =u- v,

for all u,v € O. Then (C¥?(9);V,-,“?) is a Boolean algebra.

5. Weakly Stone and Dense Elements

Here, weakly Stone and dense elements of wp-semiring are introduced. Weakly Stone semiring is
defined. Properties of dense elements and algebraic structures are proved.

Lemma 5.1. Let © be a spwp-semiring with O1 and (u - v)*? = u*? + v*?, for all u,v € O. Then all
conditions in Theorem (4.5) are hold.
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Proof. i) (u-v)+ (u-v*?) =u- (v+v*P) =u- (VP9 4 0¥) = u - (V9P - v)¥P
=u-1=u;
ii) Immediately, by putting v = ((u“? - v)*? +v) and v = (u - v*P).
i) (ur - v)“r v+ ((u¥ - 0)% +v)r = (ur“? +09r) - v + (U - v).VP) = UP%r v = u - v;
iv) u-(u-v)? =u- (ur +v“) =u- v,

Example (5.2) shows that the converse is not true.

Example 5.2. Consider spwp-semiring 9" = (O; +, -, <”) in Example (4.6). It satisfies all conditions of
Theorem (4.5). But, it does not satisfy that (u-v)*r = u“» + v, E.g. (x-y)» =1 a“» 4 y*»

Definition 5.3. Let O be a positive ordered semiring. Then u € O be a weak Stone element of O if
u, u’r € Wp(9) and ur 4+ ur¥r = 1.

The set of all weak Stone elements is denoted by Wg(9). If O = Wg(O), then O is called weakly
Stone semiring. So, Weakly Stone semiring is simple and positive.

Proposition 5.4. Let O be a wp-semiring. Then it is satisfying the following conditions:

i) If u € Ws(9), then [u®r]? = u“r;

ii) If u € Wg(9), then u? < u;
i) If u € Wg(9D) N C¥ (D), then u? = u;
w) 1€ Ws(O) iff 047 = 1.

Proof. 1) suppose u € Wg(9), then u*r = u“? -1 = u“? - [u¥r +u*r“r] = u¥r - u“r +u¥r - u*rr = y¥r . y*r =
[usr)?.
ii) Let u € Wg(9O). Then u = u-1 = u- [u*? + u“?“?] = u - u*? + u - u*r*“? = u - u“»“»r. But we have

u < u¥rvr. so u? < - urr =y,
iii) Suppose u € Wg(D)NCY? (D), then u = u-1 = u-[u¥? +u“r“r| = w-u? +u-uerer = w-usr*r = y-u = u?.
iv) Suppose 1 € Wg(9O) implies 1“7 4+ 1“7“» = 1. But 1“? = 0 and then 1“7“» = 1. So, 0“» = 1¥r¥r = 1.
Conversely, if 0“7 = 1, then 1 € C“?(9). Thus 1 = 19F¥ = 1¥%r 4 (0 = 19%r + 1%»,

0
Theorem 5.5. Let O be a spwp-semiring. Then:
i) If (u-v)“r = u*r +0¥P, for all u,v € O, then O is a weakly Stone semiring;
i1) If O is a weakly Stone, then
u? v =0 iff v <u**? for all u,v € O;
i11) O is a multiplicatively idempotent weakly Stone iff
(u-v)*? =u*? + 0“7, for all u,v € O.

Proof. i) Suppose (u-v)? = u“? + v*7, for all u,v € O. Thus u*? + ur“r = (u - uvr)» = 0“» =1, for

any u € . Therefore 9 is a weakly Stone.

ii) Let w,v € O and u*? -v =0. Then v =v -1 =wv- (u*? + u*»*“?) = (v-u*?) + (v - UPP) = v -y,
So, v < u¥r“r. The converse immediately from in Proposition (5.4).

iii) We have (u-v)“»“? - (u¥? +v“?) = 0. Now let w € O such that (u-v)*?-w = 0. Then w < (u-v)»*» <
uerr p@r@r - Accordingly, w = w? < u“rWr . p@rWr = (y“r 4 y@r)@r, Thus (u¥? + v¥r)“r = (u - v)“P¥r,
The second direction proved in i).

O
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Corollary 5.6. Let O be a spwp-semiring with O1. Then:

i) If O is a weakly Stone, then (C“?(9);+,-)is a Boolean ring
it) If O is a multiplicatively idempotent weakly Stone, then (C*“r(D);+,-) is a Boolean algebra.

Example (4.6) shows that the converse is not true.

Proposition 5.7. Let O be a spwp-semiring with O1. Then:
i) 1€ D*»(9O);
it) Ifu e O, ve D (O) and v < u, then u € D¥?(O);
itt) If w € O and v € D (), then u+ v € D“?(O);
) u+ur € DY (O);
v) U e € DY (O) iff u+v € DU (O);
vi) If (u-v)¥? = ur +ov*?, for all u,v € D¥?(O) , then (u-v) € D“?(O).
Proof. i) Immediately from Proposition (3.3).
ii) Assume v € O and v € D“?(O) and v < u. we get 0 = v¥ > v“» =0, then u € D¥? (D).
iii) Suppose v € O and u € D“?(9), so (u+ v)*? = u*? - v*» = u*? - 0 = 0. Therefore u + v € D“? (D).
iv) It follows immediately from (iii) in Corollary (3.6).

v) It follows immediately from (iv) in Corollary (3.6).
vi) Let (u-v)*? = u*r +0v*, for all u,v € D“?(O), then (u-v)*r = u*“» +v*» = 0. Hence (u-v) € D*?(9O).

0
From Proposition (5.7 ) we get the following result.

Corollary 5.8. Let O be a spwp-semiring with O1. Then (D, (O);+) is an commutative monoid. More-
over, If (u - v)*» = u¥P + v, for all u,v € Dy, (9), then (D, (O);+,-) is a presemiring.

Example 5.9. Consider the spwp-semiring 9" = (O;+,.,<”) in Example (4.6). Table [16| represent ”+”
operation of semigroup D, (O").

Table 16: wP-complements £ ¢

+|s|t v lw|lz|l
s|s|s|1]1]s]|1
t|s|t|lw|lw|ls|l
v|{l|lw|v | w|l]|l1
wll|lw| lw|w]|l]|l1
z|s|s|1|1]|z|1
1111|111

Table (16): + operation on D, (O").

Example 5.10. Consider the spwp-semiring 9" = (O;+,.,<”) in Example (3.7). Tables [17| and [18| give
the ”+” and ”-” operations of the presemiring D;, (D).

Table 17: + operation on D, (9"). Table 18: - operation on Dy, (O").

+
s
t
w
1

E|8|~+|~+|8

1
s
t
w
1

~|glg|~|8
== = = =

t
s
t
w
1

= ®|®|®
VAR IS IS S VAR V)

s
t
w
1
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From Theorem (3.4) and the results in [9] we get the following corollary.

Corollary 5.11. Let O be a multiplicatively idempotent simple positive weakly p-semiring. Then (D, (9);+,-)
1s a semilattice with greatest element.

Figure 3: Ordered relation <" of O". Figure §: Ordered relation "< ” of O".
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