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Abstract

In this paper, we conduct a comprehensive investigation of deterministic–stochastic modeling approaches
for Hepatitis C using piecewise fractional operator techniques. This novel framework captures a wide
range of dynamic behaviors, from deterministic transitions to stochastic fluctuations. By constructing
piecewise differential operators that switch between deterministic and stochastic regimes, we demonstrate
the innovative potential of this methodology. To validate its effectiveness, we present graphical simulations of
the proposed model. The results show that these operators offer a more flexible and accurate representation
of the complex dynamics characteristic of real-world systems. By effectively capturing distinct behaviors over
different time intervals, this approach opens new avenues for research across multiple scientific disciplines.
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1. Introduction

The recognition of a novel form of hepatitis emerged in the late 1970s,following reports of hepatitis
cases linked to blood transfusions. Upon investigation, it was determined that the causative agent was
neither Hepatitis A (HAV) nor Hepatitis B (HBV), the two known hepatotropic virusesn at the time. As
a result, the unidentified pathogen was provisionally termed non-A, non-B hepatitis. Continued research
eventually led to the identification of this virus in 1989 as the Hepatitis C virus (HCV) [1–5]. HCV is a
hepatotropic virus that specifically targets hepatocytes—the primary functional cells of the liver—causing
hepatic inflammation and infection. The clinical presentation of Hepatitis C is often asymptomatic or marked
by nonspecific symptoms, allowing the disease to progress undetected in many individuals. It is estimated
that approximately 80% of acute HCV infections become chronic [1–6], which can lead to serious liver
conditions such as fibrosis, cirrhosis, and hepatocellular carcinoma. Globally, around 1% of the population
is estimated to be chronically infected with HCV [3,7,8]. One of the primary transmission routes for HCV
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is exposure to contaminated blood products, particularly via parenteral means. Despite improvements in
screening and safety protocols, intravenous drug use and needle sharing remain significant contributors to
HCV transmission [9].

To better understand HCV transmission dynamics and evaluate treatment strategies, various mathemat-
ical models have been developed [10–17]. For example, Pitcher et al. [11] conducted a comprehensive review
of modeling studies focused on HCV transmission and prevention among people who inject drugs (PWID).
Their work highlights the mathematical frameworks employed and how such models can inform strategies
to meet the World Health Organization’s (WHO) elimination goals. In a different context, Dahari et al.
[12] proposed a model describing the intracellular replication dynamics of subgenomic HCV RNA within
Huh-7 cells, from initial transfection to the steady-state phase. This model provides valuable insights into
replication mechanisms and supports the development of antiviral therapies. Additional contributions to
HCV modeling include the work of Vujovic et al. [17], who analyzed the stability properties of two stochas-
tic models incorporating isolation stages. They established the existence and uniqueness of global positive
solutions, supported by numerical simulations. Similarly, Lestari et al. [18] addressed optimal control prob-
lems within a stochastic differential equation framework, aiming to minimize side effects by using control
variables to represent pharmacological interventions targeting infection prevention and viral production. In
a related study [19], Lestari and colleagues examined the qualitative behavior of a stochastic epidemic model
of HCV at the cellular level. Methodological insights into stochastic modeling are provided in [20], where
the authors derive exact solutions for stochastic differential equations using Itô calculus, discuss parameter
estimation strategies, and compare various methods with illustrative examples.

An advanced mathematical framework increasingly applied in infectious disease modeling is fractional
calculus, which extends classical differentiation and integration to non-integer (fractional) orders. The
origins of fractional calculus trace back to a 1695 correspondence between Leibniz and L’Hôpital about the
concept of derivatives of arbitrary order. Over time, multiple formal definitions have emerged, including the
Riemann–Liouville [22], Caputo [21], Caputo–Fabrizio [24], and Atangana–Baleanu [25] formulations. These
differ primarily in their kernel functions, such as power-law, exponential decay, or Mittag–Leffler functions.
More recently, Atangana and Araz [26] introduced the concept of piecewise differential operators [28], offering
a flexible and practical tool for modeling complex systems, particularly those involving transitions between
deterministic and stochastic behaviors [27]. This framework has opened new avenues for the theoretical
modeling of dynamic systems, including viral infections such as HCV.

In this study, we not only conduct deterministic and stochastic analyses for the Hepatitis C virus
(HCV), but also aim to simulate the model introduced in [19] under deterministic-stochastic or stochastic-
deterministic transitions by employing the piecewise derivative approach, which has the potential to unify
these two processes within a single framework. In doing so, a more flexible and realistic modeling structure
is proposed, one that simultaneously captures both randomness and memory effects, as frequently observed
in real biological systems. To numerically solve such a complex and multi-component system, we present
a numerical method based on Newton polynomial interpolation [23], which offers significant advantages in
terms of both accuracy and computational efficiency in solving the associated model.

This study is organized as follows: Section 2 presents the necessary definitions of fractional and piece-
wise differential operators that form the mathematical foundation of the models. Section 3 formulates the
deterministic Hepatitis C model, including analysis of equilibrium points, positivity of solutions, and deriva-
tion of the reproductive number. Section 4 extends the model to include stochastic effects, presenting the
stochastic Hepatitis C model along with results on the existence and uniqueness of solutions. Section 5
explores the piecewise Hepatitis C model under various scenarios, incorporating classical, fractional, and
stochastic derivatives. We discuss both deterministic and hybrid deterministic-stochastic settings using dif-
ferent fractional operators. Section 6 summarizes the main findings and discusses the results of numerical
simulations.
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2. Definitions of fractional and piecewise differential operators

In this section, several fractional and piecewise differential operators, chosen from among the various
types introduced in the literature, are presented [26]. These operators are the ones we intend to utilize in
our analysis. The research in [26] provides a comprehensive framework for piecewise differential operators,
and here, we focus specifically on those that are most relevant to our modeling approach.

Definition 1. Let κ (ς) be differentiable function. The piecewise derivative is defined by

PC
0 Dζ

ς κ (ς) =

{
κ′ (ς) if 0 ≤ ς ≤ ς1

C
ς1D

ζ
ς κ (ς) if ς1 ≤ ς ≤ T

, (2.1)

where PC
0 Dζ

ς represents the classical derivative on 0 ≤ ς ≤ ς1 and derivative with power-law kernel on
ς1 ≤ ς ≤ T. Here, the fractional derivative with power-law kernel of the function κ (ς) ∈ H1 (0, T ) is defined
by

C
0 D

ζ
ς κ (ς) =

1

Γ (1− ζ)

∫ ς

0
κ′ (ζ) (ς − ζ)−ζ dζ,

where 0 < ζ ≤ 1.
Definition 2. The piecewise integral of κ (ς) with respect to ς is given as

PCIςκ (ς) =

{ ∫ ς
0 κ (σ) dσ if 0 ≤ ς ≤ ς1

1
Γ(ζ)

∫ ς
ς1
κ (σ) (ς − σ)ζ−1 dσ if ς1 ≤ ς ≤ T

, (2.2)

where PCIς denotes the classical integral on 0 ≤ ς ≤ ς1 and the associated integral on ς1 ≤ ς ≤ T. The
associated fractional integral is denoted as:

PL
0 Jζ

ς κ (ς) =
1

Γ (ζ)

∫ ς

0
κ (ζ) (ς − ζ)ζ−1 dζ.

Definition 3. Let κ (ς) be differentiable function. The piecewise derivative [26] is defined by

PCF
0 Dζ

ς κ (ς) =

{
κ′ (ς) if 0 ≤ ς ≤ ς1

CF
ς1 Dζ

ς κ (ς) if ς1 ≤ ς ≤ T
, (2.3)

where PCF
0 Dζ

ς denotes the classical derivative on 0 ≤ ς ≤ ς1 and derivative with power-law kernel on
ς1 ≤ ς ≤ T. Here, the fractional derivative with exponential decay kernel [24] of the function κ (ς) ∈ H1 (0, ς)
is formulated as:

CF
0 Dζ

ς κ (ς) =
1

1− ζ

∫ ς

0
κ′ (ζ)

[
− ζ

1− ζ
(ς − ζ)

]
dζ,

where 0 < ζ ≤ 1.
Definition 4. The piecewise integral of κ (ς) with respect to ς is given as

PCF Iςκ (ς) =

{ ∫ ς
0 κ (σ) dσ if 0 ≤ ς ≤ ς1

(1− ζ)κ (ς) + ζ
∫ ς
ς1
κ (σ) dσ if ς1 ≤ ς ≤ T

, (2.4)

where PCIς represents the classical integral on 0 ≤ ς ≤ ς0 and the integral with exponential decay kernel on
ς1 ≤ ς ≤ T.

Definition 5. Let κ (ς) be differentiable function. The piecewise derivative [26] with classical derivative
and the derivative with Mittag-Leffler kernel is given as

PAB
0 Dζ

ς κ (ς) =

{
κ′ (ς) if 0 ≤ ς ≤ ς1

AB
ς1 Dζ

ς κ (ς) if ς1 ≤ ς ≤ T
, (2.5)
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where PAB
0 Dζ

ς represents the classical derivative on 0 ≤ ς ≤ ς0 and derivative with Mittag-Leffler kernel on
ς0 ≤ ς ≤ T.

Definition 6. The piecewise integral [26] with the classical integral and the integral formulation with
the Mittag-Leffler kernel is expressed as:

PABIςκ (ς) =

{ ∫ ς
0 κ (σ) dσ if 0 ≤ ς ≤ ς1

(1− ζ)κ (ς) + ζ
Γ(ζ)

∫ ς
ς1
κ (σ) (ς − σ)ζ−1 dσ, if ς1 ≤ ς ≤ T

, (2.6)

where PABIς represents the classical integral on 0 ≤ ς ≤ ς1 and the integral with Mittag-Leffler kernel on
ς1 ≤ ς ≤ T .

The following formulas describe the fractional derivative with Mittag-Leffler kernel [25]

ABC
0 Dζ

ς κ (ς) =
1

1− ζ

∫ ς

0
κ′ (ζ)Eζ

[
− ζ

1− ζ
(ς − σ)ζ

]
dσ, in the Caputo sense

and
ABR
0 Dζ

ς κ (ς) =
1

1− ζ

d

dς

∫ ς

0
κ (ζ)Eζ

[
− ζ

1− ζ
(ς − σ)ζ

]
dσ. in the Riemann-Liouville sense

The corresponding integral is expressed as

AB
0 Jζ

ς κ (ς) = (1− ζ)κ (ς) +
ζ

Γ (ζ)

∫ ς

0
κ (ζ) (ς − σ)ζ−1 dσ.

3. Formulation of the Hepatitis C model

This section discusses deterministic and stochastic approaches for a Hepatitis C model presented in [18–
20]. The equilibrium points and basic reproduction number will be analyzed for the deterministic model.
Analyses such as numerical solutions, the existence and uniqueness of the solution of the model will be
investigated for the stochastic model. In addition, the model will be modified using piecewise derivatives to
capture crossover behaviors. This concept allows us to consider deterministic and stochastic frameworks for
the Hepatitis C model. Models with deterministic-stochastic patterns will be numerically solved using the
Newton polynomial approach.

3.1. Statement of the model for Hepatitis C

In this subsection, a mathematical model considering the spread of Hepatitis C virus will be discussed.
The formulation of the model relies on a set of assumptions outlined in references [18–20]. In this framework,
T, I, and V represent the populations of uninfected cells, infected cells, and free viral particles, respectively.
Uninfected cells are supplied at a constant rate Λ and undergo natural degradation at rate δ1. Viral infection
occurs through contact between uninfected cells and free viruses at a transmission rate β, after which infected
cells die at rate δ2. The parameter η quantifies the drug’s capacity to prevent viral entry into host cells,
while ϵ measures its efficacy in suppressing viral replication. Infected cells produce hepatitis C virus at a
steady rate k, and the free virus is eliminated from the system at a clearance rate c. The mathematical
model under investigation is represented by:

T ′ (t) = Λ− δ1T − (1− η)βV T, (3.1)

I ′ (t) = (1− η)βV T − δ2I,

V ′ (t) = (1− ϵ) kI − cV.

Initial conditions are as follows:

T (0) = T0 ≥ 0, I (0) = I0 ≥ 0, V (0) = V0 ≥ 0. (3.2)
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3.2. Equilibrium points of the deterministic model

In this subsection, we present equilibrium points of the system by setting each equation of the system
3.1 equal to zero

Λ− δ1T − (1− η)βV T = 0, (3.3)

(1− η)βV T − δ2I = 0,

(1− ϵ) kI − cV = 0.

The disease-free equilibrium point is calculated as

E0 =

(
Λ

δ1
, 0, 0

)
.

The endemic equilibrium point [19] is also found as

E∗ =

(
δ2c

(1− η) (1− ϵ) kβ
,
Λ

δ2
− δ1c

(1− η) (1− ϵ) kβ
,
(1− ϵ) kΛ

δ2c
− δ1

(1− η)β

)
. (3.4)

3.3. Positivity of solutions in the deterministic model

In this subsection, we establish the positivity of the model’s solutions under the assumption of positive
initial conditions. To this perform, we begin by considering the function V (t)

V ′ (t) = (1− ϵ) kI − cV, (3.5)

which can be arranged as
V ′ (t) ≥ −cV.

Then, the following inequality is achieved

V (t) ≥ V (0) e−ct,

which proves the positivity of the function V (t). Doing same routine for I (t), we achieve

I ′ (t) ≥ −δ2I, (3.6)

and
I (t) ≥ I (0) e−δ2t.

For proof, we need to define the following norm

∥f∥∞ = sup
t∈[0,T ]

|f (t)| .

Now, we consider the function T (t)

T ′ (t) ≥ − (δ1T + (1− η)β |V |T ) (3.7)

≥ −

(
δ1 + (1− η)β sup

t∈[0,T ]
|V |

)
≥ − (δ1 + (1− η)β ∥V ∥∞)T,

and
T (t) ≥ T (0) e−(δ1+(1−η)β∥V ∥∞)t.

where η < 1.
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3.4. Calculation of the basic reproduction number

In this subsection, the basic reproduction number is calculated for the Hepatitis C model employing the
next generation matrix method [29]. To achieve our aim, we need to consider the infected classes of our
model:

I ′ (t) = (1− η)βV T − δ2I, (3.8)

V ′ (t) = (1− ϵ) kI − cV.

The transition matrices are as follows:

JF =

[
0 (1− η)βT
0 0

]
,

and

JV =

[
δ2 0

− (1− ϵ) k c

]
.

By the help of the next generation method, we have

FV −1 =

[
0 (1− η)βT
0 0

][ 1
δ2

0
(1−ϵ)k
δ2c

1
c

]
, (3.9)

and

FV −1 =

[
(1−η)βT (1−ϵ)k

δ2c
(1−η)βT

c

0 0

]
.

The spectral radius of the matrix FV −1 leads to

R0 =
(1− η) Λβ (1− ϵ) k

δ1δ2c
, (3.10)

which is the reproduction number.
Here, it is concluded that the spread of the epidemic will increase if the basic reproduction number, that

is, R0 > 1, will increase, and if R0 < 1, the spread of the virus will end [29].

4. Formulation of the stochastic Hepatitis C model

In this section, we aim to take a look at stochastic Hepatitis C model. We know that by adding stochastic
noise to a deterministic system, the system can be generalized to stochastic processes. In the equation system
below, Bi (t) , i = 1, 2, 3 is the standard Brownian motion, and σi, i = 1, 2, 3 is a real constant known as the
density of noise. The mathematical model in question is represented by the following

dT (t) = (Λ− δ1T − (1− η)βV T ) dt+ σ1T (t) dB1 (t) , (4.1)

dI (t) = ((1− η)βV T − δ2I) dt+ σ2I (t) dB2 (t) ,

dV (t) = ((1− ϵ) kI − cV ) dt+ σ3V (t) dB3 (t) .

4.1. Existence and uniqueness of the solutions

In this subsection, we will present the necessary properties for the existence and uniqueness of the
solution of the stochastic Hepatitis C model given by (28). Before proceeding with the theorem, we denote
the following notations

ψ =

 ψ1

ψ2

ψ3

 =

 T
I
V

 ,Ω (t, ψ) =

 Ω1 (t, ψ)
Ω2 (t, ψ)
Ω3 (t, ψ)

 =

 Λ− δ1T − (1− η)βV T
(1− η)βV T − δ2I
(1− ϵ) kI − cV

 .
Theorem 1. The solution of a stochastic differential equation, where Ω (t, ψ), is a function defined in

Banach space, exists and is unique under the following conditions [30,31].
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1. (Lipschitz condition) For ∀ ψ, ψ̃ ∈ H and ki > 0∣∣∣Ωi (t, ψ)− Ωi

(
t, ψ̃
)∣∣∣2 , ∣∣∣Σi (t, ψ)− Σi

(
t, ψ̃
)∣∣∣2 ≤ ki

∣∣∣ψ − ψ̃
∣∣∣2 , t ≥ 0.

2. (Linear growth condition) For ∀ ψ ∈ H and ki > 0

|Ωi (t, ψ)|2 ,
∣∣∣Σi

(
t, ψ̃
)∣∣∣2 < ki

(
1 + |ψ|2

)
, t ≥ 0.

Proof. To prove the Lipschitz condition, we shall start the proof with first equation of the system∣∣∣Ω1 (t, T )− Ω1

(
t, T̃
)∣∣∣2 =

∣∣∣−δ1 (T − T̃
)
− (1− η)βV

(
T − T̃

)∣∣∣2 (4.2)

≤ 2
(
δ21 + (1− η)2 β2 |V |2

) ∣∣∣T − T̃
∣∣∣2

≤ 2

(
δ21 + (1− η)2 β2 sup

t∈[0,T ]
|V |2

)∣∣∣T − T̃
∣∣∣2

≤ 2
(
δ21 + (1− η)2 β2 ∥V ∥2∞

) ∣∣∣T − T̃
∣∣∣2

≤ k1

∣∣∣T − T̃
∣∣∣2 ,

where
k1 = 2

(
δ21 + (1− η)2 β2 ∥V ∥2∞

)
.

For the proof of second equation of the system, we have∣∣∣Ω2 (t, I)− Ω2

(
t, Ĩ
)∣∣∣2 =

∣∣∣−δ2 (I − Ĩ
)∣∣∣2 (4.3)

≤
(
a1 + δ22

) ∣∣∣I − Ĩ
∣∣∣2

≤ k2

∣∣∣I − Ĩ
∣∣∣2 ,

where
k2 = a1 + δ22 .

For the proof of last equation of the system, we obtain∣∣∣Ω3 (t, V )− Ω3

(
t, Ṽ

)∣∣∣2 =
∣∣∣−c(V − Ṽ

)∣∣∣2 (4.4)

≤
(
a2 + c2

) ∣∣∣V − Ṽ
∣∣∣2

≤ k3

∣∣∣V − Ṽ
∣∣∣2 ,

where
k2 = a2 + c2.

For stochastic part, the following inequalities are valid:∣∣∣Σ1 (t, T )− Σ1

(
t, T̃
)∣∣∣2 = σ21

∣∣∣T − T̃
∣∣∣2 (4.5)

≤
(
a3 + σ21

) ∣∣∣T − T̃
∣∣∣2 ,
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(
t, Ĩ
)∣∣∣2 = σ22

∣∣∣I − Ĩ
∣∣∣2

≤
(
a3 + σ22

) ∣∣∣I − Ĩ
∣∣∣2 ,

∣∣∣Σ3 (t, V )− Σ3

(
t, Ṽ

)∣∣∣2 = σ23

∣∣∣V − Ṽ
∣∣∣2

≤
(
a3 + σ23

) ∣∣∣V − Ṽ
∣∣∣2 .

Thus, we prove that the first condition of the Theorem 1 is verified. Now, we proceed with the proof of the
second condition of Theorem 1.

|Ω1 (t, T )|2 = |Λ− δ1T − (1− η)βV T |2

≤ 3
[
Λ2 + δ21 |T |

2 + (1− η)2 β2 |V |2 |T |2
]

≤ 3

[
Λ2 + δ21 |T |

2 + (1− η)2 β2 sup
0≤t≤T

|V |2 |T |2
]

≤ 3
[
Λ2 +

(
δ21 + (1− η)2 β2

∥∥V 2
∥∥
∞

)
|T |2

]
≤ 3Λ2

(
1 +

δ21 + (1− η)2 β2
∥∥V 2

∥∥
∞

Λ2
|T |2

)

≤ k1

(
1 +

δ21 + (1− η)2 β2
∥∥V 2

∥∥
∞

Λ2
|T |2

)
,

under the condition
δ21 + (1− η)2 β2

∥∥V 2
∥∥
∞

Λ2
< 1,

and k1 = 3Λ2. Let us continue with the second equation of the system

|Ω2 (t, I)|2 = |(1− η)βV T − δ2I|2 (4.6)

≤ 2

[
(1− η)2 β2 sup

0≤t≤T
|V |2 sup

0≤t≤T
|T |2 + δ22 |I|

2

]
≤ 2

[
(1− η)2 β2

∥∥V 2
∥∥
∞
∥∥T 2

∥∥
∞ + δ22 |I|

2
]

≤ 2
[
(1− η)2 β2

∥∥V 2
∥∥
∞
∥∥T 2

∥∥
∞

](
1 +

δ22
(1− η)2 β2 ∥V 2∥∞ ∥T 2∥∞

|I|2
)

≤ k2

(
1 +

δ22
(1− η)2 β2 ∥V 2∥∞ ∥T 2∥∞

|I|2
)
,

under the condition
δ22

(1− η)2 β2 ∥V 2∥∞ ∥T 2∥∞
< 1 and η ̸= 1,

and
k2 = 2

[
(1− η)2 β2

∥∥V 2
∥∥
∞
∥∥T 2

∥∥
∞

]
.
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The following inequality is valid for the right-hand side function of the system in the third equation

|Ω3 (t, V )|2 = |(1− ϵ) kI − cV |2 (4.7)

≤ 2

[
(1− ϵ)2 k2 sup

0≤t≤T
|I|2 + c2 |I|2

]
≤ 2

[
(1− ϵ)2 k2

∥∥I2∥∥∞ + c2 |I|2
]

≤ 2
[
(1− ϵ)2 k2

∥∥I2∥∥∞]
(
1 +

c2

(1− ϵ)2 k2 ∥I2∥∞
|I|2
)

≤ k3

(
1 +

c2

(1− ϵ)2 k2 ∥I2∥∞
|I|2
)
,

under the condition
c2

(1− ϵ)2 k2 ∥I2∥∞
< 1 and ϵ ̸= 1,

and
k3 = 2

[
(1− ϵ)2 k2

∥∥I2∥∥∞] .
Now, let us examine this condition for the functions Σi (t, ψ)

|Σ1 (t, T )|2 = σ21 |T |
2 (4.8)

≤
(
1 + σ21

)
|T |2

|Σ2 (t, I)|2 = σ22 |I|
2

≤
(
1 + σ22

)
|I|2

|Σ3 (t, V )|2 = σ23 |V |2

≤
(
1 + σ23

)
|V |2 .

Therefore, it is concluded that the solution of the stochastic model exists and is unique under the condition

max

{
δ21 + (1− η)2 β2

∥∥V 2
∥∥
∞

Λ2
,

δ22
(1− η)2 β2 ∥V 2∥∞ ∥T 2∥∞

,
c2

(1− ϵ)2 k2 ∥I2∥∞

}
< 1. (4.9)

5. Piecewise Hepatitis C model with different patterns: Classical, fractional and stochastic

In this section, we examine various formulations of the Hepatitis C model in which piecewise derivatives
are applied. Depending on the scenario, the model may involve deterministic dynamics in the first interval
and stochastic dynamics in the second; in some cases, the Atangana–Baleanu derivative is used, while in
others, Caputo-Fabrizio or Caputo-type stochastic derivatives are employed. To numerically solve these
formulations, we construct a method based on Newton polynomial interpolation [23].

5.1. Deterministic Hepatitis C model with piecewise setting: Classical- Atangana-Baleanu- Caputo fractional
derivative

In this subsection, we deal with a piecewise Hepatitis C model composed of three distinct intervals: the
first interval follows a deterministic structure, the second incorporates the Caputo fractional derivative, and
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the third employs the Atangana–Baleanu fractional derivative. The mathematical formulation of the model
under investigation is given by: 

ψ′ (t) = Ω (t, ψ) , 0 ≤ t ≤ t0
C
t0D

ζ
tψ (t) = Ω (t, ψ) , t0 ≤ t ≤ t1

AB
t1 Dζ

tψ (t) = Ω (t, ψ) , t1 ≤ t ≤ T

. (5.1)

Integrating above, we have

ψ (t) =


ψ (0) +

∫ t
0 Ω (σ, ψ) dσ, 0 ≤ t ≤ t0

ψ (t0) +
1

Γ (ζ)

∫ t
t0
Ω (σ, ψ) (t− σ)ζ−1 dσ, t0 ≤ t ≤ t1

ψ (t1) + (1− ζ) Ω (t, ψ) +
ζ

Γ (ζ)

∫ t
t1
Ω (σ, ψ) (t− σ)ζ−1 dσ, t1 ≤ t ≤ T

, . (5.2)

The numerical algorithm obtained by solving the piecewise model using a Newton polynomial-based method
[23] is formulated as follows:

ψγ+1 =



{
ψ (t0) + h

∑ξ1
ξ=m+3

[
23
12Ω

(
tξ, ψ

ξ
)
− 4

3Ω
(
tξ−1, ψ

ξ−1
)

+ 5
12Ω

(
tξ−2, ψ

ξ−2
) ]

, 0 ≤ t ≤ t0

ψ (t0) +
hζ

Γ (ζ + 2)

∑ξ2
ξ=ξ1+1Ω

(
tξ−2, ψ

ξ−2
)
Π1

ξ2,ξ

+
hζ

Γ (ζ + 2)

∑ξ2
ξ=ξ1+1

[
Ω
(
tξ−1, ψ

ξ−1
)
− Ω

(
tξ−2, ψ

ξ−2
)]

Π2
ξ2,ξ

+
hζ

Γ (ζ + 3)

∑ξ2
ξ=ξ1+1

[
Ω
(
tξ, ψ

ξ
)
− 2Ω

(
tξ−1, ψ

ξ−1
)

+Ω
(
tξ−2, ψ

ξ−2
) ]

Π3
ξ2,ξ

, 0 ≤ t ≤ t0,

, t0 ≤ t ≤ t1



ψ (t1) + (1− ζ) Ω (tγ , ψ
γ)

+
ζhζ

Γ (ζ + 2)

∑γ
ξ=ξ2+1Ω

(
tξ−2, ψ

ξ−2
)
Π1

γ,ξ

+
ζhζ

Γ (ζ + 2)

∑γ
ξ=ξ2+1

[
Ω
(
tξ−1, ψ

ξ−1
)
− Ω

(
tξ−2, ψ

ξ−2
)]

Π2
γ,ξ

+
ζhζ

Γ (ζ + 3)

∑γ
ξ=ξ2+1

[
Ω
(
tξ, ψ

ξ
)
− 2Ω

(
tξ−1, ψ

ξ−1
)

+Ω
(
tξ−2, ψ

ξ−2
) ]

Π3
γ,ξ, 0 ≤ t ≤ t0,

, t1 ≤ t ≤ T

, (5.3)

where

Π1
ξ2,ξ =

[
(ξ2 − ξ + 1)ζ − (ξ2 − ξ)ζ

]
, (5.4)

Π2
ξ2,ξ =

[
(ξ2 − ξ + 1)ζ (ξ2 − ξ + 3 + 2ζ)

− (ξ2 − ξ)ζ (ξ2 − ξ + 3 + 3ζ)

]
,

Π3
ξ2,ξ =

 (ξ2 − ξ + 1)ζ
[
2 (ξ2 − ξ)2 + (3ζ + 10) (ξ2 − ξ)

+2ζ2 + 9ζ + 12

]
− (ξ2 − ξ)ζ

[
2 (ξ2 − ξ)2 + (5ζ + 10) (ξ2 − ξ)

+6ζ2 + 18ζ + 12

]
 .

Figures 1–3 illustrate the numerical simulations for each class of the piecewise model: the first segment em-
ploys the classical derivative, the second utilizes the Caputo fractional derivative, and the third incorporates
the Atangana–Baleanu fractional derivative.

The numerical simulations presented in Figures 1–3 illustrate the dynamic behavior of a piecewise
fractional-order model for hepatitis infection. The figures demonstrate how varying the fractional-order
parameter ζ significantly influences the system’s dynamics. When ζ = 1, corresponding to the classical
derivative, the solutions exhibit rapid transitions with smooth decays. However, as ζ decreases—indicating
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Figure 1: Dynamics of the uninfected population class within the piecewise differential framework for various values of α.

Figure 2: Evolution of the infected population class modeled using a piecewise differential approach for different values of α.
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Figure 3: Dynamics of the free virus class within a piecewise differential framework for varying values of α.

the incorporation of memory effects through fractional calculus—the system displays more complex be-
haviors, including delayed responses, oscillations, and slower convergence to equilibrium. These effects are
particularly evident in the second and third segments of the piecewise model, where Caputo and Atangana–
Baleanu fractional derivatives are employed. The presence of these oscillations and prolonged decay phases
aligns with biological observations in hepatitis dynamics, where immune response and viral replication can
exhibit time-dependent and history-sensitive patterns. Overall, the results highlight the importance of
fractional modeling in capturing the memory and hereditary characteristics inherent in biological systems.

5.2. Deterministic-stochastic Hepatitis C model with piecewise setting: Stochastic- Caputo-Fabrizio frac-
tional derivative

In this subsection, a piecewise Hepatitis C model is considered, in which the first interval is governed by
a deterministic structure, while the second interval is characterized by stochastic dynamics described using
the Caputo-Fabrizio fractional derivative. The mathematical formulation of the model under investigation
is given by: {

dψ (t) = Ω (t, ψ) dt+ σiψdBi (t) , 0 ≤ t ≤ t0
CΩ
t0 Dζ

tψ (t) = Ω (t, ψ) , t0 ≤ t ≤ T
. (5.5)

Performing the piecewise integration above leads to

ψ (t) =

{
ψ (0) +

∫ t
0 Ω (σ, ψ) dσ + σi

∫ t
0 ψ (σ) dBi (σ) , 0 ≤ t ≤ t0

ψ (t0) + (1− ζ) Ω (t, ψ) + ζ
∫ t
t0
Ω (σ, ψ) dσ, t0 ≤ t ≤ T

. (5.6)

The piecewise model solution, obtained through a Newton polynomial-based approach [23], is formulated
numerically as:

ψγ+1 =



 ψγ + h

[
23
12Ω (tγ , ψ

γ)− 4
3Ω
(
tγ−1, ψ

γ−1
)

+ 5
12Ω

(
tγ−2, ψ

γ−2
) ]

+
∑γ

k=0 σiψ (ck) (Bi (tk+1)−Bi (tk)) , 0 ≤ t ≤ t0
ψγ + (1− ζ) Ω (tγ , ψ

γ)

+ζh

[
23
12Ω (tγ , ψ

γ)− 4
3Ω
(
tγ−1, ψ

γ−1
)

+ 5
12Ω

(
tγ−2, ψ

γ−2
) ]

, t0 ≤ t ≤ T

, (5.7)
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Figure 4: Graphical representation of the uninfected class dynamics using a piecewise differential formulation for a range of α
values.

where ck ∈ [tk, tk+1] .
In Figure 4-6, the numerical simulations are depicted for each class of piecewise model with stochastic

and Caputo-Fabrizio fractional derivative where the stochastic constants are taken as σ1 = 0.18, σ1 = 0.16
and σ1 = 0.21.

Figures 4-6 depict the evolution of uninfected cells T (t), infected cells I (t), and free virus particles V (t),
respectively, for various values of the fractional-order parameter ζ. In Figure 4, the dynamics of T (t) reveal
significant irregularity and noise-induced oscillations, particularly for higher ζ values such as ζ = 1 and
ζ = 0.98, where sudden spikes and instability are observed. These fluctuations are indicative of the system’s
sensitivity to random disturbances under weaker memory effects. As ζ decreases, the model exhibits more
damped and stable trajectories, suggesting that stronger memory effects inherent to fractional operators
can mitigate the influence of stochasticity over time. Similarly, Figure 5 shows that the number of infected
cells I (t) increases sharply for larger ζ values, resulting in pronounced peaks followed by rapid declines.
This behavior reflects the system’s susceptibility to rapid viral spread and immune response in low-memory
(higher-ζ) regimes. However, for lower ζ values, such as 0.92 and 0.9, the dynamics become smoother and
more sustained, indicating that fractional memory helps distribute the infection dynamics over a longer time
horizon, reducing abrupt transitions. In Figure 6, the dynamics of the viral load V (t) follow a similar trend.
High ζ values result in large, noisy fluctuations in viral concentration, with sharp peaks resembling sudden
viral bursts. In contrast, lower ζ values lead to smoother, more regular oscillations that stabilize over time.

5.3. Deterministic-stochastic Hepatitis C model with piecewise setting: Classical- stochastic Caputo frac-
tional derivative

In this subsection, we consider a piecewise Hepatitis C model in which the first interval follows a determin-
istic structure, while the second interval incorporates stochastic dynamics. The mathematical formulation
of the model under investigation is given by:{

ψ′ (t) = Ω (t, ψ) , 0 ≤ t ≤ t0
C
t0D

ζ
tψ (t) = Ω (t, ψ) + σiψB

′
i (t) , t0 ≤ t ≤ T

. (5.8)
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Figure 5: Visualization of infected class evolution governed by a piecewise differential approach across selected α values.

Figure 6: Representation of the free virus population dynamics using a piecewise stochastic model incorporating classical and
Caputo derivatives under varying α values.
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Figure 7: Piecewise stochastic representation of the uninfected class dynamics using classical and Caputo derivatives under
varying α values.

Upon integrating the above system, we obtain

ψ (t) =

 ψ (0) +
∫ t
0 Ω (σ, ψ) dσ, 0 ≤ t ≤ t0

ψ (t0) +
1

Γ (ζ)

∫ t
t0
Ω (σ, ψ) (t− σ)ζ−1 dσ + σi

∫ t
t0
ψ (σ) dBi (σ) , t0 ≤ t ≤ T

. (5.9)

Using the Newton polynomial method to solve the piecewise model, the resulting numerical algorithm can
be stated as:

ψγ+1 =



{
ψ (t0) + h

∑ξ1
ξ=m+3

[
23
12Ω

(
tξ, ψ

ξ
)
− 4

3Ω
(
tξ−1, ψ

ξ−1
)

+ 5
12Ω

(
tξ−2, ψ

ξ−2
) ]

, 0 ≤ t ≤ t0

ψ (t0) +
hζ

Γ (ζ + 2)

∑ξ2
ξ=ξ1+1Ω

(
tξ−2, ψ

ξ−2
)
Π1

ξ2,ξ

+
hζ

Γ (ζ + 2)

∑ξ2
ξ=ξ1+1

[
Ω
(
tξ−1, ψ

ξ−1
)
− Ω

(
tξ−2, ψ

ξ−2
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Π2
ξ2,ξ

+
hζ

Γ (ζ + 3)

∑ξ2
ξ=ξ1+1

[
Ω
(
tξ, ψ

ξ
)
− 2Ω

(
tξ−1, ψ

ξ−1
)

+Ω
(
tξ−2, ψ

ξ−2
) ]

Π3
ξ2,ξ

+
∑γ

k=0 σiψ (ck) (Bi (tk+1)−Bi (tk))

, t0 ≤ t ≤ T
. (5.10)

In Figure 7-9, the numerical simulations for the piecewise model with classical and Caputo stochastic are
performed for each class of model where the stochastic constants are taken as σ1 = 0.18, σ1 = 0.16 and
σ1 = 0.21.

The numerical results corresponding to this model are illustrated in Figures 7-9, where the dynamics
of uninfected cells T (t), infected cells I (t), and free virus particles V (t) are shown for different values
of the fractional-order parameter ζ. The stochasticity introduced in the second interval results in high
variability, particularly for larger ζ values such as ζ = 1 and ζ = 0.98, where the trajectories exhibit
significant noise and abrupt spikes. For instance, Figure 7 displays sharp and irregular fluctuations in the
number of uninfected cells, especially for ζ = 0.98, reflecting how sensitive the system becomes under low-
memory stochastic regimes. A similar trend is observed in Figure 8, where the number of infected cells
rapidly escalates and then drops off sharply for higher ζ, suggesting intense but short-lived infection waves.
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Figure 8: Infected class dynamics captured via a piecewise stochastic framework employing classical and Caputo operators for
varying α parameters.

Figure 9: Representation of the behavior of the free virus population using a piecewise stochastic model with classical and
Caputo derivatives under varying α values.
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In contrast, as ζ decreases (e.g., ζ = 0.92 or ζ = 0.9), the system exhibits more gradual and smoothed
responses, with oscillatory yet stable patterns that indicate a damping effect from the memory property of
the Caputo derivative. Figure 9 further confirms this, showing viral load dynamics that become less erratic
and more predictable with decreasing ζ. Overall, the results demonstrate that incorporating fractional-
order memory and stochasticity offers a more flexible and realistic representation of hepatitis C infection
dynamics, capturing both sudden shifts and long-term regulatory behavior.

6. Conclusion

This study presents a comprehensive investigation of a Hepatitis C virus (HCV) transmission model that
integrates both classical (integer-order) and fractional (non-integer-order) derivatives within deterministic
and stochastic frameworks. To numerically approximate the solutions of the model’s differential equations,
a Newton polynomial interpolation-based method is employed. In the deterministic setting, the model is
analyzed with respect to equilibrium points, the basic reproduction number, and the positivity of solutions.
For the stochastic case, the existence and uniqueness of solutions are established, and a tailored numerical
algorithm is developed and implemented accordingly. The model is further extended using the concept of
piecewise differential operators introduced by Atangana and Araz, enabling a unified framework that cap-
tures both deterministic and stochastic behaviors across different time intervals. These operators offer a
powerful mathematical tool to model systems undergoing transitions between dynamic regimes—something
traditional operators fail to address adequately. Prior to their introduction, existing methods lacked the
structural flexibility to coherently integrate stochasticity and memory effects within a single modeling ap-
proach.

Graphical simulations of the model under piecewise dynamics—particularly with stochastic Caputo frac-
tional operators—highlight the emergence of behaviors not observable in purely classical or standard frac-
tional models. The numerical results show that higher fractional orders (ζ close to 1) lead to greater
stochastic variability and abrupt fluctuations, while lower orders smooth out these irregularities, reflecting
the stabilizing influence of memory. These effects are clearly evident in the oscillatory patterns and delayed
transitions of uninfected, infected, and viral populations across different ζ values. This behavior aligns more
closely with real-world biological complexity, where disease progression and immune response often exhibit
both randomness and historical dependence.

Overall, the application of piecewise fractional operators in this context bridges a critical gap in infectious
disease modeling. By allowing the coexistence of deterministic precision and stochastic variability within a
single framework, this approach significantly enhances the realism and flexibility of mathematical models,
offering valuable insights into the dynamics of Hepatitis C and potentially other infectious diseases.
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