
Available online at http://jprm.sms.edu.pk/
Journal of Prime Research in Mathematics, 22(1) (2026), 61–75

An Algorithm for Minimal Generating Set of
Parametric Homogeneous Polynomial Ideals

Mahdi Dehghani Darmiana,∗

aDepartment of Basic Sciences, Technical and Vocational University (TVU), Tehran, Iran.

Abstract

We introduce comprehensive minimal generating systems (CMGS), a framework for computing minimal
generating sets of homogeneous polynomial ideals with parametric coefficients, which is a non-trivial problem.
While Schreyer’s syzygy theorem (1980) solved this problem for constant coefficients, the parametric case
was recently addressed by the author’s MGSystem algorithm [6], which computes minimal generating
sets for homogeneous parametric ideals forming Gröbner bases in the variables. In this paper, we extend
these results to arbitrary homogeneous parametric polynomial ideals. Our approach combines completed
Gröbner systems [7] with an extension of Schreyer’s theorem to partition the parameter space into regions
where minimal generators are uniformly computed. The CMGS algorithm utilizes syzygy computations to
systematically eliminate redundant generators, resulting in significant reductions in generating set sizes under
parameter constraints. A Maple implementation demonstrates practical efficiency, with examples showing
how parameter specializations simplify ideals. This work bridges a 40-year gap in computational algebra,
offering theoretical advances (e.g., structural invariants of parametric ideals) and practical algorithms for
applications in algebraic geometry, homological algebra, and symbolic computation.

Keywords: Minimal generating set, Completed Gröbner systems, Schreyer’s syzygy algorithm,
Comprehensive minimal generating system, Schreyer’s syzygy theorem.
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1. Introduction

Finding a minimal generating set for an ideal in commutative polynomial rings can be challenging,
as determining a minimal length generating set remains an open problem. The process typically begins
by identifying a generating set and then simplifying it by removing redundant generators, ensuring the
remaining ones are essential. Tools like Gröbner bases can assist in this task. Determining a minimal set of
generators for a polynomial ideal presents an intriguing and complex challenge in computer algebra. This
problem is significant because it applies directly to various mathematical domains, such as homological
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algebra, where it enables the computation of minimal free resolutions. This allows us to derive numerical
invariants that reflect the depth, regularity, Betti numbers, and graded Betti numbers of these ideals. The
intricacy arises because omitting any polynomial from the set of generators naturally leads to a smaller set,
which complicates the identification of the truly minimal generating set. A notable contribution to this
field is made by Schreyer’s syzygy theorem, formulated in 1980 [28], which provides a foundational method
for computing the minimal generators specifically for homogeneous polynomial ideals. A simpler version of
Schreyer’s theorem can be found in [5, Theorem 3.2, page 223 and Theorem 3.3, page 224]. For homogeneous
polynomial ideals, it is well established that every minimal generating subset of a set of polynomials F can
be identified, and all minimal generating sets of F have the same cardinality. In this paper, we seek to build
upon Schreyer’s results and extend the approach to include parametric homogeneous polynomial ideals,
thereby enhancing the applicability of these concepts (we shall note that the author recently described the
MGSystem algorithm [6] to compute the minimal generating set of homogeneous parametric polynomial
ideals that form a Gröbner basis w.r.t variables). Our goal is to explore the implications of this extension and
provide a more comprehensive framework for understanding generators in both homogeneous and parametric
scenarios. For this purpose, we utilize a powerful computer algebra tool called completed Gröbner systems
[7]. To understand them, we’ll begin with Gröbner bases, as discussed in [1, 4, 5].

This paper is organized as follows: Section 2 provides essential definitions and notation for Gröbner
bases and Schreyer’s Theorem. Section 3 briefly presents completed and extended Gröbner systems. Section
4 introduces comprehensive minimal generating systems. Finally, section 5 demonstrates the algorithm
step-by-step through a straightforward example.

2. Gröbner bases and Schreyer’s Theorem

In this paper, we consider R = K[x], the polynomial ring in variables x = x1, . . . , xn over the field K. A
monomial xα1

1 · · ·xαn
n ∈ R is denoted as xα, where α = (α1, . . . , αn) ∈ Nn consists of non-negative integers.

A monomial order ≺ on R is a total order on all monomials with the following properties:
1) If xα ≺ xβ, then xα+γ ≺ xβ+γ for all α, β, γ ∈ Nn.
2) The constant monomial is the smallest; specifically, 1 ≺ xα for all α ∈ Nn.
A common example is the lexicographical order ≺lex, where xβ ≺lex xα if the left-most non-zero entry of
α− β is positive.

For f ∈ R, the leading monomial, denoted LM(f), is the greatest monomial with respect to ≺. The
leading monomial ideal of I = ⟨f1, . . . , fm⟩ ⊂ R is defined as LM(I) = ⟨LM(f)|f ∈ I⟩.

Definition 2.1. Let I = ⟨f1, . . . , fk⟩ ⊂ R denote the ideal generated by the polynomials fi. A finite subset
{g1, . . . , gk} ⊂ I is called a Gröbner basis of I with respect to ≺ if

LM(I) = ⟨LM(g1), . . . ,LM(gk)⟩.

Introduced by Bruno Buchberger in 1965 alongside Buchberger’s algorithm [3], Gröbner bases are
named after his advisor, Wolfgang Gröbner. Buchberger also developed criteria to eliminate unnecessary
S-polynomials to improve the algorithm’s efficiency [2]. However, the algorithm may not always be practical
due to its complexity. In 1983, Lazard presented an algorithm for computing Gröbner bases using linear
algebra techniques [22]. Faugère later introduced the F4 and F5 algorithms in 1999 and 2002, respectively
[12, 13]. Subsequently, Gao et al. proposed the incremental G2V algorithm [14], an efficient variant of F5,
followed by the GVW algorithm [15] for computing Gröbner bases of ideals. Also, a Gröbner basis G is
called reduced if the leading coefficient of every polynomial in G is one and no monomial of any polynomial

The S-polynomial of f, g ∈ K[x] is given by:

S(f, g) =

(
LCM(LT(f),LT(g))

LT(f)
· f − LCM(LT(f),LT(g))

LT(g)
· g

)
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p ∈ G lies in the ideal generated by the leading monomials of G \ {p}. Every nonzero ideal I has a unique
reduced Gröbner basis for any fixed monomial ordering.

In addition, the first syzygy module of a sequence F = f1, . . . , fk is the set of k-tuples (g1, . . . , gk) ∈ Rk

satisfying
∑k

i=1 gi · fi = 0. A syzygy matrix represents the syzygies among generators of a finitely generated
module over a commutative ring, thus capturing the relationships essential to understanding the module’s
structure. This first syzygy module, ker(ϕ), is the kernel of a homomorphism and the initial step in
resolving a module, as stated by Hilbert’s syzygy theorem. Defined by the choice of generating set, it
reflects the structure under consideration and is crucial for understanding polynomial rings and syzygy
theory. Schreyer’s syzygy theorem, introduced by Schreyer in 1980 [28], a simpler format [5, Theorem
3.2 and Theorem 3.3], focuses on syzygies in modules. It offers an algorithm for computing syzygies in
polynomial rings and aids in understanding the projective dimension of modules and solving problems like
Stillman’s Question [27, Problem 3.14].

To prepare for Schreyer’s Theorem, let S (gi, gj) be the S-polynomial of gi and gj . Assume G =
{g1, . . . , gm} ⊂ Rs be a Gröbner basis for a submodule M ⊂ Rs with respect to a fixed monomial or-
der ≺. The Schreyer order ≺S on Rm is defined for monomials xαei,x

βej ∈ Rm as:

xαei ≺S xβej if


LT(gi)x

α ≺ LT(gj)x
β in R,

or

LT(gi)x
α = LT(gj)x

β and i > j

where e1, . . . , em are the standard basis vectors of Rm. Since G is a Gröbner basis, the remainder of
S (gi, gj) when divided by G is 0. The division algorithm [4, Theorem 3, Page 64] yields an expression:
S (gi, gj) =

∑m
k=1 aijkgk, where aijk ∈ R, and LT (aijkgk) ≺ LT (S (gi, gj)) for all i, j, k.

Theorem 2.2 (Schreyer’s Theorem [5]). Let G = {g1, . . . , gm} ⊂ Rs be a Gröbner basis with respect to ≺.
For each pair (i, j) with 1 ≤ i < j ≤ m, let aij =

∑m
k=1 aijkek ∈ Rm be the vector of coefficients obtained

from the division S (gi, gj) by G:

S(gi, gj) =

m∑
k=1

aijkgk with LT(aijkgk) ≺ LT(S(gi, gj)).

Then the syzygies sij constructed as:

sij =
mij

LT(gi)
ei −

mij

LT(gj)
ej − aij , where mij = LCM

(
LT(gi),LT(gj)

)
,

form a Gröbner basis for the syzygy module syz(g1, . . . , gm) with respect to the Schreyer order ≺S.

To compute syz(f1, . . . , ft) for a collection F = {f1, . . . , ft} of non-zero polynomials in R that may not
form a Gröbner basis, first compute a Gröbner basis G = {g1, . . . , gm} for ⟨f1, . . . , ft⟩. Since F and G
generate the same ideal, there exist matrices At×m and Bm×t with entries in R such that G = FA and
F = GB. A generating set {s1, . . . , sp} for syz(G) can be computed using the previous theorem. Let
r1, . . . , rt be the columns of the matrix It −AB. Therefore, using the above notation, the following set is a
generating set for syz(f1, . . . , ft):

{As1, . . . , Asp, r1, . . . , rt}.

We present the following Syzygy-Schreyer algorithm for computing syz(f1, . . . , ft), summarizing the
above content and consistent with [5, Proposition 3.8, page 227].
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Algorithm 1 Syzygy-Schreyer

Require: F = {f1, . . . , ft} ⊂ R = K[x] is a homogeneous polynomial ideal
Ensure: A syzygy matrix of F

G,A := Basis(F,≺x,a, output = extended); G is the reduced Gröbner basis and A is the matrix s.t. G = F.A
A := Transpose (A)
IM := Identity matrix It×t

B := Transpose (B) where B is the inverse transformation matrix s.t. F = G.B
IAB := IM −AB
S := syzygy matrix of G
AS := Multiply A and S
AS := [AS | IAB]

Return (AS)

If the polynomials f1, . . . , ft are included in the list g1, . . . , gm, then It−AB = 0. Thus, syz(f1, . . . , ft) =
⟨As1, . . . , Asp⟩. For simplicity, assume f1 = g1, . . . , ft = gt and gt+i =

∑t
j=1 aijfj for i = 1, . . . , s −

t. If (r1, . . . , rm) is a syzygy for (g1, . . . , gm), then (r1, . . . , rt) +
∑s−t

i=t+1 ri(ai1, . . . , ait) is a syzygy also
for (f1, . . . , ft). By repeating this for all syzygies in the basis for syz(g1, . . . , gm), we can obtain a basis
for syz(f1, . . . , ft). Furthermore, based on the previous explanation and according to Schreyer’s theorem
and algorithm, the following important corollary is concluded to compute a minimal generating set for a
homogeneous polynomial ideal.

Corollary 2.3. Let G = {g1, . . . , gm} ⊂ K[x] be a homogeneous reduced Gröbner basis. Then for each
1 ≤ i ≤ m, the following are equivalent:

1. gi ∈ ⟨g1, . . . , gi−1, gi+1, . . . , gm⟩
2. The i-th row of the syzygy matrix of G contains a non-zero constant k ∈ K

Proof. We prove both directions separately, using the graded structure of the syzygy matrix obtained from
Schreyer’s algorithm.
(1 ⇒ 2): Assume gi ∈ ⟨gj⟩j ̸=i. Then there exist homogeneous polynomials {aj}j ̸=i such that:

gi =
∑
j ̸=i

ajgj

This yields the syzygy:
v = (a1, . . . , ai−1,−1, ai+1, . . . , am)T ∈ syz(G)

By Schreyer’s Theorem, the syzygy module syz(G) has a graded basis {skl} constructed from S-polynomials
S(gk, gl). Since G is homogeneous and reduced, v must be a linear combination:

v =
∑

cklskl, ckl ∈ K[x]

The −1 in the i-th position of v forces at least one skl to have a non-zero constant in its i-th row to preserve
homogeneity.
(2 ⇒ 1): Suppose the syzygy matrix has a column:

s = (a1, . . . , ai−1, k, ai+1, . . . , am)T (k ̸= 0)

Then: ∑
j ̸=i

ajgj + kgi = 0 =⇒ gi = −1

k

∑
j ̸=i

ajgj ∈ ⟨gj⟩j ̸=i
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Remark 2.4. The syzygy matrix in Corollary 2.3 is graded by construction via Schreyer’s algorithm. This
ensures the existence of minimal generators with constant entries when redundancy occurs, as shown in [5,
Proposition 3.10] for the graded case.

Numerous engineering and scientific challenges can be modeled using a specific set of parametric poly-
nomials. These problems often require iterative analysis with varying parameter values. This paper aims to
determine the minimal generating set for parametric polynomial ideals that are homogeneous w.r.t. vari-
ables. In this direction, we introduce a new concept of comprehensive minimal generating systems for these
ideals and present an algorithm for their computation. To achieve this, we utilize the concepts of completed
Gröbner systems and extended Gröbner systems [7], which extend the Gröbner system framework to facili-
tate the computation of transformation matrices. So, in the next section, we will briefly overview completed
Gröbner systems and extended Gröbner systems.

3. Completed and Extended Gröbner Systems

Gröbner systems generalize Gröbner bases from polynomial ideals with numerical coefficients to those
with parametric coefficients. A Gröbner system is defined as a finite set of triples that include parametric
constraints along with a set of parametric polynomials. For any specialization of the parameters, there exists
a corresponding branch that satisfies the assignment, and upon substituting the parameters, the specialized
polynomial set forms a Gröbner basis for the parametric ideal.

This extension is crucial for addressing practical challenges in systems of polynomial equations with
parameters, significantly impacting fields such as parametric linear algebra [8, 10, 18], automated geometry
theorem proving, and algebraic geometry [16, 24, 25, 30], as well as robotics and electrical networks [23, 25,
26]. These applications often necessitate repeated analysis with varying parameter values. Below, we will
provide a brief overview of Gröbner systems and the relevant literature.

We consider S = K[a,x], where K is any field, a = a1, . . . , am is a sequence of parameters, and x =
x1, . . . , xn is a sequence of variables. We define monomial orders ≺x and ≺a for the variables and parameters,
respectively. These orders combine to establish a new ordering on S, denoted ≺x,a for any α, β ∈ Nn and
γ, δ ∈ Nm, we have xαaγ ≺x,a xβaδ if xα ≺x xβ, or if xα = xβ and aγ ≺a aδ.

Definition 3.1. Let F ⊂ S = K[a,x] be a finite set, and let G = {(Ni,Wi, Gi)}ℓi=1 be a finite set of triples
where Ni,Wi ⊂ K[a] and Gi ⊂ S. The set G is considered a Gröbner system for ⟨F ⟩ with respect to ≺x,a

if, for any index i and homomorphism σ : K[a] → K′ ⊇ K, the following conditions are satisfied:

• σ(Gi) ⊂ K′[x] is a Gröbner basis for σ(⟨F ⟩) ⊂ K′[x] with respect to ≺x

• σ(p) = 0 for all p ∈ Ni and σ(q) ̸= 0 for all q ∈ Wi

The concept of a Gröbner system was introduced by Weispfenning in 1992, demonstrating that every
parametric polynomial ideal possesses a finite Gröbner system, along with an initial computation algorithm
[30]. In 1997, M. Kalkbrenner established critical criteria regarding the specialization of parametric polyno-
mial ideals and the stability of their Gröbner bases under specialization [20]. In 2002, Montes developed a
more efficient algorithm, known as DisPGB, for computing Gröbner systems, building upon Buchberger’s
algorithm [25]. In 2013, Hashemi et al. enhancedDisPGB by integrating two Buchberger criteria to improve
its efficiency further [17]. In 2006, Manubens and Montes refined the DisPGB algorithm by introducing
the concept of discriminant ideals [23]. Following Kalkbrenner’s stability criteria, Suzuki and Sato devised
an effective algorithm for computing Gröbner systems, known as the Suzuki-Sato algorithm [29]. In 2010,
Kapur, Sun, and Wang introduced the efficient PGBMain (KSW) algorithm, inspired by Weispfenning’s
and Suzuki-Sato’s approaches [21]. In our recent work, we have made significant advancements in the com-
putation of Gröbner systems by exploring parametric polynomial ideals and developing optimized algorithms
in this area [10, 11, 16, 19]. In 2024, we presented the efficient GES-GVW-CGS algorithm for computing
these systems [9].
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Example 3.2. Consider the set F = {(b − a)xy − x − cy, cx2 − 2xy} ⊂ K[a, b, c, x, y], where x and y are
variables, and a, b, and c are parameters. A Gröbner system for F with respect to the product of monomial
orderings y ≺lex x and c ≺lex b ≺lex a, computed using our Maple implementation of the GES-GVW-CGS
algorithm, is as follows:

([c], [ ], [x])
([ac− bc], [c, c2 + 2], [c3y2 + 2cy2, cy + x])
([c3 + 2c, ac− bc], [c], [cy + x])
([ ], [2c2(a− b)], [2acy3 − 2bcy3 + c3y2 + 2cy2,

2acy2 − 2bcy2 + c3y + c2x])

This Gröbner system consists of four triples. By setting a = b = 2 and c = 1, the second branch corresponds
to these values, yielding {3y2, x+ y} as a Gröbner basis for the ideal ⟨F ⟩|a=b=2,c=1.

Dehghani [7] introduced the concepts of completed Gröbner systems and extended Gröbner systems, ex-
panding Gröbner system calculations to encompass both the computation of Gröbner systems and parametric
transformation matrices. Parametric transformation matrices serve as fascinating computational objects in
computer algebra, clearly illustrating the connection between parametric polynomial ideals and their related
Gröbner systems. These matrices offer both theoretical insights and algorithmic utility, enabling efficient
analysis of parameter-dependent algebraic structures by systematically tracking basis transformations during
Gröbner system computations.

Definition 3.3. Let F ⊂ S = K[a,x] be a finite set, and let G = {(Ni,Wi, Gi,Mi)}ℓi=1 be a finite set of
quadruples, where Ni,Wi ⊂ K[a], Gi ⊂ S, and Mi is a parametric matrix over S. The set G is defined
as an extended Gröbner system for ⟨F ⟩ with respect to ≺x,a over V ⊆ Km

if, for any index i and any
homomorphism σ : K[a] → K′ ⊇ K, the following conditions hold:

• σ(Gi) is a Gröbner basis for ⟨σ(F )⟩ with respect to ≺x.

• σ(Gi) = σ(F ) · σ(Mi).

• V ⊆
⋃ℓ

i=1 Vi, where Vi = V(Ni) \ V(Wi).

Like the definition of a Gröbner system, if V = Km
, then G is typically referred to as an extended Gröbner

system of F . Consequently, throughout the remainder of this paper, the term “extended Gröbner system”
will refer specifically to the extended Gröbner system over Km

.

Building on these definitions and drawing inspiration from the PGBMain algorithm [16, Algorithm
1], Dehghani introduced the Extended-PGB and Extended-PGBMain algorithms for computing an
extended Gröbner system [7].

Algorithm 2 Extended-PGB

Require: N,W ; finite subsets of K[a], F ⊂ S = K[a,x] = K[a1, . . . , am, x1, . . . , xn], ≺x,≺a; two monomial orderings,
and I; an arbitrary identity matrix

Ensure: PGB; an extended Gröbner system of ⟨F ⟩ w.r.t. ≺x,a on V(N) \ V(W )
PGB:= NULL
LIST:= [N,W,F, I]
while LIST is not empty do

L:=Select the first quadruple of LIST
Removing L from LIST
PGB:= PGB, Extended-PGBMain(L)

end while
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Algorithm 3 Extended-PGBMain

Input: N,W ; finite subsets of K[a], F ; a finite subset of K[a,x], and MX; a matrix
Output: an extended Gröbner system of ⟨F ⟩ on V(N) \ V(W )

if (N,W ) is inconsistent then
Return (∅)

end if
tn := number of elements in N
F ′ := [F,N ]; a list with the last tn polynomials from N .
G := Reduced Gröbner Basis(F ′,≺x,a)
TM := Transformation Matrix(F ′)
TM := matrix obtained by eliminating the last tn rows of TM .
if 1 ∈ G then

Return ({(N,W, {1})})
end if
Gr := G ∩K[a]
G′ := G \Gr

TM := Remove columns of TM corresponding to positions of Gr in G.
TM := Multiply MX by TM
if (Gr,W ) is inconsistent then

Return (PGB)
else

Gm :=MDBasis(G′)
TM := Remove columns of TM corresponding to positions of Gm in G′.
h =lcm{h1, . . . , hk}, where hi = LC≺x(gi) for gi ∈ Gm = {g1, . . . , gk}
if (Gr,W × {h}) is consistent then

PGB:= PGB ∪ {Gr,W × {h}, Gm, TM}
else

LIST:= LIST,
⋃

hi∈{h1,...,hk}
{[Gr ∪ {hi},W × {h1h2 · · ·hi−1}, G′, TM ]}

end if
while LIST ̸= ∅ do

Select L; the first quadruple from LIST
Update LIST by removing L
Extended-PGBMain(L)

end while
end if

Return PGB ∪{(Other cases, {1})}

Definition 3.4. Let F ⊂ S = K[a,x] be a finite set and G = {(Ni,Wi, Gi,Mi, Bi)}ℓi=1 be a set of finite
quintuples where Ni,Wi ⊂ K[a], Gi ⊂ S, and Mi and Bi are parametric matrices over S. The set G is a
completed Gröbner system for ⟨F ⟩ with respect to ≺x,a over V ⊆ Km

if, for each i and any homomorphism
σ : K[a] → K′ ⊇ K, the following hold:

• σ(Gi) is a Gröbner basis of ⟨σ(F )⟩ with respect to ≺x.

• σ(Gi) = σ(F ) · σ(Mi).

• σ(F ) = σ(Gi) · σ(Bi).

• V ⊆
⋃ℓ

i=1 Vi where Vi = V(Ni) \ V(Wi).

Also, a “completed Gröbner system” refers to the completed Gröbner system on Km
.

To compute the matrices Bi that satisfy F = Gi · Bi, we can divide the specialized polynomials of F with
respect to (Ni,Wi) by G. The quotient from this division forms the entries of matrix Bi.

Example 3.5. Let F = [xz3 + ay + 1, bz3 − cx − y, axz − xy − b] be a parametric polynomial ideal in
S = K[a, b, c][x, y, z]. Using our Maple implementation of the Extended-PGBMain algorithm and based
on the above explanation, we compute a completed Gröbner system (containing a Gröbner system and an
extended Gröbner system) of ⟨F ⟩ with respect to the order c ≺lex b ≺lex a and z ≺tdeg y ≺tdeg x.
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Ni,Wi Gröbner Bases; Gi Transformation Matrices; Mi and

Inverse Transformation Matrices; Bi

[ ], [abc] [ay2 − a2yz − az − cx,
−axz + xy + b,

aby + axz + cx2,

bz3 − cx − y]


−az + y 0 b 0

1 0 −x 1

z3 −1 1 0

 ,


0 0 0
1
b

0 −1
1
b

0 0
x
b

1 0



[a, c], [b] [xy + b, bz3 − y]


0 xz3 (−az + y) + cx

0 xz3 + 1

−1 z6x

 ,

[ 1
b

0 −1
x
b

1 0

]

[b], [a, c] [−az + y, az + cx,

az4 − a2cz − c]


−az + y az − y

(
−z3 + ac

)
(−az + y) − c

−a2z + ay a2z − ay − 1 a2z4 − a3cz − ayz3 + a2cy − z3

z3 − ac −z3 + ac
(
−z3 + ac

)
z3 − ac

(
−z3 + ac

)

 ,

 a −1 −x
z3

c
−1 0

−1
c

0 0



[c], [a, b] [ab2z2 + ax, aby + axz,

−a2yz + ay2 − az,
aby + xy + b,

−ab3yz + ax2]


−bxz2 + ax b −az + y b

(
−x2z2 − b2z

)
b + x2a

x2z2 + a2x −x 1 −x −
(
−x2z2 − b2z

)
x + a2x2

−bz2a − xz2 1 z3 0 −abxz2 − x2z2 − b2z

 ,


xz
ab2

z
ba

0
−x

ab2
−1
b

1

0 0 0
1
b

0 −1
0 0 0



[a, b, c], [ ] [y, xz3 + 1]


−xz3 (−az + y) − cx 1

−xz3 − 1 0

−z6x 0

 ,

[
a −1 −x
1 0 0

]

For example, with parameters a = −4, b = 1
2 , and c = 0, the fourth branch satisfies (N4,W4). Thus, the

Gröbner basis for F |(a=−4,b= 1
2
,c=0) is

G4|(a=−4,b= 1
2
,c=0) = [−z2 − 4x,−4xz − 2y,−4y2 − 16yz + 4z, xy − 2y +

1

2
,−4x2 +

yz

2
]

and the transformation matrix is

M4|(a=−4,b= 1
2
,c=0) =

 −xz2

2 − 4x 1
2 y + 4 z 1

2 −x2z2

2 − z
8 − 4x2

x2z2 + 16x −x 1 −x −
(
−x2z2 − z

4

)
x+ 16x2

−xz2 + 2 z2 1 z3 0 −x2z2 + 2xz2 − z
4

 .

In addition, the inverse transformation matrix for these parameters is

B4|(a=−4,b= 1
2
,c=0) =


−xz z

−2 0

x −2 1
0 0 0
2 0 −1
0 0 0

.
Thus, for any specialization σ fulfilling (N4,W4), we have σ(G) = σ(F )σ(M4) and σ(F ) = σ(G)σ(B4).

4. Comprehensive Minimal Generating Systems

In this section, we compute a minimal generating set for parametric homogeneous polynomial ideals,
necessitating new notations to encompass all possible parameter values. Such ideals consist of homogeneous
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polynomials in their variables with parametric coefficients and hold significant importance in algebraic
geometry and computer algebra (e.g., the implicitization problem [5]), both theoretically and practically.
Identifying a minimal generating set enhances computational efficiency and provides deeper insights into their
structural properties, thereby simplifying complex problems and organizing the representation of these ideals
for further applications. We now introduce and elaborate on the comprehensive minimal generating system
(CMGS) for these ideals, along with an algorithm for computing CMGS’s. In this direction, we employ
the completed Gröbner system, its transformation matrices, and their inverses under parametric constraints
to develop this algorithm. The CMGS and its corresponding algorithm extend the concept of minimal
generating sets and the Syzygy-Schreyer algorithm for polynomial ideals with constant coefficients.

Definition 4.1. Let F ⊂ S = K[a,x] be a homogeneous parametric polynomial ideal. We define M =
{(Ni,Wi, Fi)}ℓi=1 as a comprehensive minimal generating system of F if, for each i and any specialization
σ : K[a] → K′ ⊇ K fulfilling the parametric constraint (Ni,Wi), the set σ(Fi) constitutes a minimal
generating set of σ(F ).

This definition extends [5, Proposition 3.8, page 227], which may be considered as an extension of
Schreyer’s syzygy theorem for all homogeneous parametric polynomial ideals.

Theorem 4.2. Let F = {f1, . . . , ft} ⊂ S be a homogeneous parametric polynomial ideal, and let the set
G = {(Ni,Wi, Gi, Ai, Bi)}ℓi=1 be a completed Gröbner system for ⟨F ⟩ with respect to any compatible monomial
ordering ≺x,a. For each (Ni,Wi, Gi, Ai, Bi) ∈ G, where Gi = {g1, . . . , gs}, let {s1, . . . , sp} be a basis for
syz(g1, . . . , gs). Define r1, . . . , rt as the columns of the matrix It − σ(Ai)σ(Bi). Then, the following set
constitutes a generating set for syz(σ(f1), . . . , σ(ft)) that satisfies (Ni,Wi):

{Ais1, . . . , Aisp, r1, . . . , rt}.

Proof. It is evident that ⟨Ais1, . . . , Aisp, r1, . . . , rt⟩ is a submodule of syz (f1, . . . , ft). Thus, to prove the
theorem, it suffices to show that every syzygy on F can be expressed as an R-linear combination of the
elements {Ais1, . . . , Aisp, r1, . . . , rt}.

Let p be any element of syz (σ(f1), . . . , σ(ft)). By the definition of a completed Gröbner system, we have
σ(F ) = σ(Gi)σ(Bi) for (Ni,Wi). Multiplying on the right by the column vector p ∈ syz(σ(F )), we obtain
the equations: σ(F )p = σ(Gi)σ(Bi)p. Since σ(F )p = 0, the relation σ(Gi)σ(Bi)p = 0 holds. Noting that
σ(Bi)p = σ(Bip) (by linearity of σ), we conclude

σ(Gi)σ(Bip) = 0.

Therefore, we have σ(Bip) ∈ syz(σ(Gi)) = syz (σ(g1), . . . , σ(gs)).
Since {s1, . . . , sp} is a basis for syz(g1, . . . , gs), there exist coefficients qi ∈ S such that

σ(Bip) =
∑
i

σ(qi)si.

Multiplying both sides by σ(Ai) on the left gives us

σ(Ai)σ(Bi)p =
∑
i

σ(qi)σ(Ai)si.

Furthermore, p can be rewritten as follows:

p =
(
(It − σ(Ai)σ(Bi)) + σ(Ai)σ(Bi)

)
p

= (It − σ(Ai)σ(Bi))p+ σ(Ai)σ(Bi)p

= (It − σ(Ai)σ(Bi))p+
∑
i

σ(qi)σ(Ai)si.

The first term on the right-hand side is anR-linear combination of the columns r1, . . . , rt from (It − σ(Ai)σ(Bi)),
implying that p can be expressed as an R-linear combination of the elements of {Ais1, . . . , Aisp, r1, . . . , rt}.
Consequently, the set {Ais1, . . . , Aisp, r1, . . . , rt} forms a generating set for syz(σ(f1), . . . , σ(ft)) under the
parameters (Ni,Wi).
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We now present the efficientCMGS algorithm for computing a comprehensive minimal generating system
based on the aforementioned theorem and Corollary 2.3. This algorithm inputs a parametric homogeneous
polynomial ideal w.r.t. the variables x and outputs its comprehensive minimal generating system. Initially,
the variable LIST is an empty set, ultimately becoming the comprehensive minimal generating system.
The Remove function also takes a set of polynomials F ⊂ S. It returns Fi ⊂ F , obtained by removing
the ith element of F if the ith row of the syzygy matrix of F contains a non-zero polynomial q ∈ K[a].
Furthermore, at the start of the algorithm, the Homogenize function uses a new variable h to transform
a homogeneous polynomial ideal w.r.t. variables into a homogeneous polynomial ideal concerning both
variables and parameters. For instance, [ax2−y2, by3−axy2] is homogeneous in x, y, while [ax2−hy2, by3−
axy2] is homogeneous in a, b, h, x, y.

Algorithm 4 CMGS (Comprehensive Minimal Generating System)

Require: F = ⟨f1, . . . , fm⟩ ⊂ S = K[a,x] is a homogeneous polynomial ideal w.r.t. variables x
Ensure: A comprehensive minimal generating system of F

I := Homogenize(F, h)
LIST := { }
G := {(Ni,Wi, Gi, Ai, Bi)}ℓi=1 a Completed Gröbner system of I with respect to ≺x,a

for (Ni,Wi, Gi, Ai, Bi) ∈ G do
A := Transpose (Ai)
B := Transpose (Bi)
r := row dimension of A
IM := Identity matrix Ir×r

IAB := IM −AB
Dehomogenize all polynomials by setting h = 1 in all computations involving h
S := syzygy matrix of Gi

AS := Multiply A and S
AS := [AS | IAB]
AS := delete all zero columns from the matrix AS
Fi := Gi

while there exists 0 ̸= q ∈ K[a] in jth row of AS do
Fi:=Remove(Fi)
AS := Syzygy-Schreyer(Fi)

end while
LIST := LIST

⋃
{(Ni,Wi, Fi)}

end for

Return (LIST)

Theorem 4.3. The CMGS algorithm terminates in a finite number of steps and accurately computes a
comprehensive minimal generating system.

Proof. The termination of the CMGS algorithm is guaranteed by the termination of the completed Gröbner
system computations, while its correctness is established by theorem 4.2. Let (Ni,Wi, Gi, Ai, Bi) denote the
ith branch of the completed Gröbner system of F . In the ith iteration of the for-loop, since all leading
coefficients in Gi are non-zero under (Ni,Wi), we can apply the Syzygy-Schreyer algorithm to compute
the syzygy matrix of Gi. Consequently, based on corollary 2.3 and theorem 4.2, we derive a minimal
generating set of σ(F ) that meets the parametric conditions (Ni,Wi). The inner while loop iteratively
checks whether redundant generators can be removed from the current set Fi. In each iteration, if the
syzygy matrix of Fi contains a non-zero polynomial q ∈ K[a] in its jth row, then the jth generator is
redundant (by corollary 2.3) and is removed. Otherwise, if no such row exists, the loop terminates because
Fi is already minimal. Since each removal reduces the size of Fi by at least one element, and the polynomial
ring K[a,x] is Noetherian, the strictly descending chain of ideals

⟨F (0)
i ⟩ ⊃ ⟨F (1)

i ⟩ ⊃ ⟨F (2)
i ⟩ ⊃ · · ·

(if removals occur) must stabilize after finitely many steps. Hence, the while-loop always terminates. It
is worth noting that in the while loop, we invoke Syzygy-Schreyer(Fi) under the key observation that,
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under the given parametric constraints (all aj ̸= 0 for parameters a = (a1, . . . , am)), we localize K[a] yielding
the field K(a) of rational functions in a. This allows us to treat parametric coefficients as invertible scalars
during syzygy computation. Furthermore, while Gi is indeed a Gröbner basis, recomputing syzygies via
Syzygy-Schreyer(Fi) ensures correctness. Ultimately, for each branch (Ni,Wi, Gi, Ai, Bi) the algorithm
produces a set Fi that is a minimal generating set of σ(F ) for every specialization σ satisfying (Ni,Wi).
Therefore the union of all (Ni,Wi, Fi) forms a comprehensive minimal generating system of F .

Complexity remarks

The CMGS algorithm relies on two computationally intensive steps: the construction of a completed
Gröbner system and the syzygy computations over each branch. The first step, in the worst case, can be
doubly exponential in the number of variables, a known complexity for comprehensive Gröbner systems. The
second step, for each branch, involves computing a syzygy matrix of a Gröbner basis, which is polynomial
in the size of the basis and the degrees of the generators. In practice, the number of branches is often
moderate, and the algorithm benefits from the fact that the syzygy matrix needs only to be computed
once per branch. Compared to the non-parametric case, the overhead is proportional to the number of
branches, but this is necessary to obtain a uniform description of the minimal generators over the whole
parameter space. Table 1 highlights the key differences between MGSystem and CMGS regarding input,
output, and computational cost. CMGS handles arbitrary homogeneous parametric ideals, offering greater
generality thanMGSystem, which is limited to ideals that are already Gröbner bases. However, this broader
applicability comes at the cost of increased computational complexity, as CMGS employs completed Gröbner
systems and transformation matrices.

Table 1: Comparison of the MGSystem and CMGS algorithms

Aspect MGSystem CMGS

Input ideal Homogeneous paramet-
ric ideal that is already a
Gröbner basis w.r.t. ≺x

Arbitrary homogeneous para-
metric ideal

Parameter handling Uses known Gröbner system Uses a completed Gröbner sys-
tem (includes transformation
matrices)

Output Minimal generating system
for the given Gröbner basis

Comprehensive minimal gen-
erating system (uniform over
parameter regions)

Generality Special case of CMGS when
input is a Gröbner basis w.r.t.
variables

Generalization of MGSys-
tem to arbitrary homoge-
neous ideals

Computational cost Lower (no need for completed
system)

Higher (requires completed
system and more syzygy com-
putations)

5. Computation of a Straightforward Example

This section demonstrates the algorithm steps with the following simple example.
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Example 5.1. Consider the parametric polynomial ideal I ⊂ K[a, b, c][x, y, z], which is homogeneous in the
variables x, y, z:

F = [ayz + bxy, bx2 − cyz − yz,−byz2 − yz2 + y2z,−cyz2 + x2y + xyz].

Using our Maple implementation of the CMGS algorithm, we aim to compute a minimal generating set for
F . We first homogenize F with a new variable h, resulting in:

I = [ayz + bxy, bx2 − cyz − hyz,−byz2 − hyz2 + y2z,−cyz2 + x2y + xyz].

Next, we compute a completed Gröbner system of I with respect to any compatible monomial ordering
≺x,a, denoted as G = {(Ni,Wi, Gi, Ai, Bi)}6i=1.

−−−−−−−−−−−−−−−− Branch 1−−−−−−−−−−−−−−−−
[h− 1], [b, a− b− c− 1],

[
ayz2 − byz2 − cyz2 − yz2,−byz2 + y2z − yz2, ayz + bxy, bx2 − cyz − yz

]


z y c+ 1 −b
0 0 1 0
1 0 0 0
0 1 0 0

 ,



0 0 1 0

0 0 0 1

− h
a−b−c−1

+ (a− b− c− 1)−1 1 0 0

− c
a−b−c−1

+ a2

b2(a−b−c−1)
− a

b(a−b−c−1)
0 − za

b2
+ x

b
+ z

b
0



−−−−−−−−−−−−−−−− Branch 2−−−−−−−−−−−−−−−−
[b, h− 1], [a],

[
yza, x2y + xyz + yz2

]
[

1 0 0 0
0 −z 0 1

]
,


1 0

− c
a
− h

a
0

− bz
a

− hz
a

+ y
a

0
− cz

a
− z

a
1


−−−−−−−−−−−−−−−− Branch 3−−−−−−−−−−−−−−−−

[a− b− c− 1, h− 1],
[
b, b2c− bc− c2 − b− 2c− 1

]
,[

b2cyz2 − bcyz2 − c2yz2 − byz2 − 2cyz2 − yz2,−byz2 + y2z − yz2, bxy + byz + cyz + yz, bx2 − cyz − yz
]


bx+ bz + cz + z ay + cy + y ac+ c2 + a+ 2 c+ 1 −ab− b2 − bc− b

0 0 1 0

1 0 0 0

0 1 0 0

 ,



0 0 1 0

0 0 0 1

1−h
b2c−bc−c2−b−2 c−1

1 0 0

−b−2 0 x
b
− cz

b2
− z

b2
0


−−−−−−−−−−−−−−−− Branch 4−−−−−−−−−−−−−−−−

[b, a, h− 1], [c+ 1],
[
cyz + yzx2y + xyz + yz2

]
[

0 −1 0 0
0 −z 0 1

]
,


a

c+1
0

− c
c+1

− h
c+1

0

− bz
c+1

− hz
c+1

+ y
c+1

0

−z 1


−−−−−−−−−−−−−−−− Branch 5−−−−−−−−−−−−−−−−[
b2c− bc− c2 − b− 2c− 1, a− b− c− 1, h− 1

]
, [b],

[
−byz2 + y2z − yz, bxy + byz + cyz + yzbx2 − cyz − yz

]
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 0 0 1 0
1 0 0 0
0 1 0 0

 ,


0 1 0
0 0 1
1 0 0
0 x

b
− cz

b2
− z

b2
0


−−−−−−−−−−−−−−−− Branch 6−−−−−−−−−−−−−−−−

[c+ 1, b, a, h− 1].[1],
[
y2z − yz2, x2y + xyz + yz2

]
[

0 0 1 0
0 −z 0 1

]
·


0 0
0 0
1 0
0 1


The calculation follows six branches as per the algorithm’s structure; however, we will focus on the

second branch, with others calculated similarly. From branch 2, we obtain the following matrices based on
the CMGS algorithm’s trace:

A =


1 0
0 −z
0 0
0 1

 , B =

[
1 − c

a
− h

a
− zb

a
− hz

a
+ y

a
− zc

a
− z

a
0 0 0 1

]
, IM =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

IAB = IM −AB =


0 c

a
+ h

a
zb
a

+ hz
a

− y
a

zc
a

+ z
a

0 1 0 z
0 0 1 0
0 0 0 0


Next, we compute a syzygy matrix S of G2, followed by AS = A× S, and then we combine AS and IAB
to obtain a generating set for syz(σ(F )) satisfying (N2,W2):

S =

[
zx
a

+ z2

a
+ x2

a
−z

]
, A× S =


zx
a

+ z2

a
+ x2

a
z2

0
−z

 , AS = [AS | IAB] =


x2+zx+z2

a
c+1
a

− y−z
a

z(c+1)
a

z2 1 0 z
0 0 1 0
−z 0 0 0


The first three rows of AS contain non-zero entries in K[a], leading to the removal of the first polynomial
from F . Thus, we compute the NormalForm of the remaining elements on N2 = [b, h− 1], yielding:

F2 = [−cyz − yz, y2z − yz2,−cyz2 + (x2 + xz)y].

Since all coefficients in F2 are non-zero according to (N2,W2), we apply the Syzygy-Schreyer algorithm
to determine if F2 can be minimized further. The resulting syzygy matrix is:

AS =

 cz2−x2−zx
c+1 0 y−z

c+1 0

0 0 1 0
−z 0 0 0

 .

The second row of AS has a non-zero entry, necessitating the removal of the second polynomial from F2,
leading to an updated form:

F2 = [−cyz − yz,−cyz2 + (x2 + xz)y].

Repeating the Syzygy-Schreyer algorithm gives the following syzygy matrix for F2:

AS =

[
cz2−x2−zx

c+1 0 0

−z 0 0

]
.

Since there are no non-zero elements of K[a] in AS, we conclude that a minimal generating set for the
original F under the parametric conditions (N2,W2) = ([b, h− 1], [a]) is:

F2 = [−cyz − yz,−cyz2 + (x2 + xz)y].
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Applying the same procedure to the other five ignored branches of the completed Gröbner system G yields a
comprehensive minimal generating system for input F . Since the variable h does not appear in the original
polynomial ideal F , we can eliminate h− 1 from all null sets Ni.



([ ], [b, a− b− c− 1], [ayz + bxy, bx2 − cyz − yz,−cyz2 + (x2 + xz)y])
([b], [a], [−cyz − yz,−cyz2 + (x2 + xz)y])
([a− b− c− 1], [b, b2c− bc− c2 − b− 2c− 1], [(x+ z)yb+ cyz + yz, bx2 − cyz − yz,−cyz2 + (x2 + xz)y])
([b, a], [c+ 1], [−cyz − yz,−cyz2 + (x2 + xz)y])
([b2c− bc− c2 − b− 2c− 1, a− b− c− 1], [b], [(x+ z)yb+ cyz + yz, bx2 − cyz − yz,−cyz2 + (x2 + xz)y])
([c+ 1, b, a], [1], [y2z − yz2, x2y + xyz + yz2]).

For instance, if a = 3
2 , b = − 1

2 and c = 1 then the third branch corresponds to these values of parameters (these
values hold (N3,W3)). Therefore,

F3|a= 3
2
,b=− 1

2
,c=1 = [−1/2(x+ z)y + 2yz,−2yz − (1/2)x2,−yz2 + (x2 + xz)y]

will be a minimal generating set for the ideal

F |a= 3
2
,b=− 1

2
,c=1 = [−(1/2)xy + (3/2)yz,−2yz − (1/2)x2, y2z − (1/2)yz2, x2y + xyz − yz2].

This means that for any 1 ≤ i ≤ 6 and for each specialization σ satisfying (Ni,Wi), σ(Fi) constitutes a minimal

generating set for σ(F ). Furthermore, considering all branches, under the parametric constraint (Ni,Wi), the minimal

generating set Fi contains fewer than 4 generators, the number of generators of F , which indicates a substantial

reduction in the size of the generating set for F .

6. Applications and Future Works

By computing the minimal generating set for parametric homogeneous polynomial ideals, we can analyze
their minimal free resolution, allowing us to derive numerical invariants that reflect the depth, regularity,
Betti numbers, and graded Betti numbers of these ideals viewed as a K[a][x] module. This approach aims to
clarify the structure of these polynomial ideals, enabling further research into the relationships between their
numerical invariants and algebraic properties, ultimately deepening our understanding of these mathematical
objects.
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[25] A. Montes. A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput., 33(2):183–208, 2002. 3, 3
[26] A. Montes and J. Castro. Solving the load flow problem using the Gröbner basis. SIGSAM Bull., 29(1):1–13, 1995. 3
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