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Abstract

With the rapid advancement of technology, computer-aided methods are increasingly employed to study
the structural properties of chemical compounds. One such approach involves predicting chemical behavior
using topological indices—numerical descriptors derived from graph-theoretic representations of molecular
structures.

In this paper, the leap edge eccentricity connectivity index is introduced distance-based topological index
that can be regarded as both the edge version of the leap eccentric connectivity index and the leap version of
the edge eccentric connectivity index and investigates the leap edge eccentricity connectivity index (LEECI)
for Polyamidoamine (PAMAM) dendrimers and porphyrin-cored dendrimers through exact analytical com-
putations. By modeling these nanostructures with graphs, LEECI values for multiple dendrimer structures
are derived. The results reveal strong correlations between branching complexity and index growth, high-
lighting LEECI as a promising descriptor in computational nanomaterial characterization and drug delivery
design. These findings provide a foundation for integrating LEECI into predictive models linking molecular
topology with experimental properties.

Keywords: Graph Theory, Topological index, Leap edge eccentricity connectivity index, Dendrimer
Graphs.
2010 MSC: 05C90, 05C92, 05C09, 92E10.

1. Introduction

Due to evolving living conditions and increasing disease prevalence, there is a growing demand for rapid
and cost-effective methods for the discovery of novel chemicals and pharmaceuticals. With the aid of topo-
logical indices in chemical graph theory, it is now possible to predict the physical, chemical, and biological
properties of molecular structures. These indices are mathematical values derived from molecular graphs,
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which represent molecular structures through vertices and edges: non-hydrogen atoms are represented as
vertices, and chemical bonds between atoms as edges.

Topological indices, based on graph properties such as degree, energy, and distance, are used to establish
quantitative relationships between the structure and properties of molecules [17]. Among the most studied
are degree-based indices.The number of graph indices based on the degree of vertices is much larger due to
their easy calculation, and the first of them are the first Zagreb index and is defined as follows [8]:

M1(Φ) =
∑

ũ∈V (Φ)

d(ũ)2 =
∑

ũṽ∈E(Φ)

(d(ṽ) + d(ũ)) =
∑

ṽ∈V (Φ)

∑
ṽ∈N(ũ)

d(ṽ)

Later extended into a leap version by Naji et al, in 2017, Naji et al [12] defined as

LM3(Φ) =
∑

ṽũ∈E(Φ)

(d2(ṽ) + d2(ũ))

In 2012, Ghorbani and Hosseinzadeh [7] defined eccentric version of the first Zagreb index as

ξc(Φ) =
∑

ṽũ∈E(Φ)

(ε(ũ) + ε(ṽ))

Sharma et al. proposed eccentric connectivity index in 1997 as [15]

ξc(Φ) =
∑

ṽ∈V (Φ)

d(ṽ)ε(ṽ) (1.1)

Xu and Guo introduced edge version of eccentric connectivity index in 2012 [18]

ξce(Φ) =
∑

f∈E(Φ)

d(f)ε(f) (1.2)

After, The leap version of Sharma’s index is independently introduced by in [13], Manjunathe et al. [11],
and Ghalavand et al. [6] as

Lξc(Φ) =
∑

ṽ∈V (Φ)

d2(ṽ)ε(ṽ) (1.3)

Dendrimers are nanoscale, highly branched, three-dimensional polymeric materials that resemble tree
graphs. Their potential applications in drug delivery, particularly in the treatment of cancer, neurodegener-
ative diseases, and central nervous system (disorders, are widely recognized [1]. Dendrimers offer promising
avenues for efficient molecular delivery due to their unique chemical properties. Previous works have ex-
plored various topological characteristics of dendrimers, including irregularity indices [19], M-polynomials
[9], generalized Zagreb indices [14], and degree-based indices [10].

While several degree- and distance-based indices have been investigated for dendrimers, the leap edge ec-
centricity connectivity index remains unexplored in this context. This study addresses this gap by providing
exact formulations for PAMAM and porphyrin-cored dendrimers, enabling direct structural comparisons.

In this paper, it is computed and compared the leap edge eccentricity connectivity indices of molecular
graphs of polyamidoamine (PAMAM) dendrimers, porphyrin Cored Dendrimer-2, -3, and -4.

2. Preparation

Let G be a chemical graph. In a graph G, the degree of a vertex v, denoted by d(v), is the number
of edges adjacent to v. The 2-distance degree of a vertex v, denoted by d2(v), is the number of vertices
at distance two from v. The eccentricity of a vertex v in a connected graph G, denoted by ε(v), is the
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maximum distance from v to any other vertex in G [3]. If e = u1u2 and f = v1v2 are two edges of G, then
distance between e and f is d(e, f) = min{d(u1, v1), d(u1, v2), d(u2, v1), d(u2, v2)}+ 1 [4].

Polyamidoamine (PAMAM) dendrimers consist of an ethylenediamine core, a repeating branched ami-
doamine internal structure, and primary amine terminal surfaces [5]. Let PAMAM[r] denote the molecular
graph of a PAMAM dendrimer with r generations. Figure 1(a) shows the chemical structure of a PAMAM
dendrimer with 3 generations [16], while Figure 1(b) illustrates its corresponding graph PAMAM [3]. PA-
MAM dendrimer graphs with r generations have |V (PAMAM [r])| = 12×2r+2−23 and |E(PAMAM [r])| =
12×2r+2−24. Porphyrin-cored dendrimers consist of a central core and at least two branches. In the graph

Figure 1: (a) PAMAM dendrimer with 3 generations (b) its graph representation.

of such dendrimers, the central core includes 25 vertices and 36 edges.
Porphyrin core dendrimers-2 (Porphyrin core dendrimers-2) have a central core and 4 branches. Figure 2

shows the structure of porphyrin core dendrimers-2 (D4) [2]. Let the molecular graph of porphyrin core
dendrimers-2 be denoted by PC2[n] for 1 ≤ n. Let n denote dendron-like arms. Therefore, since the
dendrimer in Figure 2 has 4-dendron-like arms, the graph of this structure is PC2[n]. Porphyrin core
dendrimers-3 have a central core and 8 branches. Assume that PC3[n] for 1 ≤ n denote the molecular
graph of porphyrin core dendrimers-3. Here n denotes dendron-like arms. Figure 3 shows the structure
of porphyrin core dendrimers-3 having 3 dendron-like arms (D3) [2]. Porphyrin core dendrimers-4 has a
central core and 12 branches. Assume that PC4[n] for 1 ≤ n denote the molecular graph of porphyrin core
dendrimers-4. Figure 4 shows the structure of porphyrin core dendrimers-4 [2].

3. Main Results

In this section, the leap edge eccentricity connectivity index (LEEC) is introduced and then LEEC of the
molecular graphs of the PAMAM dendrimer, porphyrin cored dendrimer-2, porphyrin cored dendrimer-3,
and porphyrin cored dendrimer-4 are obtained and numerically compared.

With the motivation of Equations ((1.1)-(1.3)), the leap edge eccentric connectivity index is introduced
as

Lξce(Φ) =
∑

f∈E(Φ)

d2(f)ϵ(f) (3.1)

where ϵ(f) = max {d(f, f1) |f1 ∈ E(Φ)} and d2(f) = |{f1 ∈ E(Φ) |d(f, f1) = 2}|.
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Figure 2: Porphyrin Cored Dendrimer-2.

Example 3.1. Let G be a graph with 7 vertices and 8 edges as shown in the Figure 5. Leap edge eccentricity
connectivity index of G is 56.

Proof. From Figure 5 the following Table 1 is obtained. For e1 ∈ E, d2(e1) = |{e3, e6, e7}| = 3. From Eq.

Edge d2(f) ε(f)

e1 3 3
e2 3 2
e3 4 2
e4 2 3
e5 3 3
e6 2 2
e7 3 2
e8 4 2

Table 1: Edge decomposition of the graph.

(3.1), this proof is completed.

Theorem 3.2. Let PC2[n] be the graph of the porphyrin cored dendrimer-2. Then, the leap edge eccentricity
connectivity index of PC2[n] for 2 ≤ n is given by:

Lζce(PC2[n]) = 216n+ 1140 + 2n+3(4n+ 13) + 32
n∑

i=2

2n−i(2n+ 7− i)

Proof. As seen in Figure 2, the core of PC2[n] has 32 edges and each branch contains
∑n

j=0 2
j edges. From

Eq. (3.1), it is obtained the expression:

Lζce(PC2[n]) =
∑
Core

ε(e) d2(e) + 4
∑

Branch

ε(e) d2(e) (3.2)

The 2-distance degree and edge eccentricity values in the core and one branch are given in Table 2 and
Table 3, respectively.
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Figure 3: Porphyrin Cored Dendrimer-3.

d2(f) for E(PC2[n]) ε(f) for E(PC2[n]) Number of edges

4 n+7 4
5 n+6 8
7 n+6 4
7 n+5 4
8 n+5 8
10 n+4 4

Table 2: Edge decomposition of the graph of the core structure according to 2-distance degrees and eccentric distances.

If the data in Table 2 and Table 3 are used in Eq. (3.2), the following equations are obtained:∑
Core

ε(e)d2(e) = 4(n+ 7)4 + 8(6 + n)5 + 4(n+ 6)7 + 4(n+ 5)7

+8(n+ 5)8 + 10(n+ 4)4 = 216n+ 1140 (3.3)

∑
Branch

ε(e) d2(e) = 2n (2(2n+ 7)) + 2n−1 (4(2n+ 6)) + 8
n∑

i=2

2n−i(2n+ 7− i) (3.4)

The proof is completed from Equations (3.2), (3.3) and (3.4). The graphic of the leap edge eccentricity
connection index of the graph is given in Figure 6.

Theorem 3.3. Let PC3[n] be the graph of the porphyrin cored dendrimer-3. Then, the leap edge eccentricity
connectivity index of PC3[n] for n ≥ 2 is given by:

Lζe(PC3[n]) = 240n+ 1328 + 2n+4(4n+ 13) + 64

n∑
i=2

2n−i(2n+ 7− i)
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Figure 4: Porphyrin Cored Dendrimer-4.

d2(f) for E(PC2[n]) ε(f) for E(PC2[n]) Number of edges

2 2n+7 2n

4 2n+6 2n−1

8 2n+5 2n−2

8 2n+4 2n−3

... ... ...
8 n+7 21

8 n+6 20

Table 3: Edge decomposition on a branch of a porphyrin dendrimer-2.
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Figure 5: Graph Example.

Figure 6: Graphic of Lζce(PC2[n]).

Proof. As shown in Figure 3, the core of PC3[n] also has 32 edges and each branch has a similar structure
to those in PC2[n]. By analyzing the structure and using Eq. (3.1), it is obtained the result.

Lζce(PC3[n]) =
∑
Core

ε(e) d2(e) + 8
∑

Branch

ε(e) d2(e) (3.5)

The two-distance degree depending on the edge in the core of the PC3[n] graph and the edge separation of
that edge according to the edge eccentricity are given in Table 4.

d2(f) for E(PC3[n]) ε(f) for E(PC3[n]) Number of edges

8 n+7 4
7 n+6 8
6 n+6 8
8 n+5 8
10 n+4 4

Table 4: Edge separation of the core structure of the PC3[n].

Then∑
Core

ε(e)d2(e) = 4(8(n+ 7)) + 8(6 + n)7 + 8(n+ 6)6 + 8(n+ 5)8 + 10(n+ 4)4

= 240n+ 1328 (3.6)

Since the edge partitions and branch structures are the same as in PC2[n], from Eq. (3.4)-(3.6), it is
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concluded that:

Lζe(PC3[n]) = 240n+ 1328 + 8

[
2n (2(2n+ 7)) + 2n−1 (4(2n+ 6)) + 8

n∑
i=2

2n−i(2n+ 7− i)

]
Figure 7 shows the graph of the leap edge eccentric connection index of PC3[n] graphs.

Figure 7: The graph of the LEECI for PC3[n].

Theorem 3.4. Let PC4[n] be the graph of the porphyrin cored dendrimer-4. Then, the leap edge eccentricity
connectivity index of PC4[n] for n ≥ 2 is given by:

Lζe(PC4[n]) = 272n+ 1512 + 2n+3(12n+ 39) + 96

n∑
i=2

2n−i(2n+ 7− i)

Proof. PC4[n] has 12 branches and a central core. From Figure 4, the core has 32 edges, and each branch
has the same structure as in PC2[n]. Table 5 shows the edge partitioning according to the 2-distance degrees
of the core and the eccentric distances of the edges.

d2(f) for E(PC4[n]) ε(f) for E(PC4[n]) Number of edges

8 n+6 16
8 n+7 4
9 n+5 8
10 n+4 4

Table 5: Edge decomposition in the core of the graph PC4[n].

Using Table 5, Eq. (3.1) and Eq.(3.4), it is computed:

Lζe(PC4[n]) = 272n+ 1512 + 12(2n (2(2n+ 7)) + 2n−1 (4(2n+ 6))

+ 8
n∑

i=2

2n−i(2n+ 7− i))

Figure 8 shows the graph of the equation Lζe(PC4[n]).

Theorem 3.5. Let PAMAM [r] be the graph of the PAMAM dendrimer. Then, the leap edge eccentricity
connectivity index of PAMAM [r] is given by:

Lζce(PAMAM [r]) = 70r + 16 + 2r+1(252r − 31) +
r−1∑
i=1

2r+1−i(308r − 25 + 154i)
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Figure 8: The graph of the LEECI for Lζce(PC4[n]).

Proof. The PAMAM dendrimer graph has 3 edges in the core and 4 branches. There are
∑r

i=1 2
i+2 edges

in each branch. From Eq. (3.1), ıt is obtained that

Lζce(PAMAM [r]) =
∑
Core

ε(e)d2(e) +

r−1∑
i=1

2i+1
∑

Branch

ε(e)d2(e) + 2r+1
∑

Branch

ε(e)d2(e) (3.7)

The two-distance edge degree and edge eccentricity numbers of the three vertices in the core are shown
in Table 6.

d2(f) ε(f)

3 2 + 7r
4 1 + 7r
3 2 + 7r

Table 6: The two-distance edge degree and edge eccentricity numbers of the three vertices in the core.

There are 4 branches in the PAMAM [1] graph with extension r = 1. There is a tree structure of length
7 with 8 vertices in one branch. The two-distance edge degree and edge eccentricity of the edges in the r
extension in the PAMAM [r] graph are given in Table 7.

d2(f) ε(f)

1 2 + 14r
1 1 + 14r
3 14r
2 14r − 1
2 14r − 2
2 14r − 2
4 14r − 3
3 14r − 4

Table 7: Two-distance edge degree and edge eccentricity in a branching r extension.

The edge decomposition in a branch of the graph PAMAM [r] in each extension i in the extensions
1 ≤ i ≤ r − 1 is given in Table 8.

If the data in Tables 6, 7 and 8 are used in Eq. (3.7), the following equation is obtained:
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d2(f) ε(f)

3 2− 7i+ 14r
3 1− 7i+ 14r
3 14r − 7i
2 14r − 1− 7i
2 14r − 2− 7i
2 14r − 2− 7i
4 14r − 3− 7i
3 14r − 4− 7i

Table 8: Two-distance edge degree and edge epicenter of a branch in branching i.

Lζe(PAMAM [r]) = 70r + 16 + 2r+1(252r − 31)

+

r−1∑
i=1

2r+1−i(3(14r + 2− 7i) + 3(14r + 1− 7i)

+ 3(14r − 7i) + 2(14r − 1− 7i) + 2(14r − 2− 7i)

+ 2(14r − 2− 7i) + 4(14r − 3− 7i) + 3(14r − 4− 7i)).

Figure 9 shows the graph of the leap edge eccentric connection index of the graph of PAMAM dendrimer.

Figure 9: Graph of the LEECI for PAMAM [r].

4. Conclusion

Today, predicting the properties of chemical structures using computer-aided methods has become in-
creasingly important. By modeling chemicals as graphs and applying graph-theoretical concepts, numerical
results obtained from these graphs can be used to predict the characteristics of the corresponding molecules.

In this study, it is calculated the leap edge eccentricity connectivity indices of the molecular graphs of
three porphyrin-cored dendrimers and one PAMAM dendrimer. Figure 10 presents the LEECI values for
Porphyrin Cored Dendrimer-2, -3, and -4.

As shown in Figure 10, the dendrimer with the highest number of branches and edges exhibits the
highest LEECI value. Figure 11 compares the LEECI values of the PAMAM dendrimer and the three
porphyrin-cored dendrimers.

Figure 11 clearly indicates that the LEECI value for the PAMAM dendrimer increases at a significantly
higher rate than those of the porphyrin-cored dendrimers as the number of branches increases.
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Figure 10: Leap edge eccentric connectivity indices of porphyrin core dendrimer graphs.

Figure 11: Dendrimer graphs according to index values.

These findings indicate that the LEECI is highly sensitive to changes in dendrimer branching patterns,
making it a promising descriptor for predicting the structural and functional properties of nanoscale macro-
molecules. Future work may focus on correlating LEECI values with experimental biological activity and
physicochemical data to further validate its applicability in drug design.
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