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Abstract

This paper investigates a class of planar differential systems characterized by a degenerate singular point.
We demonstrate that this class is Liouville integrable and explicitly derive a first integral using an Abel
equation of the second kind. Moreover, through an analysis based on the Poincaré return map, we establish
the existence of two non-algebraic limit cycles or a single algebraic limit cycle arising near the degenerate
point. The occurrence of these limit cycles is shown to depend sensitively on the system’s parameters.
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1. Introduction

In the qualitative theory of planar polynomial vector fields, key open problems include determining the
number and spatial distribution of limit cycles, distinguishing between centers and foci, commonly referred
to as the center problem and identifying corresponding first integrals. These challenges are central to the
field and remain the subject of active research (see, for example [2], [4], [6], [7], [11], [20], [21] ). Notably,
these issues are closely related to Hilbert’s 16th problem [13], which concerns planar polynomial differential
systems of degree m = max{degPm1 ,degQm2},{

ẋ = Pm1(x, y),
ẏ = Qm2(x, y),

(1.1)
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where Pm1 and Qm2 are real polynomials in the variables x and y. As usual, the dot in (1.1) denotes the
derivative concerning the independent variable t. Hilbert’s 16th problem presents considerable challenges;
therefore, in this paper, we restrict our investigation to a specific class of polynomial differential systems,
with particular focus on their integrability and the existence of hyperbolic limit cycles.
For the polynomial differential system (1.1), the polynomial vector field associated with it is

γ = Pm1(x, y)
∂

∂x
+Qm2(x, y)

∂

∂y
. (1.2)

The system (1.1) is said to be integrable on an open set Θ ⊂ R2 if there exists a non-constant, continuously
differentiable function F : Θ → R that remains constant along the trajectories of system (1.1) contained in
Θ; that is, if

γ(F) |Θ ≡ 0. (1.3)

The function F is called the first integral of the system on Θ. Moreover, F = f is the general solution of
the equation (1.3), where f is an arbitrary constant. The existence of the first integrals are of the utmost
importance for a vector field since they help to obtain the phase portrait of the system and reduce the
dimension of the system by its number of independent first integrals, for more details see for instance ([10],
[18], [22]) and references therein.

A limit cycle of system (1.1) is defined as an isolated periodic solution among the family of all periodic
solutions of the same system. If such a limit cycle lies entirely on an invariant algebraic curve, it is referred
to as an algebraic limit cycle; otherwise, it is called a non-algebraic limit cycle.

In general, the explicit expressions of limit cycles for polynomial differential systems are not known,
except in certain special cases (see, [8], [9], [17]). However, in recent years, several studies have introduced
planar nonlinear differential systems that admit explicitly known non-algebraic limit cycles. The earliest
such examples were presented in the work of A. Gasull et al. [5]. Since then, considerable attention has been
devoted to investigating the existence and coexistence of both algebraic and non-algebraic limit cycles; see,
for instance, [1], [12], [15] and [16].
This article is devoted to the study of integrability and the existence of limit cycles in a class of polynomial
differential systems, where the origin becomes a non-elementary singular point of the form{

ẋ = xQ2(x, y) +
(
x3 + xy2

)
Q4(x, y)− 2yQ6(x, y),

ẏ = yQ2(x, y) +
(
yx2 + y3

)
Q4(x, y) + 2xQ6(x, y),

(1.4)

where

Q2(x, y) = −µ
(
α2y2 + x2

)
,

Q4(x, y) =
(
δ − x2 − y2

) (
(σ − αβ)x2 − α (β − σα) y2

)
,

Q6(x, y) =
(
α2y2 + x2

) (
x2 + y2

) (
δ − 2x2 − 2y2

)
,

in which α, β, δ, µ, and σ are real constants. We prove the integrability of the system by converting it into
polar coordinates, which yields an Abel differential equation of the second kind. This approach allows us to
derive an explicit expression for a first integral. In addition, we establish sufficient conditions under which
the differential system (1.4) possesses either two non-algebraic limit cycles or a single algebraic one. These
limit cycles are explicitly constructed.

2. Main result

The main result is stated in the following theorem, which will be proved in this section.

Theorem 2.1. Let us consider the multi-parameter polynomial differential system (1.4). Then, the following
statements are valid:
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(1) The system (1.4) has the first integral:

F (x, y) =
(x2 + y2)

(
x2 + y2 − δ

)
exp

(∫ arctan y
x

0
2f0(s)
g(s) ds

) −
∫ arctan y

x

0

2f0 (s)

g(s)h(s)
ds.

where

h(θ) = exp

(∫ θ

0

2f0 (s)

g(s)
ds

)
(2.1)

f0 (θ) = −1

2
µ
(
1 + α2 +

(
1− α2

)
cos 2θ

)
(2.2)

g(θ) =
(
α2 − 1

)
cos 2θ − α2 − 1 (2.3)

(2) If −1
2µ
(
1 + α2

)
− 1

2

∣∣µ (1− α2
)∣∣ > 0, µ < 0, δ > 0, α /∈ {−1, 1} and 1 − δ2

4 < 0 Then, the system(1.4)
possesses two explicit non-algebraic limit cycles, expressed in polar coordinates (r, θ) as follows

r∗1(θ) =

√
2

2

(
δ2 +

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

,

r∗2(θ) =

√
2

2

(
δ2 −

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

,

where ϕ(θ) =
∫ θ
0

2f0(s)
g(s)h(s)ds.

3) If α ∈ {−1, 1} , δ > 0, µ < 0 and 1 − δ2

4 < 0, then system (1.4) admits explicit algebraic limit cycles,
given in Cartesian coordinates (x, y), by

(x2 + y2)2 − δ(x2 + y2) +
2

µ
= 0.

Proof. First, to determine the equilibrium points of system (1.4), we note that if (x, y) is an equilibrium
point, then it must satisfy the system of equations:{

(x, y) ∈ R2, yẋ− xẏ = −2
(
α2y2 + x2

) (
x2 + y2

)2 (
2x2 + 2y2 − δ

)}
,

includes this point, we conclude that the origin, also known as an equilibrium point is a degenerate non-
elementary singular point of the system (1.4), for the reason that the linear part of this system is identically
zero, and any other equilibrium points, if they exist are present in the equation curve’s

2x2 + 2y2 − δ = 0. (2.4)

Proof of statement (1).
The differential system (1.4), when expressed in polar coordinates, takes the following form{

ṙ = f2(θ)r
7 + f1(θ)r

5 + f0(θ)r
3

θ̇ = −r4
(
δ − 2r2

)
g(θ),

(2.5)

where

f2(θ) = −1

2

(
σ + σα2 − 2αβ +

(
σ − σα2

)
cos 2θ

)
f1(θ) = −1

2

(
2αδβ − σα2δ − σδ +

(
σα2δ − σδ

)
cos 2θ

)
f0(θ) = −1

2
µ
(
1 + α2 +

(
1− α2

)
cos 2θ

)
g(θ) =

(
α2 − 1

)
cos 2θ − α2 − 1
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The differential system (2.5) where r2 ̸= δ
2 , can be written as the equivalent differential equation

dr

dθ
=

f2(θ)r
4 + f1(θ)r

2 + f0(θ)

2r (δ − 2r2) g(θ)
. (2.6)

Via the change of variables ρ = r2, the differential equation (2.6) is transformed into the Abel equation
of the second kind (

ρ− δ

2

)
dρ

dθ
=

f2 (θ)

g(θ)
ρ2 +

f1 (θ)

g(θ)
ρ+

f0 (θ)

g(θ)
. (2.7)

With the aid of the change of variables

w =

(
ρ− δ

2

)
exp

(∫ θ

0

f2 (s)

f1 (s)
ds

)
,

the differential equation (2.7) is reducible to a Abel equation of the second kind

ww′ = E1(θ)w + E0(θ), (2.8)

where

E1(θ) =
−1

2g(θ)
(f1 (θ) + δf2 (θ)) exp

(∫ θ

0

f2 (s)

f1 (s)
ds

)
,

and

E0(θ) =
−1

2g(θ)

[
f0 (θ) +

δ

2
f1 (θ) +

δ2

4
f2 (θ)

]
exp

(
2

∫ θ

0

f2 (s)

f1 (s)
ds

)
.

The coefficients of (2.7) satisfy the functional relation

f1 (θ) + δf2 (θ) = 0,

then the general solution of Abel equation (2.7) is

ρ2(θ)− δρ(θ) = h(θ)

(
k +

∫ θ

0

2f0 (s)

g(s)h(s)
ds

)
, (2.9)

where h(θ) = exp
(∫ θ

0
2f0(s)
g(s) ds

)
and k is an integration constant for more details see ([3], [19]).

Thus, the implicit solution of differential equation (2.6) is given by

H(r, θ) = r4 − δr2 − h(θ)

(
k +

∫ θ

0

2f0 (s)

g(s)h(s)
ds

)
. (2.10)

By passing to Cartesian coordinates, we deduce that the first integral takes the form

F (x, y) =

(
x2 + y2 − δ

)
(x2 + y2)

exp
(∫ arctan y

x
0

2f0(s)
g(s) ds

) −
∫ arctan y

x

0

2f0 (s)

g(s)h(s)
ds. (2.11)

Therefore, system (1.4) is Liouville integrable, since this first integral is a function that can be expressed
through quadratures of elementary functions.
Proof of statement (2). System (1.4) exhibits a periodic orbit precisely when equation (2.6) admits a
positive solution that is 2π-periodic. This condition is equivalent to the existence of a function r(θ, r∗) such
that r(0, r∗) = r(2π, r∗) and r(θ, r∗) > 0 for all θ ∈ [0, 2π].
The implicit form of the solution r(θ, r0) of the differential equation (2.6) such as r(0, r0) = r0 > 0, is

H(r, θ) = r4 − δr2 − h(θ)
(
r40 − δr20 + ϕ(θ)

)
.
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where ϕ(θ) =
∫ θ
0

2f0(s)
g(s)h(s)ds. To ensure periodicity of a solution to system (2.5), the condition r(2π, r0) =

r(0, r0) must hold. This requirement leads to the equation:

r40 − δr20 =
h(2π)ϕ(2π)

1− h(2π)
. (2.12)

This corresponds to the value k = r40 − δr20, and allows a reformulation of the implicit solution to the
differential equation in terms of k. (2.6) as

H(r, θ) = r4 − δr2 − h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
= 0. (2.13)

Next we prove that

0 < −h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
<

δ2

4
for all θ ∈ R. (2.14)

Let ω(θ)− ϕ(θ) = δ2

4

∼
h(θ), where

∼
h(θ) = exp

(
−
∫ θ
0

2f0(s)
g(s) ds

)
.

The function ω is differentiable for all θ ∈ [0, 2π[, then we have

dω(θ)

dθ
= −δ2

4

2f0 (θ)

g(θ)

∼
h(θ) +

2f0 (θ)

g(θ)h(θ)

=
2
∼
h(θ)f0 (θ)

g(θ)

(
1− δ2

4

)
.

Since −1
2µ
(
α2 + 1

)
− 1

2

∣∣µ (1− α2
)∣∣ > 0, µ < 0 and

∣∣α2 − 1
∣∣− α2 − 1 < 0, we see that

f0(θ) = −1

2
µα2 − 1

2
µ− 1

2

(
µ− µα2

)
cos 2θ > 0

and
g(θ) =

(
α2 − 1

)
cos 2θ − α2 − 1 < 0.

Since 1− δ2

4 < 0 and
∼
h(θ) > 0 for all θ ∈ R, then2

∼
h(θ)f0(θ)
g(θ)

(
− δ2

4 + 1
)
> 0, and the function θ 7→ ω(θ) is

strictly increasing with

ω(0) =
δ2

4
<

∼
h(θ)

δ2

4
+ ϕ(θ) (2.15)

= ω(θ) < ω(2π) =
∼
h(2π)

δ2

4
+ ϕ(2π) (2.16)

for all θ ∈ [0, 2π[ .

According to (2.15), we have δ2

4 <
∼
h(2π) δ

2

4 + ϕ(2π), then

−δ2

4
(1− h(2π)) < h(2π)ϕ(2π).

Taking into account (2.15) and since 1− h(2π) > 0, it follows that

−
∼
h(θ)

δ2

4
− ϕ(θ) < −δ2

4
<

h(2π)ϕ(2π)

1− h(2π)
,

thus

h(θ)

(
−

∼
h(θ)

δ2

4
− ϕ(θ) + ϕ(θ)

)
< h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
,
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and

−h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
< −h(θ)

(
−

∼
h(θ)

δ2

4
− ϕ(θ) + ϕ(θ)

)
.

Then −h(θ)
(
h(2π)ϕ(2π)
1−h(2π) + ϕ(θ)

)
< δ2

4 for all θ ∈ R.
On the other hand, it can be shown that ϕ(θ) < 0, h(θ) > 0 and for all θ ∈ R and 1−h(2π) > 0 we have

−h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
> 0.

From equation (2.13), we obtain the following expression:

r4 − δr2 − h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
= 0.

By applying the substitution ρ = r2, this equation reduces to:

ρ2(θ)− δρ(θ)− h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
= 0. (2.17)

The discriminant of (2.17) is △ = δ2 + 4h(θ)
(
h(2π)ϕ(2π)
1−h(2π) + ϕ(θ)

)
.

Since

−h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
<

δ2

4
,

it follows that the discriminant ∆ > 0 for all θ ∈ R. Therefore, equation (2.17) has two distinct real
solutions. The roots are given by:

ρ =
1

2

(
δ +

√
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

))
.

or

ρ =
1

2

(
δ2 −

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

)
.

Returning to the change of variables, we deduce

r∗1(θ) =

√
2

2

(
δ2 +

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

, (2.18)

r∗2(θ) =

√
2

2

(
δ2 −

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

, (2.19)

where ϕ(θ) =
∫ θ
0

2f0(s)
g(s)h(s)ds.

From equation (2.12), there exist two distinct values for which the condition r(0, r0) = r0 holds,

τ∗
1

=

√
2

2

(
δ2 +

(
δ2 + 4

(
h(2π)ϕ(2π)

1− h(2π)

)) 1
2

) 1
2

,

τ∗
2

=

√
2

2

(
δ2 −

(
δ2 + 4

(
h(2π)ϕ(2π)

1− h(2π)

)) 1
2

) 1
2

,

which are solution of r40 − δr20 = h(2π)ϕ(2π)
1−h(2π) .
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Next we prove that r∗i (θ) > 0, for i = 1, 2, for all θ ∈ R. Indeed since 0 < −h(θ)
(
h(2π)ϕ(2π)
1−h(2π) + ϕ(θ)

)
< δ2

4 ,

and δ > 0 and we have

−δ2 − 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
> −δ2,

which implies δ >
(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)
1−h(2π) + ϕ(θ)

)) 1
2
, hence

δ −
(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

> 0,

and

δ +

(
δ2 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

> 0.

Therefore r∗i (θ) > 0, i = 1, 2, one can see that r∗i (θ), i = 1, 2 are 2π−periodic, since ϕ and h are 2π−
periodic
To demonstrate that this periodic solution constitutes a limit cycle, we consider the following:

r∗1(θ, ξ) =

√
2

2

(
δ2 +

(
δ2 + 4h(θ)

(
ξ4 − δξ2 + ϕ(θ)

)) 1
2

) 1
2
,

r∗2(θ, ξ) =

√
2

2

(
δ2 −

(
δ2 + 4h(θ)

(
ξ4 − δξ2 + ϕ(θ)

)) 1
2

) 1
2
,

where ξ4 − δξ2 = h(2π)ϕ(2π)
1−h(2π) , and introduce the Poincaré return map ξ 7→ Π(2π, ξ) = r∗

i
(2π, ξ), i = 1, 2, for

more details see [18].

We compute
dr∗i (2π, ξ)

dξ

∣∣∣∣
ξ=τ∗

i

, i = 1, 2 at the value ξ = τ∗
i
, i = 1, 2, we find that

dr∗1(2π, ξ)

dξ

∣∣∣∣
ξ=τ∗

1

=
h(2π)

(
4τ3∗

1
− 2δτ∗

1

)(
δ2 + 4h(2π)

(
τ4∗
1
− δτ2∗

1
+ ϕ(2π)

))−1
2

(
δ2 +

(
δ2 + 4h(2π)

(
τ4∗
1
− δτ2∗

1
+ ϕ(2π)

)) 1
2

) 1
2

,

and

dr∗2(2π, ξ)

dξ

∣∣∣∣
ξ=τ∗

2

=
h(2π)

(
2δτ∗

2
− 4τ3∗

2

)(
δ2 + 4h(2π)

(
τ4∗
2
− δτ2∗

2
+ ϕ(2π)

))−1
2

(
δ2 −

(
δ2 + 4h(2π)

(
τ4∗
2
− δτ2∗

2
+ ϕ(2π)

)) 1
2

) 1
2

,

where

τ∗
1

=

√
2

2

(
δ2 +

(
δ2 + 4

(
h(2π)ϕ(2π)

1− h(2π)

)) 1
2

) 1
2

.

τ∗
2

=

√
2

2

(
δ2 −

(
δ2 + 4

(
h(2π)ϕ(2π)

1− h(2π)

)) 1
2

) 1
2

.

Taking into account (2.14), we deduce that

dr∗i (2π, ξ)

dξ

∣∣∣∣
ξ=τ∗

i

̸= 1, i = 1, 2.
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It follows that the limit cycles of differential equation (2.6) are hyperbolic. For additional details, refer
to [18].

It remains to establish that the limit cycles are non-algebraic. In the phase plane, all trajectories
of system (1.4) are described by the level curves of the first integral F (x, y). In particular, the limit
cycles correspond to the level sets F (x, y) = r0, where r0 is determined by condition (2.12). Suppose, by
contradiction, that a limit cycle is algebraic. Then F (x, y) would necessarily be a polynomial. Consequently,

there must exist an integer n such that the partial derivative
∂nF

∂xn
vanishes identically. However, this is not

the case. The function F (x, y) contains transcendental terms, such as

exp

(∫ arctan( y
x)

0

2f0(s)

g(s)
ds

)
,

which persist under differentiation of any order. As a result, F (x, y) cannot be a polynomial, implying that
the limit cycles are non-algebraic.
Clearly the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

F (r, θ) = r4 − δr2 − h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)
, (2.20)

is not algebraic, due to the expression θ → h(θ)
(
h(2π)ϕ(2π)
1−h(2π) + ϕ(θ)

)
. More precisely, in Cartesian coordinates

the curve defined by this limit cycle is

F (x, y) =
(
x2 + y2

)2 − δ
(
x2 + y2

)
− h(arctan

y

x
)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(arctan

y

x
)

)
= 0.

If the limit cycle is algebraic this curve must be given by a polynomial, but a polynomial F (x, y) in the

variables x and y satisfies that there is a positive integer m such that
∂mF

∂xm
= 0 and this is not the case

because in the derivative
∂F

∂x
appears again the expression

h(arctan
y

x
)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(arctan

y

x
)

)
,

which is already present in F (x, y), and continues to appear in its partial derivatives of all orders.
Proof of statement (3). If we take α ∈ {−1, 1} in (2.17), we obtain ρ2(θ)− δρ(θ) = − 2

µ . Reverting to the
original variables, we obtain the relation

r4(θ)− δr2(θ) = − 2

µ
.

By transforming back to Cartesian coordinates (x, y), this yields the expression

(x2 + y2)2 − δ(x2 + y2) +
2

µ
= 0.

This concludes the proof of statement(3).

Example 2.2. When α = 1
4 , µ = σ = −1, δ = 4, β = −2, system (1.4) reads{
ẋ = xQ2(x, y) +

(
x3 + xy2

)
Q4(x, y)− 2yQ6(x, y),

ẏ = yQ2(x, y) +
(
yx2 + y3

)
Q4(x, y) + 2xQ6(x, y),

(2.21)

where
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Q2(x, y) =

(
1

16
y2 + x2

)
.

Q4(x, y) =
(
4− x2 − y2

)(
−1

2
x2 +

7

16
y2
)
.

Q6(x, y) =

(
1

16
y2 + x2

)(
x2 + y2

) (
4− 2x2 − 2y2

)
.

The assumptions in statements (1) and (2) of Theorem 1 are readily satisfied. Consequently, system (2.21)
admits two non-algebraic limit cycles, as illustrated in Figure 1. Their explicit expressions in polar coordi-
nates (r, θ) are given by:

r∗1(θ) =

√
2

2

(
16 +

(
16 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

.

r∗2(θ) =

√
2

2

(
16−

(
16 + 4h(θ)

(
h(2π)ϕ(2π)

1− h(2π)
+ ϕ(θ)

)) 1
2

) 1
2

.

where ϕ(θ) =
∫ θ
0

2f0(s)
g(s)h(s)ds, f0 (θ) =

1
2

(
17
16 + 15

16 cos 2θ
)
, g(θ) = 15

16 cos 2θ −
17
16 , and h(θ) = exp

(∫ θ
0

2f0(s)
g(s) ds

)
.

3. Conclusions

In this work, we introduced and studied a class of planar polynomial differential systems exhibiting a
degenerate singularity. By appropriately choosing the system parameters under the conditions stated in
Theorem 1, we derived an explicit expression for a first integral, thereby enabling a qualitative description
of the system’s trajectories an essential step in the global analysis of dynamical systems. Furthermore, we
established sufficient conditions under which the system admits either two distinct non-algebraic limit cycles
or a single algebraic limit cycle. These limit cycles were presented in explicit form.

Figure 1: The phase portrait in the Poincaré disc of the system (2.21).
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[7] J. Giné, M. Grau and J. Llibre, Criteria on the existence of limit cycles in planar polynomial differential systems, Expo.

Math 40(2022)1049-1083. 1
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