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Abstract

Decision-making (DM) often experiences challenges because of ambiguity and uncertainty in practical life. It
is normally not easy to give clear values to data in such conditions. Probabilistic uncertain linguistic q-rung
orthopair fuzzy sets (PULq-ROFSs) offer a flexible and practical tool to handle this ambiguity and fuzziness.
These sets provide a comprehensive framework for dealing with complex DM problems. A powerful solution
for addressing such issues is the decomposition of the advantages of the multi-attributive border approxi-
mation area comparison (MABAC) method. Secondly criteria importance through inter-criteria correlation
(CRITIC) method. CRITIC is efficient when distributing weights of criteria based on interrelations. Mean-
while MABAC is famous for its high rank towards options for their distance from the approximation area. A
combination of these techniques leads to a thorough and systematic framework for the solution of uncertain
DM problems. Based on this background, we extend the CRITIC-MABAC methodology to PULq-ROFSs.
This methodology can tackle a real-world use case: choosing the best cloud storage service alternative. We
use the MABAC technique to rank alternatives and the CRITIC method to weight criteria with the aim of
making our results valid and meaningful. We confirm the practical aspect of the methodology and evaluate
it is performance on a real-world DM situation. We also compare the results with those yielded by previ-
ous techniques. Our findings highlight the impressive performance and the applicability of the presented
CRITIC-MABAC approach.
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1. Introduction

Dealing with uncertainty in data is essential for solving decision-making (DM) problems. In many cases,
the original data is unclear, making it difficult to assign precise values. To address this challenge, Zadeh [1]
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introduced fuzzy set (FS) theory, where a membership function assigns values between 0 and 1 to represent
uncertainty. Although useful, FSs rely on a single membership function (α), which is often insufficient for
complex DM problems. To overcome this, Atanassov [2] proposed intuitionistic fuzzy sets (IFSs) by adding
a non-membership function (β), with the condition α+β ≤ 1. Further extensions were developed to capture
uncertainty more flexibly. Yager [3, 4] introduced Pythagorean fuzzy sets (PyFSs), where α2 + β2 ≤ 1,
and generalized them to q-rung orthopair fuzzy sets (q-ROFSs) with αq + βq ≤ 1. Senapati and Yager [5]
proposed Fermatean fuzzy sets (FFSs) (α3 + β3 ≤ 1), while Cuong [10] suggested picture fuzzy sets (PFSs)
by including a neutral membership function δ satisfying α + β + δ ≤ 1. These were later generalized into
q-rung picture fuzzy sets (q-RPFSs) [11], with condition αq + βq + δq ≤ 1. Recently, probabilistic uncertain
linguistic q-ROFSs (PULq-ROFSs) have been developed to integrate probabilistic linguistic information with
q-ROFSs, providing greater flexibility for managing ambiguity in complex DM environments. Numerous
studies [6, 7, 8, 9] confirm their broad applicability across diverse domains.

Aggregation operators (AOs) have been developed by many scholars under different fuzzy frameworks.
The works of [13, 14] discussed various AOs and their applicability. He et al. [15] introduced Q-RPF
Dombi Hamy mean operators and validated their performance on numerical problems. Extensive coverage
of AOs under different fuzzy settings is provided by Akram et al. [16, 17]. Akram and Shumaiza [18]
applied VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and Technique for the Order of
Preference by Similarity to an Ideal Solution (TOPSIS) techniques within a q-RPF structure and validated
their performance through two case studies. Later, Akram et al. [19] modified the TOPSIS approach for
handling qFSs. Further studies on these fuzzy systems are given by Verma and Mittal [20] and Verma and
Rohtagi [21]. Sitara et al. [22] proposed q-RPF graph topologies, creating new opportunities in DM. Progress
by Pinar and Boran [23] and Akram et al. [24, 25] further increased the importance of q-RPFSs in handling
uncertainty and improving DM. The MABAC method was first introduced by Pamucar and Cirovic [26]
to deal with uncertainty in DM. Pamucar et al. [27] later improved its basic elements for more complex
settings. A major strength of MABAC is its ability to manage conflicting criteria while focusing on border
approximations. Xue et al. [28] extended MABAC to interval-valued IFSs, enhancing its use in complex
conditions. Peng and Yang [29] applied a PyF Choquet integral in DM. Sun et al. [30] proposed a hesitant
fuzzy linguistic projection-extension of MABAC to improve decisions with linguistic uncertainty. Liu et
al. [31] combined MABAC with the Best Worst Method using q-ROF rough numbers. Mishra et al. [32]
extended MABAC to interval-valued IFSs, and Gong et al. [33] improved MABAC for q-ROFSs, especially
in evaluating teaching quality. Since multi-criteria group DM relies on accurate weight allocation, different
methods have been developed. The CRITIC method was proposed by Diakoulaki et al. [34], while Hatefi
[35] suggested Indifference Threshold-based Attribute Ratio Analysis (ITARA) for similar purposes.

Cloud storage services play a vital role in modern times due to their reliable and flexible data manage-
ment services. Through cloud storage services, organizations and individuals carry out the protection of
their data, easy access and operational efficiency. Identifying the best cloud storage service is a daunting
task because it involves several attributes such as cost, reliability, security, and performance. Because of the
difficulties that traditional DM methods have with uncertainties there is a critical need to further develop
evaluation methods that are more robust. With the multiplication of cloud storage services, organizations
are faced with an overwhelming number of options. Topping the list of the leading companies are Google
Drive, Dropbox, and Microsoft OneDrive that have a strong market share. But some aspects beyond storage
capacity are required to choose the best service. While making their decisions, decision-makers (DMs) are
expected to examine data security measures, service reliability, and how well a service can be integrated
into existing infrastructure. Since there are no standard guidelines for judging these factors. DM process
becomes problematic and requires the use of systematic approaches towards selection of cloud storage. It
has been shown that MCGDM techniques are widely used to estimate and prioritize cloud storage services
with respect to multiple evaluation parameters. Therefore, using techniques such as Analytical Hierarchy
Process (AHP), the DM process regarding choosing of cloud services has become easier due to the TOP-
SIS and CRITIC techniques. However, traditional methods frequently rely on specified attribute weights,
not taking into consideration the existing uncertainties and personal preferences in an actual-life setting.
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The PULq-ROFSs framework is a unique approach to MCGDM. This approach moves the management of
uncertainty further by integrating probabilistic linguistic evaluations and enables the DMs to voice their
opinions comparatively more freely. Compared to traditional models, PULq-ROFSs provide a higher degree
of flexibility for accommodating divergence and uncertainty, thus better modeling subjective estimation. In
situations where decisions have to be made, a panel of experts evaluates cloud storage services bearing in
mind factors that are primary, such as affordability, dependability, cost, reliability, security, efficiency, and
performance. Using linguistic expressions, modified with probability values, DMs explain how confident
they are in each cloud storage service. By synthesizing the offered assessments, an ordered list of the cloud
storage solutions is generated which facilitates open and non-biased choice mechanism. This approach is
unique in the sense that it does not depend on the set of attribute weights to function making the evaluation
procedure flexible to different situations. The CRITIC methodology is applied to assess the importance
of each criterion. This approach subjectively identifies the relative importance of all attributes based on
analysis of contrast intensity and correlations to ensure that the most important aspect are given a proper
weighting. Using the CRITIC method helps to improve the evaluation process by minimizing one’s initiative
and increasing accuracy in ranking cloud storage solutions. The quality of cloud storage solution evaluation
with PULq-ROFSs methodology is better than with standard approaches in several ways. Adoption of prob-
abilistic linguistic terms provides DMs with the opportunity to create a clear picture of their confidence and
reservations about their judgments. By departing from pre-specified weight allocation, the CRITIC process
calculates attribute relevance from analytical findings, which leads to a more objective and evidence-driven
DM process. Organizations may benefit from neat rankings generated by this methodology and select stor-
age options that best meet their business needs. Effective method selection for cloud storage implies that
advanced DM frameworks should be used since the task is very complex. Although the traditional MCGDM
approaches provide obvious procedures, they tend not to possess the ability to handle uncertainty effectively.
The utilization of the PULq-ROFSs method enables a dynamic and clear ranking of the cloud storage fa-
cilities by laying out the essential attributes that determine their performance. This approach combines
probabilistic linguistic judgments with CRITIC weight allocations to increase accuracy in DM and provide
meaningful recommendations for cloud storage selection.

1.1. Contributions
This study attempts to develop a new method by combining the MABAC approach with the CRITIC

strategy, namely, the CRITIC-MABAC to prioritize alternative options in PULq-ROFSs situation of MCGDM.
There are various underlying fundamental reasons for conducting this study. Using an extended framework
for PULq-ROFSs, uncertainty can be modeled more adaptively. The capacity to combine a variety of fuzzy
models by changing the parameter q increases its adaptability in order to manage uncertain information.
When valuing alternatives in comparison with their location around the border approximation region, the
MABAC procedure supports a straightforward and reliable ranking procedure. The accurate ranking system
of the MABAC method allows it to be complementarily matched to the flexible PULq-ROFS structure, such
as in making decisions under uncertainty. Justifying the weights of criteria and CRITIC analysis of corre-
lations among various criteria. This makes DM process more objective, resulting in an unbiased thorough
analysis of alternatives. This investigation introduces a unified approach grounded in these aspects, which
exploits the advantages of CRITIC and MABAC in the PULq-ROFS setting. The key contributions of this
study are highlighted as follows:

1. This study introduces a novel DM framework tailored for the flexible structure of PULq-ROFSs, referred
to as the PULq-ROFSs-CRITIC-MABAC method. Within this approach, the criteria weights are
determined using the CRITIC approach, ensuring an objective and data driven evaluation process.

2. A detailed step-by-step procedure is provided for the CRITIC-MABAC method, offering a clear and
systematic guide for their implementation in DM scenarios.

3. In order to confirm the successful outcome of the suggested approach, it is applied to a real world
problem, demonstrating it is practical utility in handling uncertainty and ranking alternatives.
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4. Furthermore, a comparative analysis is conducted with existing approaches, highlighting the advantages
and improvements achieved through our extended method.

1.2. Novelties and Motivations
In this study, we propose an advanced DM approach built upon the principles of PULq-ROFSs, termed the

PULq-ROFSs-CRITIC-MABAC method. This framework integrates the CRITIC technique to determine the
criterion weights, ensuring an objective and data driven weighting mechanism. A key aspect of our research
is the novel combination of the MABAC and CRITIC methods, which, has not, as far as we are aware,
been examined in the body of existing literature. This study is the first to introduce a dual-framework
approach for MCGDM by utilizing both CRITIC and MABAC within the context of PULq-ROFSs. To
enhance clarity, we illustrate the core steps of the proposed methodologies through diagrams, providing
a visual representation of the developed strategies. Furthermore, we apply our method to a real-world
problem centered on choosing the best cloud storage service in order to show it is practical usefulness.
The PULq-ROFSs-CRITIC-MABAC method is employed to evaluate and rank alternatives, showcasing
it is effectiveness in handling complex DM scenarios. We have emphasized the impact of our proposed
approach to demonstrate it is significance, superiority, and reliability compared to existing DM techniques.
Over the past years, the only known integration within this domain has been the CRITIC-VIKOR method
combined with PULq-ROFSs, as reported by Naz, et al. [36]. For further study, the readers are referred
to [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. The distinctive aspects of our study are as follows:
The PULq-ROFSs framework offers a high degree of flexibility, making it capable of managing diverse
types of data, including probabilistic and linguistic information. Due to it is adaptable nature, we have
incorporated this structure into our methodology to ensure more comprehensive DM under uncertainty.
While numerous researchers have explored and expanded both the CRITIC and MABAC methods, their
combined implementation within the PULq-ROFSs environment remains largely unexplored. Our study
bridges this gap by introducing a novel integration that enhances the accuracy and applicability of these
techniques. We introduce the PULq-ROFSs-CRITIC-MABAC approach as a novel solution to tackle real
world DM challenges. To effectively address complex problems, we employ this extended methodology, which
systematically converts expert evaluations into PULq-ROFSs numerical representations. Additionally, we
provide a comprehensive breakdown of the step-by-step procedure and the necessary computations involved
in the MCGDM process, ensuring clarity and precision in implementation.

The following describes the study’s structure: Section 2 provides an overview of fundamental concepts
related to PULq-ROFSs. In Section 3, we introduce the methodology behind the proposed approach, de-
tailing the application of the MABAC and CRITIC methods for solving MCGDM problems within the
PULq-ROFSs framework. Section 4 demonstrates the practical implementation of our approach through a
real world case study, where we evaluate and select the most suitable cloud storage service on a global scale
using the CRITIC-MABAC technique. In Section 5, we conduct a comparative analysis as well as sensitivity
analysis to assess it is effectiveness against previously established methods. In conclusion, the findings of
this research are summarized in Section 6.

For clarity, the notations employed in Section 2 are summarized in Table 1.

2. Preliminaries

Definition 2.1. [38] Let S = {āϖ|ϖ = −λ, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . , λ} be a linguistic term set (LTS),
a probabilistic LTS (PLTS) defines itself by:

Nā(ϱ) = {āo(ϱo)|āo ∈ S, ϱo ≥ 0, o = 1, 2, . . . ,#Nā(ϱ),

#Nā(ϱ)∑
o=1

ϱ(o) ≤ 1}, (2.1)
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Symbol Description

S Linguistic term set (LTS).
λ Linguistic scale parameter.
o, f, h, l, ϵ Generic index variables.
āω Linguistic term at index ω.
Nā(ϱ) Probabilistic linguistic term set (PLTS).
ā(o), A(o), B(o) Linguistic terms.
ϱ(o) Probability of āo.
Z = [āa, āb] Uncertain linguistic variable.
Z(ϱ) Probabilistic uncertain linguistic term set (PULTS).
# Cardinality function.
Ż(ϱ) Normalized PULTS.
ϱ̇(o) Normalized probability.
Y Universal set.
Q q-ROFS.
σQ(y) Membership degree of element y.
ζQ(y) Non-membership degree of element y.
πQ(y) Indeterminacy degree of element y.
γ q-rung orthopair fuzzy number (q-ROFN).
t : [ā−λ, āλ] → [0, 1] Transformation function.
t−1 Inverse transformation function.
N(ϱ) PULq-ROFS.
σ(ϱ̂)(yε) Membership function with probability distribution ϱ̂.
ζ(ϱ̃)(yε) Non-membership function with probability distribution ϱ̃.
ϕε(f), φε(h) Indexing functions mapping f, h to linguistic terms.
[Lϕε(f),Uϕε(f)] Membership linguistic interval.
[Mφε(h),Nφε(h)] Non-membership linguistic interval.
ϱ̂(f), ϱ̃(h) Probabilities for membership and non-membership terms.
F,H Number of membership and non-membership terms.
q Rung parameter.
𭟋 Score function.
ℸ Deviation function.
⊕ Addition operator.
⊗ Multiplication operator.
HD Hamming distance.
ξ Scalar parameter.

Table 1: Notations used in Preliminaries



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 86

in which ā(o)(ϱ(o)) is the LT, ā(o) is associated with the probability ϱ(o) and #Nā(ϱ) represents the total
amount of LTS in a Nā(ϱ).

Definition 2.2. [39] Let Z = [āa, āb], where āa, āb ∈ S[λ,−λ], āa and āb are also the more severe and smaller
restrictions; we then designate Z as the uncertain linguistic variable.

2.1. The concept of PULTS
Probabilistic uncertain linguistic term set (PULTS), a novel concept put out by Lin et al. [40], relies on

PLTSs and unclear linguistic variables [41] to accurately illustrate the DMs concern.

Definition 2.3. [40] A PULTS is characterized as follows:

Z(ϱ) = {[A(o),B(o)](ϱ(o))|A(o),B(o) ∈ S, ϱ(o) ≥ 0, o = 1, 2, . . . ,#Z(ϱ),

#Z(ϱ)∑
o=1

ϱ(o) ≤ 1}, (2.2)

in which [A(o),B(o)](ϱ(o)) signifies the uncertain linguistic term (ULT) [A(o),B(o)] related with the likelihood
ϱ(o) and A(o),B(o) are LTs, A(o) ≤ B(o) and #Z(ϱ) is the cardinality of Z(ϱ).

If
#Z(ϱ)∑
o=1

ϱ(o) = 0, there is not any evaluation data available yet. If
#Z(ϱ)∑
o=1

ϱ(o) = 1, it shows that complete

information on their syntax evaluation is provided. If 0 <
#Z(ϱ)∑
q=1

ϱ(o) < 1, that only a portion of the linguistic

tests are provided because some DMs are capable of providing the full evaluation data or because some DMs
are responsible for delivering the data. This is often the case in real-world MCGDM problems, and it is
necessary to resolve uncertainty chance.

Definition 2.4. [40] Given a PULTS Z(ϱ) = {[A(o),B(o)](ϱ(o))|o = 1, 2, . . . ,#Z(ϱ)}, If each of its con-
stituent parts are arranged in decreasing order, then Z(ϱ) is referred to as an ordered PULTS. Two aspects
⟨[A(ι),B(ι)](ϱ(ι))⟩ and ⟨[A(ϵ),B(ϵ)](ϱ(ϵ))⟩ are contrasted with the chance ratio of [A(ι) × (ϱ(ι)),B(ι) × (ϱ(ι))]
over [A(ϵ) × (ϱ(ϵ)),B(ϵ) × (ϱ(ϵ))].

2.2. The Normalization of PULTS
In order to address the remaining unexplained chance that makes the significance of PULTS comparable,

PULTS are normalized. Normalization of PULTS involves two distinct functions: estimating a person’s lack
of statistical knowledge is the basic function, and normalizing a PULTS’s circularity is the other part that
involves computation.

Definition 2.5. [40] Given a PULTS Z(ϱ) with
#Z(ϱ)∑
o=1

ϱ(o) < 1, hence the corresponding PULTS Ż(ϱ) can be

defined as:
Ż(ϱ) = {[A(o),B(o)](ϱ̇(o))|o = 1, 2, . . . ,#Z(ϱ)}, (2.3)

where ϱ̇(o) = ϱ(o)

#Z(ϱ)∑
o=1

ϱ(o)
, for all o = 1, 2, ...,#Z(ϱ).

The cardinalities of PULTS are typically different in real DM applications, which causes significant opera-
tional difficulties. In this instance, we add uncertain linguistic concepts with probability 0 to PULTS with
relatively few elements to raise their cardinalities.

Definition 2.6. [40] Let Z1(ϱ) and Z2(ϱ) be any two PULTS, where Z1(ϱ) = {[A(o)
1 ,B

(o)
1 ](ϱ

(o)
1 )|o = 1, 2, . . . ,#Z1(ϱ)}

and Z2(ϱ) = {[A(o)
2 ,B

(o)
2 ](ϱ

(o)
2 )|o = 1, 2, . . . ,#Z2(ϱ)}, and let #Z1(ϱ) and #Z2(ϱ) be the number of linguistic

terms in Z1(ϱ) and Z2(ϱ), respectively. If #Z1(ϱ) > #Z2(ϱ), then we will add #Z1(ϱ) − #Z2(ϱ) linguistic
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terms to Z2(ϱ) so that number of terms in Z1(ϱ) and Z2(ϱ) are identical. In Z2(ϱ), the smallest linguistic
terms are added, and all of the linguistic terms have zero probabilities.

Let Z1(ϱ) = {[A(o)
1 ,B

(o)
1 ](ϱ

(o)
1 )|o = 1, 2, . . . ,#Z1(ϱ)} and Z2(ϱ) = {[A(o)

2 ,B
(o)
2 ](ϱ

(o)
2 )|o = 1, 2, . . . ,#Z2(ϱ)},

then the two stages listed below can be used to carry out the normalization process:

1. If
#Z(ϱ)∑
o=1

ϱ(o) < 1 then by 2.3, the value Żι(ϱ), ι = 1, 2 can be calculated.

2. If #Z1(ϱ) ̸= #Z2(ϱ), then, in accordance with Definition 2.6, it is necessary to add some elements to
the one that has fewer components.

We refer to the resulting PULTS as the normalized PULTS. The normalized PULTS are also represented by
Z1(ϱ) and Z2(ϱ) for presentational convenience.

2.3. The concept of q-ROFS
Definition 2.7. [14] Let Y be an ordinary fixed set, then a q-ROFS represented by Q defined on Y is
expressed as:

Q = {⟨y, σQ(y), ζQ(y)⟩|y ∈ Y }, (2.4)

where the membership and non-membership degrees of the element y ∈ Y to the set Q are denoted by
σQ(y) and ζQ(y), respectively, satisfying 0 ≤ σQ(y), ζQ(y) ≤ 1 and (σQ(y))

q + (ζQ(y))
q ≤ 1, (q ≥ 1). The

indeterminacy degree is defined as πQ(y) =
q
√

(σQ(y))q + (ζQ(y))q − (σQ(y))q(ζQ(y))q. Liu and Wang [14]
called the ordered pair (σQ(y), ζQ(y)) a q-ROF number, which can be denoted as γ = (σ, ζ).

Definition 2.8. [42, 43] Let S = {āϖ|ϖ = −λ, . . . ,−2,−1, 0, 1, 2, . . . , λ} be a LTS [42]. The transformation
function [43] is used to construct the linguistic phrases āϖ, which can represent the equivalent information
to ω:

t : [ā−λ, āλ] → [0, 1], t(āω) =
ω + λ

2λ
= ω. (2.5)

In addition, ω can be obtained using the transformation function t−1, it can be used to convey information
that is comparable to the linguistic terms āω:

t−1 : [0, 1] → [ā−λ, āλ], t
−1 = ā(2ω−1)λ = āω. (2.6)

2.4. PULq-ROFS
Now we suggest a new probabilistic fuzzy set PULq-ROFS, it not only enables specialists to present

assessment data using a variety of LTS, but also includes the potential for each LTS. The challenge is
defining how to implement rules of PULq-ROFS appropriately in cases where the associated distributions of
probability become distinct..

2.5. The basic definition of PULq-ROFS
Definition 2.9. Given a consistent set Y = {y1, y2, . . . , yϵ}, where
S = {āω|ω = −λ, . . . , 0, 1, 2, 3,−3,−2,−1, λ} be a LTS. Next, we obtain a PULq-ROFS N (ϱ) on Y by

N (ϱ) = {⟨yϵ, σ(ϱ̂)(yϵ), ζ(ϱ̃)(yϵ)⟩ : yϵ ∈ Y }, (2.7)

where σ(ϱ̂)(yϵ) = {[Lϕϵ(f) ,Uϕϵ(f) ](ϱ̂(f)) : Lϕϵ(f) ,Uϕϵ(f) ∈ S[λ,−λ], ϱ̂(f) ≥ 0,
f∑

f=1

ϱ̂(f) ≤ 1} and ζ(ϱ̃)(yϵ) =

{[Mφϵ(h) ,Nφϵ(h) ](ϱ̃(h)) : Mφϵ(h) ,Nφϵ(h) ∈ S[λ,−λ], ϱ̃(h) ≥ 0,
H∑

h=1

ϱ̃h ≤ 1} shows the membership and non-

membership degrees, respectively, of yϵ ∈ Y and the associated probabilities are ϱ̂(f) and ϱ̃(h), respectively;
ϕϵ(f) and φϵ(h) are the subscripts of the ULTs [Lϕϵ(f) ,Uϕϵ(f) ] and [Mφϵ(h) ,Nφϵ(h) ], respectively; satisfying the

condition 0 ≤ (
f

max
f=1

ϕϵ(f))q + (
h

max
h=1

φϵ(h))q ≤ λq (q ≥ 1).
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If the set N (ϱ) contain only unique element, then it minimize the PULq-ROFN and we write it as N (ϱ) =

⟨{[Lϕ(f) ,Uϕ(f) ](ϱ̂(f))}, {[Mφ(h) ,Nφ(h) ](ϱ̃(h))}⟩ , where [Lϕ(f) ,Uϕ(f) ], [Mφ(h) ,Nφ(h) ] ∈ S[λ,−λ] and ϱ̂(f), ϱ̃(h) ≥ 0,
F∑

f=1

ϱ̂(f) ≤ 1,
H∑

h=1

ϱ̃(h) ≤ 1.

Example 2.1
Let the linguistic term set be S = {s−3 : VP, s−2 : P, s−1 : SP, s0 : N, s1 : SG, s2 : G, s3 : VG}, where λ = 3.
Let the rung parameter be q = 3.

A valid PULq-ROFN is:

N (ϱ) = ⟨{[s1, s2](0.6), [s0, s1](0.4)} , {[s−2, s−1](0.8), [s−1, s0](0.2)}⟩

Verification of Conditions:

• Probability Sums: The sum of membership probabilities is 0.6 + 0.4 = 1.0. The sum of non-
membership probabilities is 0.8 + 0.2 = 1.0.

• q-rung Condition: The condition is (maxf ϕ(f))
q + (maxh φ(h))

q ≤ λq.

– For Membership: The subscripts in {[s1, s2], [s0, s1]} are {1, 2} and {0, 1}. The maximum value
is max(2, 1) = 2.

– For Non-Membership: The subscripts in {[s−2, s−1], [s−1, s0]} are {−2,−1} and {−1, 0}. The
maximum value is max(−1, 0) = 0.

– Calculation: We check: (2)3 + (0)3 = 8 + 0 = 8 ≤ 33 = 27 ✓

Definition 2.10. Let S[−λ,λ] be a LTS, for any adjusted PULq-ROFN N (ϱ)=⟨{[Lϕ(f) ,Uϕ(f) ](ϱ̂(f)),
[Mφ(h) ,Nφ(h) ](ϱ̃(h))}⟩, where Lϕ(f) ,Uϕ(f) ,Mφ(h) , and Nφ(h) ∈ S[−λ,λ], (f = 1, 2, 3 . . . F ;h = 1, 2, 3 . . . , H), the
score function of N (ϱ) is defined as:

𭟋(N (ϱ)) =

#Fϕ∑
f=1

(
t(L

ϕ(f)
)ϱ̂(f)+t(U

ϕ(f)
)ϱ̂(f)

2

)q

#Fϕ∑
f=1

ϱ̂(f)

−

#Hφ∑
h=1

(
t(M

φ(h) )ϱ̃
(h)+t(N

φ(h) )ϱ̃
(h)

2

)q

#Hφ∑
h=1

ϱ̃(h)

(2.8)

where t(Lϕ(f)), t(Uϕ(f)), t(Mφ(h)), and t(Nφ(h)) ∈ [0, 1], #Fϕ and #Hφ indicate, correspondingly, how many
elements there are in the matching set. The standard deviation of N (ϱ) is defined as:

ℸ(N (ϱ)) =

√
#Fϕ∑
f=1

(
t(L

ϕ(f)
)ϱ̂(f)+t(U

ϕ(f)
)ϱ̂(f)

2 − ℶ(N(ϱ))

)q

#Fϕ∑
f=1

ϱ̂(f)

+

√
#Hφ∑
h=1

(
t(M

φh )ϱ̃h+t(N
φ(h) )ϱ̃

(h)

2 − ℶ(N(ϱ))

)q

#Hφ∑
h=1

ϱ̃(h)

(2.9)

where t(Lϕ(f)), t(Uϕ(f)), t(Mφ(h)), and t(Nφ(h)) ∈ [0, 1], #Fϕ and #Hφ are cardinalities of the corresponding
sets, respectively.
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Example 2.2
Let the linguistic term set be S = {s−3 : VP, s−2 : P, s−1 : SP, s0 : N, s1 : SG, s2 : G, s3 : VG}, where λ = 3.
The transformation function is t(sω) =

ω+3
6 . Let the rung parameter be q = 3.

Consider a PULq-ROFN:

N (ϱ) = ⟨{[s1, s2](0.6), [s2, s3](0.4)} , {[s−1, s0](0.7), [s0, s1](0.3)}⟩

Step 1: Calculate Transformed Values

t(s−1) =
−1 + 3

6
=

2

6
≈ 0.3333 t(s0) =

0 + 3

6
=

3

6
= 0.5000

t(s1) =
1 + 3

6
=

4

6
≈ 0.6667 t(s2) =

2 + 3

6
=

5

6
≈ 0.8333

t(s3) =
3 + 3

6
=

6

6
= 1.0000

Step 2: Compute the Score Function S(γ) Using the formula from Def. 2.10:

𭟋(N (ϱ)) =

∑#Fϕ

f=1

(
t(Lϕ(f))+t(Uϕ(f))

2 · ϱ̂(f)
)q

∑#Fϕ

f=1 ϱ̂(f)
−

∑#Hφ

h=1

(
t(Mφ(h))+t(Nφ(h))

2 · ϱ̃(h)
)q

∑#Hφ

h=1 ϱ̃(h)

𭟋(N (ϱ)) =

(
0.6667+0.8333

2 · 0.6
)3

+
(
0.8333+1.0000

2 · 0.4
)3

0.6 + 0.4

−
(
0.3333+0.5000

2 · 0.7
)3

+
(
0.5000+0.6667

2 · 0.3
)3

0.7 + 0.3

=
(0.75 · 0.6)3 + (0.91665 · 0.4)3

1.0
− (0.41665 · 0.7)3 + (0.58335 · 0.3)3

1.0
= (0.45)3 + (0.36666)3 − (0.29166)3 − (0.17500)3

= 0.091125 + 0.04930− 0.02480− 0.00536

𭟋(N (ϱ)) ≈ 0.1103

A positive score (≈ 0.1103) indicates a membership-dominant evaluation.
Step 3: Compute the Deviation Function ℸ(N (ϱ)) Using the formula from Def. 2.10:

ℸ(N (ϱ)) =

√√√√√∑#Fϕ

f=1

(
t(Lϕ(f))+t(Uϕ(f))

2 − S(N (ϱ))
)q

· ϱ̂(f)∑#Fϕ

f=1 ϱ̂(f)
+

∑#Hφ

h=1

(
t(Mφ(h))+t(Nφ(h))

2 − S(N (ϱ))
)q

· ϱ̃(h)∑#Hφ

h=1 ϱ̃(h)

For brevity, we compute the result:

ℸ(N (ϱ)) ≈
√

(0.75− 0.1103)3 · 0.6 + (0.91665− 0.1103)3 · 0.4
1.0

+
(0.41665− 0.1103)3 · 0.7 + (0.58335− 0.1103)3 · 0.3

1.0

≈
√

(0.6397)3 · 0.6 + (0.80635)3 · 0.4
1

+
(0.30635)3 · 0.7 + (0.47305)3 · 0.3

1

≈
√

(0.2618) · 0.6 + (0.5243) · 0.4
1

+
(0.02875) · 0.7 + (0.1058) · 0.3

1

≈
√
(0.1571 + 0.2097) + (0.0201 + 0.0317)

≈
√
0.3668 + 0.0518

≈
√
0.4186

ℸ(N (ϱ)) ≈ 0.6470
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Definition 2.11. Let N (1)(ϱ) and N (2)(ϱ) be two PULq-ROFNs. Consequently, PULq-ROFNs comparison
structure is shown as:

• If 𭟋(N (1)(ϱ)) ≻ 𭟋(N (2)(ϱ)), then N (1)(ϱ) ≻ N (2)(ϱ).

• If 𭟋(N (1)(ϱ)) ≺ 𭟋(N (2)(ϱ)), then N (1)(ϱ) ≺ N (2)(ϱ).

• If 𭟋(N (1)(ϱ)) = 𭟋(N (2)(ϱ)), then

– If ℸ(N (1)(ϱ)) ≻ ℸ(N (2)(ϱ)), then N (1)(ϱ) ≺ N (2)(ϱ).

– If ℸ(N (1)(ϱ)) ≺ ℸ(N (2)(ϱ)), then N (1)(ϱ) ≻ N (2)(ϱ).

– If ℸ(N (1)(ϱ)) = ℸ(N (2)(ϱ)), then N (1)(ϱ) ≈ N (2)(ϱ).

Example 2.3
Let the linguistic term set be S = {s−3 : VP, s−2 : P, s−1 : SP, s0 : N, s1 : SG, s2 : G, s3 : VG}, where λ = 3.
The transformation function is t(sω) =

ω+3
6 . Let the rung parameter be q = 3.

Consider two PULq-ROFNs to be compared:

N1(ϱ) = ⟨{[s1, s2](0.8)} , {[s−1, s0](0.6), [s0, s1](0.4)}⟩

N2(ϱ) = ⟨{[s0, s1](0.9)} , {[s−2, s−1](1.0)}⟩

Step 1: Calculate Transformed Values

t(s−2) =
−2 + 3

6
=

1

6
≈ 0.1667 t(s−1) =

−1 + 3

6
=

2

6
≈ 0.3333

t(s0) =
0 + 3

6
=

3

6
= 0.5000 t(s1) =

1 + 3

6
=

4

6
≈ 0.6667

t(s2) =
2 + 3

6
=

5

6
≈ 0.8333

Step 2: Compute Score for N1(ϱ)

𭟋(N1(ϱ)) =

(
0.6667+0.8333

2 · 0.8
)3

0.8
−
(
0.3333+0.5000

2 · 0.6
)3

+
(
0.5000+0.6667

2 · 0.4
)3

1.0
= (0.75 · 0.8)3 −

[
(0.41665 · 0.6)3 + (0.58335 · 0.4)3

]
= (0.60)3 −

[
(0.2500)3 + (0.2333)3

]
= 0.2160− [0.0156 + 0.0127] = 0.2160− 0.0283 = 0.1877

Step 3: Compute Score for N2(ϱ))

𭟋(N2(ϱ)) =

(
0.5000+0.6667

2 · 0.9
)3

0.9
−
(
0.1667+0.3333

2 · 1.0
)3

1.0
= (0.58335 · 0.9)3 − (0.2500)3

= (0.5250)3 − 0.0156 = 0.1447− 0.0156 = 0.1291

Step 4: Apply Comparison Law

𭟋(N1(ϱ)) ≈ 0.1877 > 𭟋(N2(ϱ)) ≈ 0.1291

According to Definition 2.11, since 𭟋(N1(ϱ)) > 𭟋(N2(ϱ)), we conclude that N1(ϱ) is superior to N2(ϱ),
denoted as N1(ϱ) ≻ N2(ϱ).
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Definition 2.12. Let N 1(ϱ) = ⟨{[Lϕ1(f) ,Uϕ1(f) ](ϱ̂(f)), [Mφ1(h) ,Nφ1(h) ](ϱ̃(h))}⟩ and N 2(ϱ) = ⟨{[Lϕ2(f) ,Uϕ2(f) ](ϱ̂(f)),
[Mφ2(h) ,Nφ2(h) ](ϱ̃(h))}⟩ (f = 1, 2, . . . , F ;h = 1, 2, . . . ,H) include two altered PULq-ROFNs where ϕϵ(f) and
φϵ(h)(ϵ = 1, 2) contains the related subtitle of [Lϕϵ(f) ,Uϕϵ(f) ] and [Mφϵ(h) ,Nφϵ(h) ](ϵ = 1, 2)η > 0, afterward,
the essential characteristics of PULq-ROFNs are described as below:

(1) neg(N 1(ϱ)) =
〈{[

Mφ1(h) ,Nφ1(h)

]
(ϱ̃(h)),

[
Lϕ1(f) ,Uϕ1(f)

]
(ϱ̂(f))

}〉
;

(2) N1(ϱ)⊕N2(ϱ) =

〈
L

q

√√√√(ϕ1(f))q+(ϕ2(f))q−
(

(ϕ1(f))(ϕ2(f))
λ

)q ,U
q

√√√√(ϕ1(f))q+(ϕ2(f))q−
(

(ϕ1(f))(ϕ2(f))
λ

)q

 (ϱ̂(f)),

M
φ1(h)φ2(h)

λ

,N
φ1(h)φ2(h)

λ

 (ϱ̃(h))


〉

;

(3) N1(ϱ)⊗N2(ϱ) =

〈
L

ϕ1(f)ϕ2(f)

λ

,U
ϕ1(f)ϕ2(f)

λ

 (ϱ̂(f)),

M
q

√√√√(φ1(h))q+(φ2(h))q−
(

(φ1(h))(φ2(h))
λ

)q ,N
q

√√√√(φ1(h))q+(φ2(h))q−
(

(φ1(h))(φ2(h))
λ

)q

 (ϱ̃(h))


〉

;

(4) ηN 1(ϱ) =

〈
L

q

√
δq−λq

(
1− (ϕ1(f))q

λq

)η ,U
q

√
λq−λq

(
1− (ϕ1(f))q

λq

)η

 (ϱ̂(f)),

M
λ

(
φ1(h)

λ

)η ,N
λ

(
φ1(h)

λ

)η

 (ϱ̃(h))


〉
;

(5) (N 1(ϱ))η =

〈
[
L
λ

(
ϕ1(f)

λ

),U
λ

(
ϕ1(f)

λ

)
]η

(ϱ̂(f)),

M
q

√
λq−λq

(
1− (φ1(h))q

λq

),N
q

√
λq−λq

(
1− (φ1(h))q

λq

)

η

(ϱ̃(h))


〉
.

Example 2.4
Let the linguistic term set be S = {s−3 : VP, s−2 : P, s−1 : SP, s0 : N, s1 : SG, s2 : G, s3 : VG}, where λ = 3.
Let the rung parameter be q = 3.

Consider two PULq-ROFNs and a scalar value:

N1(ϱ) = ⟨{[s1, s2](1.0)} , {[s−1, s0](1.0)}⟩

N2(ϱ) = ⟨{[s0, s1](1.0)} , {[s−2, s−1](1.0)}⟩

η = 2

1. Negation Operation:

neg(N1(ϱ)) = ⟨{[s−1, s0](1.0)} , {[s1, s2](1.0)}⟩

2. Addition Operation:

N1(ϱ)⊕N2(ϱ) =
〈{[

s 3
√

13+03−(1·0/3)3 , s 3
√

23+13−(2·1/3)3

]
(1.0)

}
,
{[
s(−1)(−2)/3, s0·(−1)/3

]
(1.0)

}〉
3. Multiplication Operation:

N1(ϱ)⊗N2(ϱ) =
〈{[

s1·0/3, s2·1/3
]
(1.0)

}
,
{[

s 3
√

(−1)3+(−2)3−((−1)(−2)/3)3
, s 3

√
03+(−1)3−(0·(−1)/3)3

]
(1.0)

}〉
4. Scalar Multiplication:

ηN1(ϱ) =
〈{[

s
3 3
√

1−(1−(1/3)3)2
, s

3 3
√

1−(1−(2/3)3)2

]
(1.0)

}
,
{[
s3·(−1/3)2 , s3·(0/3)2

]
(1.0)

}〉
5. Power Operation:

(N1(ϱ))
η =

〈{[
s3·(1/3)2 , s3·(2/3)2

]
(1.0)

}
,
{[

s
3 3
√

1−(1−(−1/3)3)2
, s

3 3
√

1−(1−(0/3)3)2

]
(1.0)

}〉
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Calculation Results (Approximated):

2. Addition: ≈ ⟨{[s1.0, s2.08](1.0)} , {[s0.67, s0.0](1.0)}⟩
3. Multiplication: ≈ ⟨{[s0.0, s0.67](1.0)} , {[s−2.08, s−1.0](1.0)}⟩

4. Scalar Mult: ≈ ⟨{[s1.25, s2.39](1.0)} , {[s0.33, s0.0](1.0)}⟩
5. Power: ≈ ⟨{[s0.33, s1.33](1.0)} , {[s−2.39, s−1.25](1.0)}⟩

Theorem 2.13. Let N 1(ϱ) = ⟨{[Lϕ1(f) ,Uϕ1(f) ](ϱ̂(f)), [Mφ1(h) ,Nφ1(h) ](ϱ̃(h))}⟩ and N 2(ϱ) = ⟨{[Lϕ2(f) ,Uϕ2(f) ](ϱ̂(f)),
[Mφ2(h) ,Nφ2(h) ](ϱ̃(h))}⟩ (f = 1, 2, . . . , F ;h = 1, 2, . . . ,H) be any two adjusted PULq-ROFNs, ξ, ξ1, ξ2, > 0, then

• N 1(ϱ)⊕N 2(ϱ) = N 2(ϱ)⊕N 1(ϱ);

• N 1(ϱ)⊗N 2(ϱ) = N 2(ϱ)⊗N 1(ϱ);

• ξ(N 1(ϱ)⊕N 2(ϱ)) = ξN 1(ϱ) ⊕ ξN 2(ϱ);

• ξ1N 1(ϱ) ⊕ ξ2N 1(ϱ) = (ξ1 + ξ2)N 1(ϱ);

• (N 1(ϱ))ξ1 ⊗ (N 1(ϱ))ξ2 = (N 1(ϱ))ξ1+ξ2;

• (N 1(ϱ))ξ ⊗ (N 2(ϱ))ξ = (N 1(ϱ)⊗N 2(ϱ))ξ.

Definition 2.14. Let N 1(ϱ) = ⟨{[Lϕ1(f) ,Uϕ1(f) ](ϱ̂(f)), [Mφ1(h) ,Nφ1(h) ](ϱ̃(h))}⟩ and N 2(ϱ) = ⟨{[Lϕ2(f) ,Uϕ2(f) ](ϱ̂(f)),
[Mφ2(h) ,Nφ2(h) ](ϱ̃(h))}⟩ (f = 1, 2, . . . , F ;h = 1, 2, . . . ,H) comprise two modified PULq-ROFNs, followed by Ham-
ming distance (HD) (N 1(ϱ),N 2(ϱ)). The distance between N 1(ϱ) and N 2(ϱ) has the following definition:

HD(N 1(ϱ),N 2(ϱ)) =

√√√√√√
#Fϕ∑
f=1

(
|t(Lϕ1(f))ϱ̂(f) − t(Lϕ2(f))ϱ̂(f)|q + |t(Uϕ1(f))ϱ̂(f) − t(Uϕ2(f))ϱ̂(f)|q

)
2#Fϕ

+√√√√√√
#Hφ∑
h=1

(
|t(Mφ1(h))ϱ̃(h) − t(Mφ2(h))ϱ̃(h)|q + |t(Nφ1(h))ϱ̃(h) − t(Nφ2(h))ϱ̃(h)|q

)
2#Hφ

.(2.10)

3. PULq-ROF-CRITIC-MABAC method

The MABAC method is known for it is precision in addressing DM challenges, thanks to it is simplicity
and adaptability. This part contains introduction of an MABAC method tailored for group DM problems
within the PULq-ROFSs enviornment. This approach is designed to handle assessment information expressed
in PULq-ROFSs effectively. Additionally, we outline a methodology for calculating criteria weights. First, we
describe the CRITIC method adapted for PULq-ROFSs. Let A = {A1, A2, . . . , Am}, where (f = 1, 2, . . . ,m)
represent a set of m alternatives measured against n criteria C = {C1, C2, . . . , Cn}. Let E = (E1, E2, . . . Ep)
denote the p DMs involved in the evaluation process. Assume that W = (W1,W2, . . . ,Wn) and W =
(W1,W2, . . . ,Wp)

T represent the weights of the criteria and the weights of the DMs, respectively, where

Wj ∈ [0, 1],
n∑
j
Wj = 1, Wl ∈ [0, 1],

p∑
l

Wl = 1. In this approach, PULq-ROFNs are used to assess alternatives

against all criteria. The procedural steps of the CRITIC method are illustrated graphically in Figure 1, while
the MABAC method are illustrated as a flowchart in Figure 2.
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3.1. MABAC method for PULq-ROFSs
The following is an explanation of the PULq-ROF-MABAC technique application methodology:

Step 1. Organize the uncertain probabilistic linguistic term.
The DMs choose a set of appropriate linguistic terms to evaluate the possibilities in most DM situations.
The DMs first defined the PULTS and then gave them numerical values. The PUL phrases are constructed
by the DMs in this step, and they are given their corresponding PULq-ROFNs.
Step 2. Experts from the decision matrices.

R
l
= [A

l
fj ]m×n (3.1)

=



([Ll
ϕ11

,Ul
ϕ11

](ϱ̂l11), [M
l
φ11

,Nl
φ11

](ϱ̃l11)) ([Ll
ϕ12

,Ul
ϕ12

](ϱ̂l12), [M
l
φ12

,Nl
φ12

](ϱ̃l12)) . . . ([Ll
ϕ1n

,Ul
ϕ1n

](ϱ̂l1n), [Ml
φ1n

,Nl
φ1n

](ϱ̃l1n))

([Ll
ϕ21

,Ul
ϕ21

](ϱ̂l21), [M
l
φ21

,Nl
φ21

](ϱ̃l21)) ([Ll
ϕ22

,Ul
ϕ22

](ϱ̂l22), [M
l
φ22

,Nl
φ22

](ϱ̃l22)) . . . ([Ll
ϕ2n

,Ul
ϕ2n

](ϱ̂l2n), [Ml
φ2n

,Nl
φ2n

](ϱ̃l2n))

.

.

.
.
.
.

.

.

.
.
.
.

([Ll
ϕm1

,Ul
ϕm1

](ϱ̂lm1), [M
l
φm1

,Nl
φm1

](ϱ̃lm1)) ([Ll
ϕm2

,Ul
ϕm2

](ϱ̂lm2), [M
l
φm2

,Nl
φm2

](ϱ̃lm2)) . . .([Ll
ϕmn

,Ul
ϕmn

](ϱ̂lmn), [Ml
φmn

,Nl
φmn

](ϱ̃lmn))

 ;

where Al
fj = ⟨[Ll

ϕfj
,Ul

ϕfj
](ϱ̂lfj), [M

l
φfj

,Nl
φfj ](ϱ̂

l
fj)⟩ f = (1, 2, . . . ,m), j = (1, 2, . . . , n) represents the PULq-

ROFSs evaluation data of the alternative Af provided by the expert El in relation to the criterion Cj .
Step 3. Create the combined matrix.
To create a combined matrix, the DMs decision matrices from step 2 must be used. As a result, the isolated
decision matrices are subjected to the probabilistic uncertain linguistic q-rung orthopair fuzzy weighted av-
erage (PULq-ROFWA) operator (Eq. (3.3)), and an overall PULq-ROFSs matrix r = [Afj ]m×n is built as:

R = [Afj ]m×n (3.2)

=


([Lϕ11

,Uϕ11
](ϱ̂11), [Mφ11

,Nφ11
](ϱ̃11)) ([Lϕ12

,Uϕ12
](ϱ̂12), [Mφ12

,Nφ12
](ϱ̃l12)) . . . ([Lϕ1n

,Uϕ1n
](ϱ̂1n), [Mφ1n

,Nφ1n
](ϱ̃1n))

([Lϕ21
,Uϕ21

](ϱ̂21), [Mφ21
,Nφ21

](ϱ̃21)) ([Lϕ22
,Uϕ22

](ϱ̂22), [Mφ22
,Nφ22

](ϱ̃22)) . . . ([Ll
ϕ2n

,Ul
ϕ2n

](ϱ̂l2n), [Ml
φ2n

,Nl
φ2n

](ϱ̃l2n))

.

.

.
.
.
.

.

.

.
.
.
.

([Lϕm1
,Uϕm1

](ϱ̂m1), [Mφm1
,Nφm1

](ϱ̃m1)) ([Mϕm2
,Nϕm2

](ϱ̂m2), [Mφm2
,Nφm2

](ϱ̃m2)). . . ([Lϕmn ,Uϕmn ](ϱ̂mn), [Mφmn ,Nφmn ](ϱ̃mn))

 ;

where Afj = ⟨[Lϕfj
,Uϕfj

](ϱ̂fj), [Mφfj
,Nφfj ](ϱ̂fj)⟩f = (1, 2, . . . , m), j = (1, 2, . . . , n) represents the com-

bined PULq-ROF evaluation information of the alternatives Af (f = 1, 2, . . . , m) with respect to the criteria
Cj(j= 1, 2, . . . , n).

PULq −ROFWA(A1
fj , A

2
fj , . . . , A

p
fj) =([

((1−
p∏

l=1

((1− t(Ll
ϕfj

)q)Wl)
1
q , (1−

p∏
l=1

((1− t(Ul
ϕfj

)q)Wl)
1
q

]
(ϱ̂fj),

[
p∏

l=1

t(Mφfj)
Wl ,

p∏
l=1

t(Nφfj)
Wl

]
(ϱ̂fj)

)
(3.3)

Step 4. Determining the weights of the criteria.
Calculate the criteria weights using any suitable technique.
Step 5. Create the weighted combined decision matrix.
Calculate the PULq-ROFS weighted matrix WNfj = ⟨[Lϕfj

,Uϕfj
](ϱ̂fj), [Mφfj ,Nφfj ](ϱ̂fj)⟩ (f = 1, 2, . . . , m,

j = 1, 2, . . . , n) by using the matrix r=[Al
fj ]m×n = ⟨[Lϕfj

,Uϕfj
](ϱ̂fj), [Mφfj ,Nφfj ](ϱ̂fj)⟩(f = 1, 2, . . . , m, j

= 1, 2, . . . , n) and criteria weights Wj(j=1, 2, . . . , n), the formula is given as follows:

WNfj = Wj

⊗
Nfj =

([
(1−

(
1− t(Lϕfj

)q)Wj
) 1

q , (1−
(
1− t(Uϕfj

)q)Wj
) 1

q

]
(ϱ̂fj),

[
t(M

Wj

φfj), t(N
Wj

φfj)
]
(ϱ̂fj)

)
.

(3.4)
Step 6. Determine boundary approximation area.
G = (g̃j)1×n is the boundary approximation area (BAA) matrix, whose elements may be found using the
Eq. (??):

g̃j =

 m∏
f=1

WNfj

 1
m
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=

(( m∏
f=1

t(Lϕf
))

1
m , (

m∏
f=1

t(Uϕf
))

1
m

 (
m∏

f=1

(ϱ̂f ))
1
m , (3.5)

(1− m∏
f=1

(1− t(Mφf )
q)

1
m )

1
q , (1−

m∏
f=1

(1− t(Nφf )
q)

1
m )

1
q

 (

m∏
f=1

(ϱ̂f ))
1
m

)
.

Step 7. Create a distance matrix.
Determine the distance of each choice from BAA Table 8 to create the distance matrix D = (dfj)m×n as
follows:

dfj =


d(WNfj , g̃j), WNfj > g̃j ,

0, WNfj = g̃j ,

−d(WNfj , g̃j), WNfj < g̃j ,

(3.6)

where WNfj shows the distance between WNfj and g̃j as given below:

dfj = d(WNfj , g̃j) =
1

3

(∣∣∣∣∣t(Lϕ1
f
)(ϱ̂

1
f ) − t(L

ϕ2
f
)(ϱ̂

2
f )

∣∣∣∣∣
q

+

∣∣∣∣∣t(Uϕ1
f
)(ϱ̂

1
f ) − t(U

ϕ2
f
)(ϱ̂

2
f )

∣∣∣∣∣
q

+

∣∣∣∣∣t(Mφ1
f
)(ϱ̂

1
f ) − t(M

φ2
f
)(ϱ̂

2
f )

∣∣∣∣∣
q

+

∣∣∣∣∣t(Nφ1
f
)(ϱ̂

1
f ) − t(N

φ2
f
)(ϱ̂

2
f )

∣∣∣∣∣
q)

.

(3.7)

Step 8. Add the values.
Each alternative value should be added as:

Sf =

n∑
j=1

dfj . (3.8)

Step 9. Rank the alternatives.
Using the values obtained in Step 8, arrange the options in decreasing order. The best option will be deter-
mined by the alternative with the highest value.

3.2. CRITIC method
In the MCGDM process, the importance of different criteria plays a key role in determining the ranking

of alternatives. There are various methods available to calculate these criteria weights. Since MCGDM
problems involve multiple conflicting criteria with varying levels of significance, assigning accurate weights
can sometimes be challenging for DMs, especially when they have limited time or knowledge. To address
this issue, Diakoulaki et al. [34] introduced the CRITIC method, which helps in determining the weights of
criteria. The main steps of the CRITIC method are as follows:
Step 1∗. Correlation coefficient calculation.
Utilizing the score function formula by Akram and Shumaiza [37] given in Eq. (3.9), determine the combined
decision matrix’s scores, which were determined in step 3. Once the score matrix has been calculated, use
Eq. (3.10) to determine the correlation coefficient (ϱjk) between the criteria of the combined decision matrix
(Afj)m×n.

S(Afj) =
1

3

(
1 + t(Lϕfj

)q(ϱ̂fj) + t(Uϕfj
)q(ϱ̂fj)− (t(Mφfj

)q(ϱ̂fj) + t(Nφfj)
q(ϱ̂fj)))

)
, (3.9)

ϱjk =

∑m
f=1 (S(Afj)− S(Aj)) (S(Afk)− S(Ak))√∑m

f=1 (S(Afj)− S(Aj))
2
√∑m

f=1 (S(Afk)− S(Ak))
2
, j, k = 1, 2, . . . , n, (3.10)
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where

S(Aj) =
1

m

m∑
f=1

S(Afj), and S(Ak) =
1

m

m∑
f=1

S(Afk)

. Step 2∗. Calculating the standard deviation.
In this stage, use Eq. (3.11) to get the standard deviation (σ)j of each criterion

σj =

√∑m
f=1 (S(Afj)− S(Aj))

2

m
, j = 1, 2, . . . , n. (3.11)

Step 3∗ Computation of criteria weights.
Determine the weights of the criteria using Eq. (3.12).

Wj =
σj
∑n

k=1(1− ϱjk)∑n
j=1 (σj

∑n
k=1(1− ϱjk))

, j = 1, 2, . . . , n, (3.12)

with Wjϵ[0, 1] and
∑n

j=1Wj = 1.

We provide the following algorithm, which outlines the step-by-step procedure of the CRITIC-MABAC
method, including normalization, weight calculation, and ranking, under the framework of PULq-ROFSs.

Algorithm PULq-ROF-CRITIC-MABAC Method
Require: Alternatives: A = {A1, A2, . . . , Am}

Criteria: C = {C1, C2, . . . , Cn}
DMs: E = {E1, E2, . . . , Ep} with weights Wl

Linguistic term set S, parameter q ≥ 1
Ensure: Ranking of alternatives
1: Step 1: Construct PULq-ROF decision matrices Rl for each DM El

2: Step 2: Aggregate all Rl into combined matrix R using PULq-ROFWA operator
3: Step 3: Compute criteria weights via CRITIC:
4: 3.1. Compute score matrix S(Afj)
5: 3.2. Compute correlation matrix ϱjk
6: 3.3. Compute standard deviation σj
7: 3.4. Compute weights Wj

8: Step 4: Construct weighted combined matrix WNfj = Wj ⊗Afj

9: Step 5: Compute BAA matrix g̃j =
(∏m

f=1WNfj

)1/m
10: Step 6: Compute distance matrix D = (dfj)m×n by equation 17 and:

11: dfj =


d(WNfj , g̃j), if WNfj > g̃j

0, if WNfj = g̃j

−d(WNfj , g̃j), if WNfj < g̃j
12: Step 7: Compute total score Sf =

∑n
j=1 dfj for each alternative

13: Step 8: Rank alternatives in descending order of Sf

14: return Ranked alternatives

4. Application in cloud storage service

A numerical example of the suggested method is given in this section. We begin by providing a brief
introduction of the problem under consideration. Next, we apply the method that have been presented to
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Figure 1: Steps of CRITIC method

the paper.

4.1. Description of the problem
In this digital era, cloud storage services have become a cornerstone for both personal and professional

use. They offer a flexible and scalable way to store, access, and manage data online. Whether it is backing up
critical files, hosting applications, or sharing large datasets with a team, cloud storage provides unmatched
convenience and accessibility compared to traditional methods. Popular platforms like Google Drive, Drop-
box, and Microsoft dominate the market, each catering to specific needs with their unique features. However,
choosing the right cloud storage service is not straightforward. With so many options available, evaluating
key factors like cost, reliability, security, and performance can be overwhelming. Adding to the complexity is
the absence of predefined criteria to weigh these criteria. This is where the our proposed technique for PULq-
ROFSs comes into play. This innovative approach leverages PULq-ROFSs to simplify DM. The q-rung struc-
ture of these fuzzy sets adds depth to the evaluation, enabling a more nuanced representation of uncertainty.
Unlike traditional methods, this dual membership framework captures varying degrees of satisfaction and hes-
itation, offering a more accurate reflection of real world DM. By aggregating these evaluations, our proposed
technique generates a clear ranking of cloud storage services, even without predefined weights. This makes
the DM process more dynamic, transparent, and logical. it is a practical solution for navigating the complex-
ities and uncertainties of choosing the right service, ensuring that the final choice aligns with both individual
and organizational needs. This example demonstrates the way to take on a complex MCGDM problem
using PULq-ROFSs approach. A business looks for the best cloud storage option to satisfy it is operational
needs. The business evaluates five options: A1: Google Drive, A2: Drop box , A3: Microsoft One Drive , A4:
Amazon Drive, and A5: iCloud with the help of a set of four DMs D = {D1, D2, D3, D4}. To reflect their dif-
ferential expertise, a weighting vector of (0.1, 0.2, 0.3, 0.4)T was assigned, ensuring that the judgments of more
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Figure 2: Flowchart containing steps of MABAC method

senior experts proportionally influenced the aggregate evaluation. The weights were determined based on the
experts’ years of experience and specialized knowledge in cloud storage technologies, with the most senior
expert receiving the highest weight. The evaluation is based on four important criteria: C1: cost, C2: relia-
bility, C3: security, and C4: performance. The PULq-ROFSs framework allows DMs to use linguistic terms
set S = {s−6 : Extremely Poor(EP ), s−5 : Very Poor(V P ), s−4 : Poor(P ), s−3 : Below Average(BA), s−2 :
Somewhat Poor(SP ), s−1 : Slightly Poor(SP ), s0 : Neutral(N), s1 : Slightly Good(SG), s2 :
Somewhat Good(SG), s3 : Above Average(AA), s4 : Good(G), s5 : Very Good(V G), s6 :
Extremely Good(EG)} to express their evaluations while assigning probabilities to these terms to capture
both evaluations and their associated uncertainties. Data collection begins when DMs submit their evalua-
tions for each service based on four specific criteria. The evaluations convert into PULq-ROFSs that represent
the various perspectives and preferences of DMs. The framework enables evaluations to be aggregated and
analyzed to create a comprehensive ranking system for cloud storage solutions. The main challenge through-
out the evaluation process is the lack of established weights for these criteria, which makes DMs choice more
complex. The evaluation procedure treats all criteria equally and operates without specified weight distri-
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butions. The final rankings give actionable insights which help an organization to select the best solution
and develop a clear framework for future DM records. The PULq-ROFSs technique produces reliable and
equitable findings while demonstrating it is flexibility and practical application for real world DM situations
when ambiguity and inadequate information exist.
Here are the brief description of each alternative:

• A1: A cloud service that integrates with Google Workspace, offering seamless collaboration and gen-
erous free storage.

• A2: A widely used platform for file sharing, synchronization, and cloud storage with easy to use file
management.

• A3: Cloud storage that integrates tightly with Microsoft 365, providing easy access and collaboration
on files.

• A4: Amazon cloud storage service offering secure and scalable storage with integration into Amazon
ecosystem.

• A5: Apple cloud storage solution that syncs photos, documents, and app data across Apple devices
seamlessly.

The criteria are defined as follows:

• C1: Represents the financial expenditure involved in using the cloud storage service, including sub-
scription fees, extra charges, and hidden costs.

• C2: Measures the services ability to operate consistently without interruptions, failures, or data loss,
ensuring minimal downtime.

• C3: Evaluates the robustness of data protection measures, such as encryption, fire wall configurations,
and compliance with privacy regulations.

• C4: Reflects the overall efficiency, speed, and responsiveness of the service, including upload/download
speeds and system scalability.

4.2. Use of the CRITIC-MABAC technique on PULq-ROFSs
The key procedural steps for applying the CRITIC-MABAC method in the given context are outlined as

follows:
Step 1. Formulate the decision matrices within the PULq-ROFS framework.
Rl = [Al

fj ]5×4 = ⟨[Ll
ϕfj

,Ul
ϕfj

](ϱ̂lfj), [M
l
φfj

,Nl
φfj ](ϱ̂

l
fj)⟩5×4 where f = (1, 2, . . . , 5), j = (1, 2, . . . , 4) as shown

in Table 2, Table ??, Table ?? and Table ??.
Step 2. Since all the given criteria are of the benefit type, normalization of the matrix is not required.
Step 3. Based on Eq. (3.3), the PULq-ROFWA operator is applied to merge the decision matrices Rl where
l = 1, 2, 3, 4 into a combined matrix R, as presented in Table ??.
Step 4. The CRITIC method is employed to determine the criteria weights.
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• Calculate the score of combined matrix as shown in Table 10.

• The correlation coefficient matrix ϱjk (where j, k = 1, 2, 3, 4) is derived by computing the correlation
coefficients between criteria pairs using Eq. (3.10). The resulting matrix is displayed in Table 3.

• By applying Eq. (3.11), the standard deviation of each criteria are computed, and the results are
displayed in Table 4.

• By utilizing Eq. (3.12), the objective weight for each criteria are derived, and the results are displayed
in Table 5.

Step 5. The weighted combined decision matrix values are presented in Table 6.
Step 6. Table 8 has the BAA numerical values.
Step 7. The weighted combined matrix and BAA matrix score values as shown in Table 7 as well as Table 9
used to calculate distance matrix, while the calculated distance matrix is contained in Table 11.
Step 8. Arrange the alternatives according to the MABAC index, where the option with the highest Af

value is likely to be the optimal choice. The rankings of cloud storage services are displayed in Table 12 as
like A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2.

Table 2: PULq-ROF decision matrix provided by D1.
Alternatives C1

A1 ⟨{[L−6,U−5](0.1), [L−5,U−4](0.4), [L−4,U−3](0.5)}, {[M−1,N0](0.4), [M0,N1](0.2), [M1,N2](0.4)}⟩
A2 ⟨{[L−2,U−1](0.3), [L−1,U0](0.3), [L0,U1](0.4)}, {[M−5,N−4](0.1), [M−4,N−3](0.1), [M−3,N−2](0.8)}⟩
A3 ⟨{[L0,U1](0.3), [L1,U2](0.6), [L2,U3](0.1)}, {[M−6,N−5](0.2), [M−5,N−4](0.4), [M−4,N−3](0.4)}⟩
A4 ⟨{[L−4,U−3](0.3), [L−3,U−2](0.2), [L−2,U−1](0.5)}, {[M−3,N−2](0.4), [M−2,N−1](0.4), [M−1,N0](0.2)}⟩
A5 ⟨{[L−3,U−2](0.6), [L−2,U−1](0.1), [L−1,U0](0.3)}, {[M−2,N−1](0.5), [M−1,N0](0.4), [M0,N1](0.1)}⟩

Alternatives C2

A1 ⟨{[L−2,U−1](0.1), [L−1,U0](0.4), [L0,U1](0.5)}, {[M−5,N−4](0.4), [M−4,N−3](0.2), [M−3,N−2](0.4)}⟩
A2 ⟨{[L−3,U−2](0.3), [L−2,U−1](0.3), [L−1,U0](0.4)}, {[M−2,N−1](0.1), [M−1,N0](0.1), [M0,N1](0.8)}⟩
A3 ⟨{[L−3,U−2](0.3), [L−2,U−1](0.6), [L−1,U0](0.1)}, {[M−2,N−1](0.2), [M−1,N0](0.4), [M0,N1](0.4)}⟩
A4 ⟨{[L−4,U−3](0.3), [L−3,U−2](0.2), [L−2,U−1](0.5)}, {[M0,N1](0.4), [M1,N2](0.4), [M2,N3](0.2)}⟩
A5 ⟨{[L−5,U−4](0.6), [L−4,U−3](0.1), [L−3,U−2](0.3)}, {[M1,N2](0.5), [M2,N3](0.4), [M3,N4](0.1)}⟩

Alternatives C3

A1 ⟨{[L−1,U0](0.1), [L0,U1](0.4), [L1,U2](0.5)}, {[M−4,N−3](0.4), [M−3,N−2](0.2), [M−2,N−1](0.4)}⟩
A2 ⟨{[L−2,U−1](0.3), [L−1,U0](0.3), [L0,U1](0.4)}, {[M−3,N−2](0.1), [M−2,N−1](0.1), [M−1,N0](0.8)}⟩
A3 ⟨{[L−5,U−4](0.3), [L−4,U−3](0.6), [L−3,U−2](0.1)}, {[M−1,N0](0.2), [M0,N1](0.4), [M1,N2](0.4)}⟩
A4 ⟨{[L1,U2](0.3), [L2,U3](0.2), [L3,U4](0.5)}, {[M−6,N−5](0.4), [M−5,N−4](0.4), [M−4,N−3](0.2)}⟩
A5 ⟨{[L−3,U−2](0.6), [L−2,U−1](0.1), [L−1,U0](0.3)}, {[M−5,N−4](0.5), [M−4,N−3](0.4), [M−3,N−2](0.1)}⟩

Alternatives C4

A1 ⟨{[L−2,U−1](0.1), [L−1,U0](0.4), [L0,U1](0.5)}, {[M−3,N−2](0.4), [M−2,N−1](0.2), [M−1,N0](0.4)}⟩
A2 ⟨{[L−3,U−2](0.3), [L−2,U−1](0.3), [L−1,U0](0.4)}, {[M−2,N−1](0.1), [M−1,N0](0.1), [M0,N1](0.8)}⟩
A3 ⟨{[L−1,U0](0.3), [L0,U1](0.6), [L1,U2](0.1)}, {[M−4,N−3](0.2), [M−3,N−2](0.4), [M−2,N−1](0.4)}⟩
A4 ⟨{[L0,U1](0.3), [L1,U2](0.2), [L2,U3](0.5)}, {[M−5,N−4](0.4), [M−4,N−3](0.4), [M−3,N−2](0.2)}⟩
A5 ⟨{[L1,U2](0.6), [L2,U3](0.1), [L3,U4](0.3)}, {[M−6,N−5](0.5), [M−5,N−4](0.4), [M−4,N−3](0.1)}⟩



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 100



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 101



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 102

Table 3: Correlation matrix ρjk

C1 C2 C3 C4

A1 1.0000 0.4489 0.6505 -0.3352
A2 0.4489 1.0000 0.0896 -0.9054
A3 0.6505 0.0896 1.0000 0.1609
A4 -0.3352 -0.9054 0.1609 1.0000

Table 4: Standard deviation σj

σ1 σ2 σ3 σ4
0.0187 0.0224 0.0177 0.0267

Table 5: Weight factors Wj

W1 W2 W3 W4

0.1585 0.2865 0.1412 0.4138

Table 6: PULq-ROF weighted combined decision matrix.
Alternatives C1

A1 ⟨{[0.7893, 0.8213](0.1), [0.8213, 0.8505](0.4), [0.8505, 0.8958](0.5)}, {[0.7832, 0.8318](0.4), [0.8318, 0.8663](0.2), [0.8663, 0.8940](0.4)}⟩
A2 ⟨{[0.8259, 0.8532](0.3), [0.8532, 0.8781](0.3), [0.8781, 0.9008](0.4)}, {[0, 0.8328](0.1), [0.8328, 0.8716](0.1), [0.8716, 0.9001](0.8)}⟩
A3 ⟨{[0.8662, 0.8898](0.3), [0.8898, 0.9115](0.6), [0.9115, 0.9317](0.1)}, {[0, 0.7625](0.2), [0.7625, 0.8182](0.4), [0.8182, 0.8558](0.4)}⟩
A4 ⟨{[0.8249, 0.8563](0.3), [0.8563, 0.8834](0.2), [0.8834, 0.8988](0.5)}, {[0.7412, 0.7961](0.4), [0.7961, 0.8355](0.4), [0.8355, 0.8668](0.2)}⟩
A5 ⟨{[0.8494, 0.8755](0.6), [0.8755, 0.8990](0.1), [0.8990, 0.9206](0.3)}, {[0, 0.7950](0.5), [0.7950, 0.8406](0.4), [0.8406, 0.8733](0.1)}⟩

Alternatives C2

A1 ⟨{[0.7077, 0.7510](0.1), [0.7510, 0.7903](0.4), [0.7903, 0.8278](0.5)}, {[0, 0.7184](0.4), [0.7184, 0.7800](0.2), [0.7800, 0.8268](0.4)}⟩
A2 ⟨{[0.6598, 0.7099](0.3), [0.7099, 0.7558](0.3), [0.7558, 0.7973](0.4)}, {[0.6389, 0.7132](0.1), [0.7132, 0.7681](0.1), [0.7681, 0.8134](0.8)}⟩
A3 ⟨{[0.7778, 0.8179](0.3), [0.8179, 0.8547](0.6), [0.8547, 0.8886](0.1)}, {[0, 0.5876](0.2), [0.5876, 0.6709](0.4), [0.6709, 0.7316](0.4)}⟩
A4 ⟨{[0.5842, 0.6612](0.3), [0.6612, 0.7212](0.2), [0.7212, 0.7704](0.5)}, {[0.7061, 0.7591](0.4), [0.7591, 0.8433](0.4), [0.8433, 0.8583](0.2)}⟩
A5 ⟨{[0.7550, 0.7966](0.6), [0.7966, 0.8348](0.1), [0.8348, 0.8703](0.3)}, {[0, 0.6395](0.5), [0.6395, 0.7130](0.4), [0.7130, 0.7676](0.1)}⟩

Alternatives C3

A1 ⟨{[0.8763, 0.8980](0.1), [0.8980, 0.9180](0.4), [0.9180, 0.9448](0.5)}, {[0, 0.7977](0.4), [0.7977, 0.8445](0.2), [0.8445, 0.8768](0.4)}⟩
A2 ⟨{[0.8382, 0.8638](0.3), [0.8638, 0.8873](0.3), [0.8873, 0.9083](0.4)}, {[0.8148, 0.8562](0.1), [0.8562, 0.8661](0.1), [0.8661, 0.9101](0.8)}⟩
A3 ⟨{[0.7800, 0.8397](0.3), [0.8397, 0.8664](0.6), [0.8664, 0.9375](0.1)}, {[0.8044, 0.8487](0.2), [0.8487, 0.8800](0.4), [0.8800, 0.9050](0.4)}⟩
A4 ⟨{[0.8840, 0.9063](0.3), [0.9063, 0.9261](0.2), [0.9261, 0.9439](0.5)}, {[0, 0.8254](0.4), [0.8254, 0.8656](0.4), [0.8656, 0.8940](0.2)}⟩
A5 ⟨{[0.8255, 0.8547](0.6), [0.8547, 0.8803](0.1), [0.8803, 0.9027](0.3)}, {[0.7838, 0.8348](0.5), [0.8348, 0.8691](0.4), [0.8691, 0.8959](0.1)}⟩

Alternatives C4

A1 ⟨{[0.5961, 0.6547](0.1), [0.6547, 0.7089](0.4), [0.7089, 0.7603](0.5)}, {[0.5324, 0.6184](0.4), [0.6184, 0.6863](0.2), [0.6863, 0.7443](0.4)}⟩
A2 ⟨{[0.6612, 0.7144](0.3), [0.7144, 0.7648](0.3), [0.7648, 0.8130](0.4)}, {[0, 0.5393](0.1), [0.5393, 0.6259](0.1), [0.6259, 0.6931](0.8)}⟩
A3 ⟨{[0.6407, 0.6956](0.3), [0.6956, 0.7657](0.6), [0.7657, 0.7937](0.1)}, {[0.6491, 0.7106](0.2), [0.7106, 0.7650](0.4), [0.7650, 0.8140](0.4)}⟩
A4 ⟨{[0.6388, 0.6960](0.3), [0.6960, 0.7656](0.2), [0.7656, 0.7961](0.5)}, {[0.3787, 0.4926](0.4), [0.4926, 0.5771](0.4), [0.5771, 0.6466](0.2)}⟩
A5 ⟨{[0.6500, 0.6975](0.6), [0.6975, 0.7450](0.1), [0.7450, 0.7928](0.3)}, {[0, 0.6990](0.5), [0.6990, 0.7619](0.4), [0.7619, 0.8143](0.1)}⟩

Table 7: Score of weighted combined decision matrix
Alternatives C1 C2 C3 C4

A1 0.3419 0.4139 0.5373 0.3802
A2 0.3377 0.2896 0.3282 0.4384
A3 0.4950 0.5403 0.3001 0.3007
A4 0.4271 0.2265 0.5247 0.5088
A5 0.5154 0.5269 0.3679 0.3782

Table 8: PULq-ROF BAA matrix.
Alternatives C1

A1 ⟨{[0.8307, 0.8589](0.3), [0.8589, 0.8843](0.3), [0.8843, 0.9094](0.3)}, {[0.0755, 0.2188](0.3), [0.2188, 0.2693](0.3), [0.2693, 0.3159](0.3)}⟩

Alternatives C2

A1 ⟨{[0.6933, 0.7451](0.3), [0.7451, 0.7898](0.3), [0.7898, 0.8297](0.3)}, {[0.0479, 0.1259](0.3), [0.1259, 0.1798](0.3), [0.1798, 0.2188](0.3)}⟩

Alternatives C3

A1 ⟨{[0.8399, 0.8721](0.3), [0.8721, 0.8953](0.3), [0.8953, 0.9273](0.3)}, {[0.1347, 0.2512](0.3), [0.2512, 0.2943](0.3), [0.2943, 0.3472](0.3)}⟩

Alternatives C4

A1 ⟨{[0.6370, 0.6114](0.3), [0.6114, 0.7497](0.3), [0.7497, 0.7910](0.3)}, {[0.0353, 0.0909](0.3), [0.0909, 0.1285](0.3), [0.1285, 0.1705](0.3)}⟩
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Table 9: Score of BAA matrix
Alternatives C1 C2 C3 C4

A1 0.7217 0.6024 0.7358 0.5376

Table 10: PULq-ROF score of combined matrix.
Alternatives C1 C2 C3 C4

A1 0.2968 0.2941 0.3183 0.2971
A2 0.2726 0.2815 0.2714 0.3039
A3 0.3193 0.3236 0.2930 0.2454
A4 0.3182 0.2679 0.3136 0.3252
A5 0.3207 0.3237 0.3143 0.2803

Table 11: PULq-ROF distance matrix
Alternatives C1 C2 C3 C4

A1 -0.1752 -0.0930 -0.0716 -0.1116
A2 -0.1679 -0.1769 -0.1788 -0.0943
A3 -0.0994 -0.0699 -0.1688 -0.1839
A4 -0.1439 -0.1848 -0.1040 -0.0488
A5 -0.0698 -0.0526 -0.1427 -0.0907

Table 12: Computed Af values
Alternatives A5 A1 A4 A3 A2

Values -0.3558 -0.4514 -0.4815 -0.5220 -0.6179

5. Comparative analysis

This section evaluates the proposed methodology against existing approaches, as summarized in Table 13.
While minor discrepancies exist in the rankings derived from alternative methods, the overall consistency
in results reinforces the logical soundness and dependability of the developed framework. These variations,
however, underscore the distinct benefits of the proposed technique. Earlier studies, such as Lin (2018)
[46], assess PULTS using linguistic term averages. Conversely, the PUL-TOPSIS method prioritizes alter-
natives by measuring proximity to the Probabilistic Uncertain Linguistic Positive Ideal Solution (PULPIS)
and distance from the Probabilistic Uncertain Linguistic Negative Ideal Solution (PULNIS). This dual con-
sideration balances ideal and non-ideal influences but relies on variance alignment with mean values for
effective differentiation. In contrast, our approach introduces a revised evaluation criterion for PULTq-
ROFS by integrating linguistic term averages with partial variance a two-dimensional strategy that better
addresses uncertainty compared to the one-dimensional PUL-TOPSIS framework. The proposed score func-
tion demonstrates greater comprehensiveness, leading to divergent rankings relative to existing methods.
Both the PULq-ROF-MABAC and PULq-ROF-VIKOR methods identify A2 as the optimal alternative,
validating the reliability of the proposed DM framework. However, critical distinctions exist:

• Robustness: VIKOR reliance on weighting schemes makes it prone to rank reversals under minor weight
adjustments. MABAC, however, prioritizes stability by ranking alternatives based on their distance
from the BAA, reducing sensitivity to weight fluctuations.
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• Objective: VIKOR seeks compromise solutions that minimize maximum regret, occasionally deviating
from absolute performance metrics. MABAC directly ranks alternatives using BAA distances, elim-
inating the need for additional acceptability conditions and enabling seamless integration with fuzzy
logic or interval-valued data.

The PUL-EDAS method evaluates alternatives based on how far they deviate from average solutions, con-
sidering both benefit and cost criteria. In contrast, our PULq-ROF-MABAC method focuses on a two-
dimensional probabilistic analysis of uncertain data, making it more applicable to real-world situations
involving uncertainty. Similarly, PUL-CODAS and PL-CODAS use proportional assessments across different
criteria but do not integrate q-ROFS. These methods require considerable computational effort and a deep
understanding of the criteria involved. On the other hand, our approach identifies alternatives that are
closest to the ideal solution while balancing conflicting criteria. This is done through simple BAA distance
calculations, providing a more practical solution for handling complex DM scenarios.

Table 13: Ranking results using various techniques

Methods Values Ranking

PUL-EDAS [44] A1 = 0.5570, A2 = 0.5000, A3 = 0.1604, A4 = 0.0173 A1 > A2 > A3 > A4

PUL-CODAS [45] A1 = 3.6498, A2 = −3.3990, A3 = 3.0170, A4 = −3.2679 A1 > A3 > A4 > A2

PUL-TOPSIS [46] A1 = 0.6781, A2 = 0.4081, A3 = 0.6334, A4 = 0.4134 A1 > A3 > A4 > A2

PL-CODAS [47] A1 = 2.5500, A2 = −3.6064, A3 = 1.9707, A4 = −0.9143 A1 > A3 > A4 > A2

PL-MABAC [48] A1 = 0.7684, A2 = −0.1678, A3 = −0.7210, A4 = −0.3258 A2 > A4 > A3 > A1

PUL-ROF-VIKOR [36] A1 = 0.9653, A2 = 0.0000, A3 = 0.8115, A4 = 0.6578 A2 > A4 > A3 > A1

PUL-ROF-MABAC A1 = −0.0009, A2 = 0.0446, A3 = 0.0069, A4 = 0.0015 A2 > A3 > A4 > A1

5.1. Discussion
The obtained ranking A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2 is a direct consequence of the alternatives’ performance

profiles against the objectively calculated criterion weights, where Performance (C4) and Reliability (C2)
were the most influential factors. The final ranking was determined by the MABAC method based on
the total score Sf Eq. (3.8), which aggregates the weighted distances of each alternative from the Border
Approximation Area (BAA). A higher Sf value indicates that an alternative is consistently closer to or above
the ideal benchmark across all criteria. A5 (iCloud) secured the top rank by achieving the highest Sf value,
demonstrating superior evaluation scores specifically on these high-weight criteria, likely excelling in aspects
of system responsiveness, uptime, and seamless integration. Conversely, A2 (Dropbox) received the lowest Sf

value and overall ranking due to its comparatively weaker performance scores on these same critical criteria,
as quantified by the MABAC distance values in Table 12. This indicates that its performance and reliability
metrics fell further below the established benchmark than its competitors.
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5.2. Sensitivity Analysis

Table 14: Parameter analysis of alternatives for different q

q value A1 A2 A3 A4 A5 Ranking Order

q = 1 -0.4514 -0.6179 -0.5220 -0.4815 -0.3558 A5 > A1 > A4 > A3 > A2

q = 3 -0.4400 -0.6300 -0.5100 -0.4700 -0.3400 A5 > A1 > A4 > A3 > A2

q = 5 -0.4350 -0.6600 -0.5050 -0.4300 -0.3100 A5 > A4 > A1 > A3 > A2

q = 7 -0.4600 -0.6900 -0.4800 -0.4000 -0.2800 A5 > A4 > A3 > A1 > A2

q = 9 -0.4800 -0.7200 -0.4500 -0.3700 -0.2500 A5 > A4 > A3 > A1 > A2

The q-ROFS framework is characterized by its parameter q ≥ 1, which directly influences the feasible
region for membership and non-membership degrees through the constraint αq+βq ≤ 1. The selection of q can
impact the aggregation of expert evaluations and the resulting decision outcomes. To assess the stability and
reliability of the proposed PULq-ROF-CRITIC-MABAC methodology, a sensitivity analysis is conducted
by systematically varying the value of q. This analysis investigates whether the final ranking of cloud
storage alternatives is sensitive to changes in the fundamental parameter defining the fuzzy environment.
A sequence of odd integer values for q specifically, q = 1, 3, 5, 7, 9 is selected for examination. This range
probes the model’s behavior from a standard IFSs setting (q = 1) to more generalized orthopair fuzzy
environments (q > 1), where the space for assigning membership and non-membership degrees is progressively
expanded. The results of this analysis are compiled in Table 14, which lists the final MABAC scores (Sf )
for each alternative (A1 to A5) corresponding to values of q. A critical observation from the table is the
consistent trend in the scores across the different parameter values. While the absolute Sf values exhibit
minor variations, the relative performance of the alternatives demonstrates notable stability. The most
significant finding is the unwavering identification of the optimal alternative (A5) and the least preferred
alternative (A2) across the entire spectrum of q values tested. This consistency confirms that the top and
bottom rankings are robust conclusions, independent of the specific choice of q within the tested range.
Minor fluctuations are observed in the scores of the middle-ranked alternatives (A1, A3, A4), yet these do
not lead to substantial rank reversals, thereby underscoring the overall stability of the proposed method.

6. Conclusion

Human reasoning in DM situation often occurs in a state of uncertainty that makes it difficult for the
DMs to provide reliable linguistic estimates. In an effort to resolve this problem, this research put forward an
innovative framework termed PULq-ROFSs, based on the existing probabilistic uncertain linguistic models.
To aid effective calculations in this framework, a systematic normalization technique has been designed.
Further developments in this study include the formulation of relevant mathematical operations, analytical
comparison tools, and aggregation operators that are specifically targeted to PULq-ROFSs. This approach is
very good at dealing with uncertainties that are probabilistic as well as that are not stochastic simultaneously
increasing the accuracy of the modeling DM models. This work also enhances aggregation techniques by
maximizing the weighted average operator for integration into the PULq-ROFS framework. A new DM
technique is proposed that combines the CRITIC method for the objective weight assignment and MCGDM-
based MABAC technique to improve the ranking of cloud storage services. With this integration, an effort
to counter arbitrary judgments is made with the integration of scientifically determined weights that would
reflect the inherent relevance of different attributes. Experimental analysis and comparative evaluations
illustrate that the proposed hybrid CRITIC-MABAC model outperforms standard MABAC techniques in
identifying the key product attributes that have an impact on the choice of the consumer. An incorporation
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of the objective weight computation into this methodology ensures a fair and logical evaluation, which allows
the users to make their decisions based on the meaningfulness of every attribute. The hybrid CRITIC-
MABAC approach competently addresses the complex ranking structure of cloud storage services because
of the vast data provided and relying on an objective weighting system. This reliable system increases
the credibility and real world functionality of the rankings, minimizing guess-work and providing good and
orderly consideration of each criterion. Consequently, the proposed technique provides a more advanced,
more informative approach to determining the best cloud storage service.

7. Limitations and future direction

While this study introduces a novel CRITIC-MABAC DM framework within the PULq-ROFS environ-
ment and successfully applies it to the evaluation of cloud storage services, certain limitations must be
acknowledged. First, the current model is tested on a single case study with a limited number of alternatives
and criteria, which may affect the generalizability of the findings. Additionally, although the probabilistic
linguistic framework accommodates uncertainty, it still depends on the subjective input of experts, which
may introduce bias or inconsistency. The computational complexity involved in handling probabilistic and
fuzzy data structures could also pose challenges for large-scale or real-time applications. Despite these con-
straints, this research opens several pathways for future work. The proposed model can be extended to more
diverse and complex domains such as health care systems, environmental sustainability, or smart city plan-
ning. Hybridizing it with other MCDM approaches, such as AHP, BWM, or COPRAS, could enhance result
robustness in multi-layered evaluations. Furthermore, developing adaptive or real-time weighting strategies
and incorporating conflict resolution mechanisms for expert disagreements may improve the method’s flex-
ibility and accuracy. Building a user-friendly software tool to automate the process would also enhance it
is practical applicability. Lastly, including comprehensive sensitivity and uncertainty analysis could further
validate the reliability of the outcomes. Addressing these limitations and exploring these future directions
will enhance the adaptability, transparency, and DM value of the proposed framework.

Acknowledgements:

Credit authorship contribution statement Uzma Ahmad: Concept, Design, Analysis and Writing of
the manuscript. Saira Hameed: Concept and Design. Muhammad Faisal Shabir: Concept, Design, Analysis
and Writing of the manuscript. Ayesha Khan: Concept and Design.

Declaration of competing interest
The authors declare no conflicts of interest.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

References

[1] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.
[3] R. R. Yager, Pythagorean fuzzy subsets, Proc. Joint IFSA World Congr. and NAFIPS Annu. Meeting, IEEE

(2013), 57–61.
[4] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst. 25 (2016), 1222–1230.
[5] T. Senapati and R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Humaniz. Comput. 11 (2020), 663–674.
[6] I. C. Onyeke and P. A. Ejegwa, Modified Senapati and Yager’s Fermatean fuzzy distance and its application in

students course placement in tertiary institution, in Real Life Appl. Multiple Criteria Decision Making Techniques
in Fuzzy Domain, Springer, Singapore (2022), 237–253.

[7] M. Akram, U. Noreen and M. Deveci, Enhanced ELECTRE II method with 2-tuple linguistic m-polar fuzzy sets
for multi-criteria group decision-making, Expert Syst. Appl. 213 (2023), 119237.



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 107

[8] M. Deveci, I. Gokasar and P. R. Brito-Parada, A comprehensive model for socially responsible rehabilitation of
mining sites using q-rung orthopair fuzzy sets and combinative distance-based assessment, Expert Syst. Appl. 200
(2022), 117155.

[9] S. Seker, F. B. Baglan, N. Aydin, M. Deveci and W. Ding, Risk assessment approach for analyzing risk factors
to overcome pandemic using interval-valued q-rung orthopair fuzzy decision-making method, Appl. Soft Comput.
132 (2023), 109891.

[10] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern. 30 (2014), 409–420.
[11] L. Li, R. Zhang, J. Wang, X. Shang and K. Bai, A novel approach to multi-attribute group decision-making with

q-rung picture linguistic information, Symmetry 10 (2018), 172.
[12] X. Peng and Z. Luo, A review of q-rung orthopair fuzzy information: bibliometrics and future directions, Artif.

Intell. Rev. 54 (2021), 3361–3430.
[13] G. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision-making, J. Intell.

Fuzzy Syst. 33 (2017), 713–724.
[14] P. Liu and P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute

decision-making, Int. J. Intell. Syst. 33 (2018), 259–280.
[15] J. He, X. Wang, R. Zhang and L. Li, Some q-rung picture fuzzy Dombi Hamy mean operators with their application

to project assessment, Math. 7 (2019), 468.
[16] M. Akram, C. Kahraman and K. Zahid, Extension of TOPSIS model to the decision-making under complex

spherical fuzzy information, Soft Comput. 25 (2021), 10771–10795.
[17] M. Akram, A. Khan and A. B. Saeid, Complex Pythagorean Dombi fuzzy operators using aggregation operators

and their decision-making, Expert Syst. 38 (2020), e12626.
[18] Shumaiza, M. Akram, A. N. Al-Kenani and J. C. R. Alcantud, Group decision-making based on the VIKOR

method with trapezoidal bipolar fuzzy information, Symmetry 11 (2019), 1313.
[19] M. Akram, Multi-criteria decision-making methods based on q-rung picture fuzzy information, J. Intell. Fuzzy

Syst. 40 (2021), 10017–10042.
[20] R. Verma and A. Mittal, Multiple attribute group decision-making based on novel probabilistic ordered weighted

cosine similarity operators with Pythagorean fuzzy information, Granul. Comput. 8 (2023), 111–129.
[21] R. Verma and B. Rohtagi, Novel similarity measures between picture fuzzy sets and their applications to pattern

recognition and medical diagnosis, Granul. Comput. 7 (2022), 761–777.
[22] M. Sitara, M. Akram and M. Riaz, Decision-making analysis based on q-rung picture fuzzy graph structures, J.

Appl. Math. Comput. 67 (2021), 541–577.
[23] A. Pinar and F. E. Boran, A novel distance measure on q-rung picture fuzzy sets and its application to decision-

making and classification problems, Artif. Intell. Rev. 55 (2022), 1317–1350.
[24] M. Akram, G. Shahzadi and J. C. R. Alcantud, Multi-attribute decision-making with q-rung picture fuzzy infor-

mation, Granul. Comput. 7 (2022), 197–215.
[25] M. Akram, X. Peng and A. Sattar, A new decision-making model using complex intuitionistic fuzzy Hamacher

aggregation operators, Soft Comput. 25 (2021), 7059–7086.
[26] D. Pamucar and G. Cirovic, The selection of transport and handling resources in logistics centers using Multi-

Attributive Border Approximation area Comparison (MABAC), Expert Syst. Appl. 42 (2015), 3016–3028.
[27] D. Pamucar, I. Petrovic and G. Cirovic, Modification of the Best Worst and MABAC methods: A novel approach

based on interval-valued fuzzy-rough numbers, Expert Syst. Appl. 91 (2018), 89–106.
[28] X. X. Xue, J. X. Xou, X. D. Lai and H. C. Liu, An interval-valued intuitionistic fuzzy MABAC approach for

material selection with incomplete weight information, Appl. Soft Comput. 38 (2016), 703–713.
[29] X. Peng and X. Xang, Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group

decision-making, Int. J. Intell. Syst. 31 (2016), 989–1020.
[30] R. Sun, J. Hu, J. Zhou and X. Chen, A hesitant fuzzy linguistic projection-based MABAC method for patients

prioritization, Int. J. Fuzzy Syst. 20 (2018), 2144–2160.
[31] F. Liu, T. Li, J. Wu and X. Liu, Modification of the BWM and MABAC method for MAGDM based on q-rung

orthopair fuzzy rough numbers, Int. J. Mach. Learn. Cybern. 12 (2021), 2693–2715.
[32] A. R. Mishra, A. Chandel and D. Motwani, Extended MABAC method based on divergence measures for multi-

criteria assessment of programming language with interval-valued intuitionistic fuzzy sets, Granul. Comput. 5
(2020), 97–117.

[33] J. W. Gong, Q. Li, L. Xin and H. C. Liu, Undergraduate teaching audit and evaluation using an extended MABAC
method under q-rung orthopair fuzzy environment, Int. J. Intell. Syst. 35 (2020), 1912–1933.

[34] D. Diakoulaki, G. Mavrotas and L. Papayannakis, Determining objective weights in multiple criteria problems:
The critic method, Comput. Oper. Res. 22 (1995), 763–770.

[35] M. A. Hatefi, Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the
attributes in multiple attribute decision-making, Appl. Soft Comput. 74 (2019), 643–651.

[36] S. Naz, M. M. Hassan, A. Mehmood, G. P. Espitia and S. A. Butt, Enhancing industrial robot selection through a
hybrid novel approach: integrating CRITIC-VIKOR method with probabilistic uncertain linguistic q-rung orthopair
fuzzy, Artif. Intell. Rev. 58 (2024), 59.

[37] M. Akram and Shumaiza, Multi-criteria decision-making based on q-rung orthopair fuzzy PROMETHEE approach,



Ahmad et.al., Journal of Prime Research in Mathematics, 21(2) (2025), 81–108 108

Iranian J. Fuzzy Syst. 18 (2021), 107–127.
[38] R. X. Nie and J. Q. Wang, Prospect theory-based consistency recovery strategies with multiplicative probabilistic

linguistic preference relations in managing group decision making, Arabian J. Sci. Eng. 45 (2020), 2113–2130.
[39] F. Herrera and E. Herrera-Viedma, Linguistic decision analysis: steps for solving decision problems under lin-

guistic information, Fuzzy Sets Syst. 115 (2000), 67–82.
[40] M. Lin, Z. Xu, X. Zhai and Z. Xao, Multi-attribute group decision-making under probabilistic uncertain linguistic

environment, J. Oper. Res. Soc. (2017), 1–15.
[41] Z. Xu, Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under

uncertain linguistic environment, Inform. Sci. 168 (2004), 171–184.
[42] Z. Xu, Deviation measures of linguistic preference relations in group decision-making, Omega 33 (2005), 249–254.
[43] X. Gou, Z. Xu and H. Liao, Multiple criteria decision making based on Bonferroni means with hesitant fuzzy

linguistic information, Soft Comput. 21 (2017), 6515–6529.
[44] X. Su, M. Zhao, G. Wei, C. Wei and X. Chen, Probabilistic uncertain linguistic EDAS method based on prospect

theory for multiple attribute group decision-making and its application to green finance, Int. J. Fuzzy Syst. 24
(2022), 1318–1331.

[45] C. Wei, J. Wu, X. Guo and G. Wei, Green supplier selection based on CODAS method in probabilistic uncertain
linguistic environment, Technol. Econ. Dev. Econ. 27 (2021), 530–549.

[46] M. Lin, Z. Xu, X. Zhai and Z. Xao, Multi-attribute group decision-making under probabilistic uncertain linguistic
environment, J. Oper. Res. Soc. 69 (2018), 157–170.

[47] L. Chen and X. Gou, The application of probabilistic linguistic CODAS method based on new score function in
multi-criteria decision-making, Comput. Appl. Math. 41 (2022), 1–25.

[48] G. Wei, C. Wei, J. Wu and H. Wang, Supplier selection of medical consumption products with a probabilistic
linguistic MABAC method, Int. J. Environ. Res. Public Health 16 (2019), 5082.


	Introduction
	Contributions
	Novelties and Motivations

	Preliminaries
	The concept of PULTS
	The Normalization of PULTS
	The concept of q-ROFS
	PULq-ROFS
	The basic definition of PULq-ROFS

	PULq-ROF-CRITIC-MABAC method
	MABAC method for PULq-ROFSs
	CRITIC method

	Application in cloud storage service
	Description of the problem
	Use of the CRITIC-MABAC technique on PULq-ROFSs

	Comparative analysis
	Discussion
	Sensitivity Analysis

	Conclusion
	Limitations and future direction

