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Abstract

This paper investigates traveling wave solutions for singularly perturbed fractional KdV equation and KdV—
Burgers equation with a linear confinement term using Caputo fractional derivatives of order a € (3,4).
Using the tanh method, we first derive exact solutions for the classical cases, recovering the well-known
hyperbolic secant soliton for the KdV equation and a tanh-profile solution for the KdV-Burgers equation
with confinement term. For the singularly perturbed cases, we employ matched asymptotic expansions to
construct solutions that capture both the localized wave core and the algebraic decay in the outer region
induced by the fractional derivatives. The inner case retains the classical soliton structure, and the outer
solution exhibits a power-law tail of order ¢3~%, reflecting the nonlocal effects of fractional derivatives.
Our main results reveal that the fractional perturbation modifies the wave’s decay behavior, giving rise to
nonlocal effects absent from the classical formulation.
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1. Introduction

Nonlinear wave equations such as the KdV and KdV-Burgers equations are foundational models in
dispersive and dissipative wave dynamics. The standard KdV equation

wi + dwwy + YWgge = 0
describes solitons in shallow water and plasma systems [30], and the KdV-Burgers equation

*Corresponding author
Email addresses: igbal501@hotmail.com (Igbal Jebril), zzdahmani@yahoo.fr (Zoubir Dahmani)

Received : 01 August 2025; Accepted: 24 September 2025; Published Online: 30 September 2025.



I. Jebril, Z. Dahmani, Journal of Prime Research in Mathematics, 21(2) (2025), 25-36 26

includes viscous dissipation and models phenomena such as shock waves in gas dynamics and traffic flow
[18].

Analytical techniques such as the Tanh method and inverse scattering yield explicit traveling wave solutions:
the classical squared hyperbolic secant soliton for KdV [29], and tanh-type or kink profiles for KdV-Burgers
[11]. These results demonstrate a rich wave structure formed by the interaction of non-linearity, dispersion,
and dissipation.

To capture memory effects and nonlocal interactions, fractional problems have been developed across a
broad range of differential equations, including but not limited to the KdV and KdV-Burgers equations.
These models replace classical integer-order derivatives with the Caputo fractional derivative of order o > 0,
enabling the description of anomalous diffusion, long-range dependence, and history effects; see [5, [6, 17].
In the context of nonlinear wave dynamics, fractional versions of the KdV and KdV-Burgers equations
extend the classical models by incorporating anomalous dispersion and dissipation, with applications in
viscoelastic materials, porous media, and anomalous diffusion processes [10, 13]. Meanwhile, fractional
differential equations of other types, not necessarily wave-based, also benefit from this fractional framework
to model complex physical and engineering systems governed by nonlocal and memory-dependent processes.
Several studies have investigated fractional KdV-type equations using different analytical and computational
methods. H. Thabet et al. [27] introduced an approximate-analytical method to obtain traveling wave
solutions of the following fractional modified KdV equations in the Caputo sense:

Diu(zx,t) — a(u(az,t))Qum(x,t) + Uggz(x,t) =0, z€R, >0,

where « is a constant.
Then, K. Shehzada et al.[25] studied the generalized perturbed fractional KdV equation with a power-law
kernel:

SDIY(x,t) + aYo(x,t) +bY (2, )Tz, t) + ¢ Yoge(z,t) =0, 7€ (0,1],

where, CD? denotes the Caputo fractional derivative of order . By employing the Shehu transform and
decomposition approach, the authors derived bright, dark-bright, and other soliton-type solutions.
In parallel, M.M. AlBaidani et al. [3] focused on the fractional forced KdV equation with non singular
Caputo—Fabrizio and Atangana—Baleanu—Caputo derivatives, using the Natural decomposition and Natural
transform methods to obtain convergent series solutions that highlight the influence of nonsingular kernels
on wave propagation.
C. Pawar et al. [22] applied two different decomposition techniques to study a mixed fractional KdV-Burgers
equation. Some comparisons of approximate solutions have also been presented.
Very recently, N.S. Alharthi [4] examined the following fractional KdV-Burgers equation in the Caputo
sense:

CDiw(k, 1) = 6w(k, T)we (K, T) — Wer (K, 7), 0<e < 1.

Combining hybrid integral transforms, the author derived series-type solutions validated by numerical sim-
ulations.

In contrast to the above cited works, the present study treats the singularly perturbed case for a € (3,4),
where the appearance of algebraic tails requires a matched asymptotic expansion that explicitly separates
an internal core from an external nonlocal contribution.

A particular scenario arises when fractional terms are singularly perturbed. Such problems involve layers or
multiple spatial scales and are addressed via matched asymptotic expansions (MAE), which construct inner
and outer approximations and match them in an overlapping region [16]. The MAE method is established
in the classical singular perturbation theory [9, [19], and its application in fractional settings, especially for
space-fractional problems with a € (3,4), is still emerging. Most works focus on integer-order or time-
fractional cases, or rely on numerical/series methods without an analytical matched expansion [I] 2].
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Despite increasing interest in fractional models, the analytical study of singularly perturbed fractional wave
equations is still lacking. This is a significant gap in nonlinear dynamics, where nonlocality and memory
effects have a major impact on wave propagation and structure. Classical KdV-type models do not capture
these features, and traditional tools are not well equipped to handle the complexities introduced by frac-
tional derivatives. This study addresses that gap by extending the MAE technique to fractional dispersive
problems, offering new insights into how wave structures behave in the presence of strong nonlocal effects.

In this paper, we analyze traveling waves for the singularly perturbed space-fractional KdV equation and
the KdV-Burgers equation with linear confinement term, involving Caputo derivatives of order o € (3,4):

scDgw + dwy + Ywwy + Pwerr =0, a € (3,4) (1.1)

and
D% 4 wy + dww, + Py + YWaze + pw =0,  a € (3,4). (1.2)

Here, © D¢ denotes the fractional Caputo derivative of order o € (3,4) with respect to space [23], and ¢ is
a small positive parameter.

We first recover classical hyperbolic secant and tanh-type solutions via the tanh method when ¢ = 0. For
e > 0, we apply the MAE to derive inner solutions, outer solutions, and composite solutions that connect
the two regions. Our work shows that when using fractional dispersion, the solutions impose long-range
algebraic tails that decay slowly.

2. First Results: Singular Perturbed KdV

2.1. Tanh Method for Reduced Problem
In this section, we focus on (|1.1)) for the classical cases = 0. We have the following equation:

ows + Ywwy + BWegr = 0, (2.1)

where, §,v and [ are real constants.
We study traveling wave solutions using the tanh method.
For this method, we assume a solution of the form:

w(z, t) =W(E), &=uz—ct, (2.2)

where, ¢ is the wave speed.

Substituting (2.2)) into the classical KAV equation (2.1)), we get:
S(—cW) +AWW' + BW" =0 = —coW +yWW' + W" =0.

This is the ordinary differential equation to solve for W (¢).
We express W (¢) as follows:

n

W (€) = axtanh® (). (2.3)

k=0
To determine n from ({2.3), we balance the nonlinear term WW’ (which gives a term of order 2n + 1) and
the highest derivative W (which gives a term of order n + 3):

2n+l1l=n+3 = n=2.

Thus, we have the following
W(€) = ap + aj tanh(¢) + ap tanh?(¢). (2.4)

Using the identities:

;lgtanh(g) = sech?(¢), jgsech2(£) = —2sech?(¢) tanh(¢),
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and by (2.4)), we obtain the following derivatives:

W'(€) = ay sech?(€) + 2a tanh (&) sech?(¢),
W"(€) = —2ay sech?(€) tanh(€) + 2agsech? (€) — 4ag sech?(€) tanh?(€),
W (€) = —2a; sech?(€)(1 — 2tanh?(€)) — 8ag sech?(¢) tanh(€)
+ 8ag sech(€) tanh(€) + 8ay sech?(€) tanh3(€).

Substituting W, W', and W', we get:
—cW' +yWW' + BW" = 0.
Coefficient of tanh?(¢):
86

va3 —8Baz; =0 = ap=—.
Y

Coefficient of tanh?(¢):
yarag — 2pa; = aj(yaz —26) =0 = a3 =0.

Coefficient of tanh(¢):
—cday + yapay — 2Pa; = 0 (trivially satisfied since a1 = 0).

To obtain a localized solution, we require:

ag+as =0 = aoz—%.
8
Thus, the final form is given by:
W(¢) = —8’5 + 85tanh2(§) = 85(tanh2(§) —-1)= —iﬁsechz(g). (2.5)

For completeness and to compare with the classical soliton form commonly found in the literature, we note
the equivalent expression:

w(z,t) = 12’yﬁsech2 ( g(a: — ct)) , c= % (2.6)

2.2. Perturbed Problem

We analyze the singular perturbed KdV equation (1.1).
The form (2.2)) leads to the equation:

e“DEW — c6W' + yWW' + BW"” = 0. (2.7)

We use matched asymptotic expansions [20] to construct a uniform approximation. So, we have the following
steps:

2.2.1. Inner Region Ezrpansion
In the inner region, (i.e. near the core of the wave), we use a regular asymptotic expansion as follows:

W (&) = Wo(€) +eWi(€) + O(e?). (2.8)
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Leading Order:. The leading-order equation is obtained by taking e = 0 in (2.7)). So,
—cdWi + yWoW{ + W = 0. (2.9)

Equation ([2.9) is the classical KdV equation in traveling wave form. As shown earlier, one solution is the
expression derived using the tanh method, given in (2.5)). Alternatively, a well-known solitary wave solution
can be written as:

Wo(€) = 1275566 h? ( Zgg) . with ¢ = %, (2.10)

which corresponds to (2.6)) expressed in terms of traveling wave variable &.

First-Order Correction:. The equation for Wi () introduced in (2.8)) is given by:
L[W1] = —=“DgWy,

where,
LIWh] := —edW1 + ~(WoW{ + WiWg) + BW{".
The source term —CD?WO presents the following asymptotic behavior:
14—« +
C na § ) € — 0 )
DgW, ~
3 0(6) {‘5a+37 5 — 400,
which induces algebraic tails in Wy ().

2.2.2. Outer Region Expansion
In the far field, the leading-order solution Wy is negligible, so we assume the form:

W(E) ~e®rp(€), [¢]> 1.
Substituting into and retaining the leading-order terms yields the following:
e CDEp — ot - = 0.
So we have kK = 1, and then we can write:
“Dge ~ 0.
Motivated by the decay of the source term in the inner region, we adopt:

90(5) ~ Cg_av so that Wouter(é) ~ 5§_a-

2.2.3. Composite Approximation and Matching

Since the first-order inner correction Wi has matching asymptotics:
& =0,
£, €= oo,

p—

so, we define the composite approximation as:

Wcomp(g) = WO(&) + EWImatCh(g)' (211)
One possible form for Wmath(¢) can be given as follows:
Wb (€) & Cot? ™ sec h(§), (2.12)

which satisfies both asymptotic limits and decays at infinity.
Therefore, using (2.10)), (2.11)) and (2.12]), the final composite solution is:

Weomp (€) ”f sec B2(€) + £Cat ™ sec h(E), Co =

6dc

Ta—a (2.13)



I. Jebril, Z. Dahmani, Journal of Prime Research in Mathematics, 21(2) (2025), 25-36 30

Interpretation

The singular perturbation generates algebraic tails in the wave profile due to the nonlocal contribution of
the Caputo fractional derivative. The composite solution captures both the localized soliton structure
in the inner region and the algebraic decay in the outer region. The presence of the fractional term introduces
a long-range memory effect that alters the tail structure of the classical KdV soliton.

2.8. Discussion on the Existence of an Fxact Solution

The matched asymptotic expansion conducted in Section 2.2 presents a strong heuristic tool for the
structure of the solution to , characterized by a soliton core and algebraic tails.
A rigorous and natural question arises: Does an exact solution Wexact(§) to problem exist, and under
what conditions? This discussion presents the main mathematical challenges, such as the need for function
spaces to handle the algebraic tails, the properties of the fractional source term, and the invertibility of the
linearized operator for a rigorous existence proof, thereby providing a solid conceptual foundation for our
asymptotic results.
The literature on singular perturbation theory for differential equations [8| 20}, 21] suggests that the existence
of such a solution can be established under the following considerations:
Perturbation parameter and connection to Tikhonov’s theorem: The asymptotic expansion
is formal. For classical singularly perturbed ordinary differential equations, the theorem of Tikhonov [2§]
provides the conceptual framework for establishing the existence of a solution and its convergence to the
reduced solution. Extending this framework to fractional differential equations, where the non-local nature
of the derivative alters the stability analysis and the layer phenomena, is a non-trivial challenge and an
active area of research. Thus, for our fractional problem, ¢ must be sufficiently small for a prospective
generalization of such theorems to apply, or for alternative methods like fixed-point theorems to be valid.
Decay and regularity of the leading-order solution: The construction of Wy and the properties of the
Caputo derivative require that W is sufficiently smooth and decays rapidly. The solution satisfies
these requirements, being a C*° function with exponential decay.
Behavior of the fractional source term: The existence theory for W;p relies on the properties of
—CD?WO. Its complete asymptotic behavior is given by:

CDEWH(§) ~ €, €07,
CDEWH(E) ~ €T3, € +oo.

This dual behavior necessitates working in appropriate weighted function spaces to handle both the singu-
larity at zero and the slow algebraic decay at infinity [15].

Functional setting and linearized operator: A rigorous proof of existence would involve working in a
function space that accommodates both the exponential decay of the soliton core and the algebraic decay
of the tails. The invertibility of the linearized operator L around Wy, defined by:

L[V] = —csV' + y(WoV' + VW() + V",

in such a space is a critical step that is often addressed using spectral theory or Lyapunov-Schmidt reduction
[24, 26]. The non-local nature of the fractional derivative adds significant complexity to this analysis.
Under these conditions, the solution Weomp(&) constructed in is expected to be the first-order ap-
proximation of a true solution Wexact(§). A rigorous analysis, which is the objective of our ongoing work,
has two main thrusts: establishing existence for a fixed ¢ > 0, most naturally via a fixed-point argument
applied to the equivalent integral formulation of ; and extending the framework of Tikhonov theorem to
justify the convergence to the reduced solution as € — 0 in this fractional context. The core challenges lie in
defining the appropriate weighted function spaces and proving the required properties of the corresponding
non-local operators for both approaches.

The same rigorous considerations apply to the existence of a solution for the singularly perturbed KdV-
Burgers equation with confinement term discussed in Result 2. While the specific governing equation and
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the resulting linearized operator differ, the comprehensive framework to proving existence remains identical.

2.4. Stability Considerations

The dynamical stability of the constructed traveling waves is a crucial aspect of their physical relevance.
Our asymptotic framework provides a basis for a stability argument for both the fractional KdV soliton
(Result 1) and the fractional dissipative wave (Result 2).

For the fractional KdV soliton Weomp(£) in (2.13), the argument is based on regular perturbation theory.
This solution constitutes a small, regular perturbation of the classical KAV soliton Wy(&), which is well-
known to be spectrally stable [12),[14]. The linearized operator around Weomp is a perturbation of the operator
linearized around this stable core. Since the stability of the KdV soliton is robust under sufficiently regular
and small perturbations [7], this suggests that for a very small €, the essential spectrum is only mildly altered
and remains in the left half-plane, and then no new unstable point spectrum emerges from the origin.

For the wave in ( of page 12), the stability argument is more nuanced due to the presence of dissipation
(Bwy,) and confinement (pw) in the considered equation. The dissipative term generally enhances stability
by suppressing perturbations. The leading-order wave Wy (&) in this case is often a stable traveling wave.
The small fractional correction eW7 () is thus a perturbation to a already stable solution. The combination
of dissipative and confining mechanisms, supplemented by the small nonlocal term, suggests the overall
stability of the composite wave.

In both cases, the primary effect of the fractional term is not to destabilize the wave but to modify its
asymptotic structure, replacing exponential decay with a power-law tail. This long range interaction is a
fundamental feature of the fractional problems. A rigorous spectral analysis is non trivial due to the nonlocal
nature of the fractional operator and the need to work in function spaces that account for algebraic decay.
Such an analysis represents a significant and separate challenge in the field of nonlocal PDEs. However, the
perturbative considerations presented here provide a heuristic argument for the dynamical relevance of the
asymptotic solutions we have constructed.

3. Second Result: Singular Perturbed KdV-Burgers with Term Confinement

3.1. Tanh Method for Reduced Problem

We consider the singularly perturbed fractional KdV-Burgers equation ((1.2)) with a confinement term,
in the case € = 0:
wy + dwg + PWez + YWaze + pw = 0. (3.1)

We look for traveling wave solutions of the form:
w(z,t) =W(E), {=x-—ct,
which transforms equation (3.1)) into the ODE:
—cW' + dWW' + BW" + AW + uW = 0. (3.2)

As before, we can write:

W(€) = ap + ay tanh(€) + ap tanh? (),
which implies:
W' (&) = a1 sec h?(€) + 2as tanh(€)sec h2(€),

W (&) = —2a; tanh(€) sec h?(€) + 2az sec h(€) — 4ay tanh?(€) sec h2(€),
W" (&) = —2ay sec h4(§) + 4aq tanh? (&) sec h2(§) — 8ag tanh(&) sec h4(§) + 8as tanh® (&) sec h2(§).
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Substituting into (3.2)), and collecting terms, we obtain the following algebraic system:

— cay + 2daga; — 2vay + pap =0,

— 2cag + da% + 2dagas — 2Ba1 — 8yas + pas = 0,
3dajas — 68as + 6va; = 0,

2da3 + 16yay = 0.

8.1.1. Special Case: v =10
When ~ = 0, some straightforward calculations lead to the following form of the solution

W(E) = % + ay tanh(€), (3.3)
where aq solves the quadratic:
o B+4/82 — @
1= d .

3.2. Perturbed Problem

We investigate the singularly perturbed fractional KdV-Burgers equation with a confinement term (|1.2))
to obtain the ODE of fractional order:

e“DYW — W'+ dWW' + BW” + W + uW = 0. (3.4)

This equation models traveling waves under the combined effects of nonlinearity, dispersion, dissipation,
fractional memory, and confinement.

3.2.1. Inner Region Ezrpansion
We try to postulate a regular expansion:

W (&) = Wo(&) +eWi(€) + O(e?). (3.5)

Leading Order:
In leading order, the quantity Wy of (3.5]) satisfies the following;:

— W+ dWoW + BWE + WY + uWo = 0.

This is the ODE associated to the classical KdV-Burgers equation with a confinement term.
We consider the quantity:
Wo(€) = aop + a1 tanh(§).

This form is motivated by the structure of solitary waves and yields algebraically solvable coefficients (see
reduced problem analysis).
First-order Correction
The correction W1 () of satisfies:
LIW1] = -“Dg¢Wy,

where

LIW1] = —cW{ + d(WoW{ + WiW) + WY + AW + uWy.

The term —CD?WO is singular due to the fractional nature of the derivative.
For o € (3,4), the Caputo derivative of Wy verifies:

g, £ 0T,

C Nna ~
Dewo() {ga, £ = +oo.
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This result follows from the following definition:

Cpewey— L ¢ W)
DSWO(f)_F(4—a)A g _ dS?

where

e Near £ =0T, W(§4)(s) ~ const, leading to

3 3 54704
/0 (& —s) @ ds = /0 w3y = Y

e As & — 400, WO(4) (€ —n) ~e 2 and

€ e2n
CDEWy () ~ e % /0 oy~

These behaviors explain the algebraic tails in Wj. They reflect the memory effects of the Caputo derivative.

3.3. Outer Region Expansion

Far from the wave core, W is small. We assume that:

W(&) ~ e"o(S),
and substitute in (3.4), we obtain the following:
€1+KCD?¢)*C€H¢,+H€R¢+"':0.

Attempting to directly balance the leading order terms by equating e't* = ¢* implies 1 + x = &, which is
clearly impossible. Therefore, a different dominant balance must be sought.
Instead, we focus on balancing the fractional derivative with the dispersion term ~v¢” or the confinement

term p¢. Choosing to balance
€ CD?¢ ~ ’Y(;S”/

leads to the scaling law:

PE) ~ 7Y = Woyger(€) ~ €372,

This reveals that the outer solution decays algebraically rather than exponentially. Such slow decay is
characteristic of fractional differential operators and reflects the nonlocal behavior they induce. These tails
signify that the influence of the wave extends far from its core, a fundamental feature of systems governed
by fractional dynamics.

3.4. Composite Approximation and Matching
The inner solution Wy dominates near £ = 0, where CD?WO ~ €47 due to the behavior of the integral

kernel. However, the outer tail is governed by the decay of Wi, which matches with €3~ to balance the
far-field behavior of the Caputo derivative.

“DEpE) ~ ") = (&)~

We construct the composite solution:

Wcomp(f) = WO(f) + 5Wmatch<f)a (3'6)
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where the matching correction satisfies:
Wmatch(ﬁ) ~ Cag?)_ae_)\‘gl- (37)

It combines both the algebraic tail and a decaying exponential envelope (due to matching or smoothing the
transition between regions). Thus, substituting (3.3)) and (3.7)) in (3.6)), the final composite approximation
is:

Weomp (€) ~ % + aj tanh(€) + eCr&3 e Nel, (3.8)

where C, is determined by asymptotic matching.

Interpretation The approximation reveals the interaction of confinement with fractional dispersion
and dissipation. The algebraic tail €3¢ is a signature of the Caputo memory effect at infinity, and the local
behavior CD?WO ~ €47 near £ = 0 arises from the singularity of the Caputo kernel.

Figure 1: Wcomp(§) pour différents a et ¢

12

10

©
¢ o
S
4
2t
— =35, £=0.1
== a=35 =04
— a=38, £=0.1
0 == a=38,¢=04
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
€
Figure 1: Comparison of velocity profiles U(¢) for different e.
Figure 2: Wcomp(€) :% +artanh(&) + eC,E3 -2~
3.0 3
]
1
1
2.5 !
]
"
2.0 Il1
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) 15
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T 10

0.5

00 — a=35,£=01

== a=35,£=04
—— a=38, =01
== a=38,£=04

—10.0 -7.5 -5.0 =25 0.0 25 5.0 7.5 10.0

Figure 2: Comparison of velocity profiles U(¢) for different e.

4. Numerical Results and Interpretation

Interpretation of Figure 1:
Figure 1 shows the transformation of soliton behavior under fractional Caputo effects. The exponential
decay of KdV soliton is replaced by algebraic tails that decay as £&*~®. For a = 3.5, the slower decay
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(¢679%) indicates stronger long-range interactions, where wave energy persists over greater distances due to
the memory effects of the Caputo fractional derivative. In contrast, a = 3.8 presents faster decay (£702),
approaching classical behavior as the fractional order approaches the integer limit. This transition shows
how « can contros the degree of non locality in the problem.

The parameter € governs the amplitude of fractional corrections while preserving the soliton core structure.
Smaller values (¢ = 0.1) maintain proximity to the classical soliton, but larger values (¢ = 0.4) enhance
the algebraic tails and modify the wave profile. This behavior confirms that fractional derivatives introduce
wave interactions.

Interpretation of Figure 2:

Figure 2 presents the interplay between fractional effects, dissipation, and confinement. The solution
exhibits a tanh-profile transitioning between different background levels, dominated by </ 4 a1 tanh(§).
The fractional contribution eCa§3*O‘e*/\‘5 | introduces algebraic corrections that compete with the exponential
localization from the confining potential. For o = 3.5, nonlocal effects create more extended wave profiles,
but a = 3.8 yields better localized solutions due to weaker fractional interactions.

The combination of dissipation and confinement produces asymmetric wave profiles distinct from the pure

KdV case. This behavior shows how Caputo derivative modifies wave propagation .

5. Conclusion

This work presented an analytical construction of traveling wave solutions for singularly perturbed space-
fractional KdV and KdV-Burgers equations with Caputo derivatives of order a € (3,4). By extending the
method of matched asymptotic expansions (MAE) to these nonlocal problems, we derived new composite
solutions that revealed a clear separation between the classical soliton core and fractional-induced algebraic
tails.

The novelty was showing that fractional derivatives modified the asymptotic decay of wave solutions, re-
placing the exponential decay seen in classical models with persistent power-law tails (¢3¢ or £€47%), which
reflected nonlocal memory effects. This dual structure, with a localized inner soliton and an extended outer
tail, could not be captured by traditional KdV-type models.

In conclusion, our results provided a new analytical framework for understanding how fractional disper-
sion and dissipation reshaped nonlinear wave propagation, with implications for physical systems exhibiting
anomalous diffusion and nonlocal transport.
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