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Abstract

In this study, the optimized decomposition method (ODM) is employed to investigate nonlinear fractional
partial differential equations. Specifically, the method is applied to construct approximate analytical so-
lutions of the fractional nonlinear Burger’s equation (FBE), with the fractional derivatives defined in the
Caputo sense. A comparative analysis is carried out with the Sumudu variational iteration method (SVIM).
The numerical simulations demonstrate the robustness and efficiency of the proposed method, confirming
its ease of implementation, reliability, and capability in capturing the essential dynamical behavior of the
system.
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1. Introduction

Fractional calculus, the study of differentiation and integration of non-integer order, has emerged as a
powerful branch of applied mathematics. Over recent decades, numerous formulations of fractional deriva-
tives have been developed and extensively studied [I}, 2, B]. Nonlinear fractional partial differential equations
constitute a fundamental class of models within this framework, renowned for their ability to describe com-
plex phenomena across diverse scientific and engineering disciplines, including physics, chemistry, biology,
fluid dynamics, and quantum field theory.

A paradigm of such models is the fractional Burger’s equation (FBE), a cornerstone in fluid mechanics.
Its solutions are crucial for understanding the intricate interplay between nonlinear convection and diffusive
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processes. Consequently, a substantial arsenal of analytical and numerical techniques has been developed to
solve the FBE and its coupled forms [4, [5 6] [7, [8, O [10]. The solution of fractional differential equations has
been approached using a diverse array of methods, including the Adomian decomposition method (ADM)
[31], the Hussein—Jassim method (HJM) [32], the Chebyshev spectral collocation method [33], the Sawi
decomposition method [34], integral transform method [35], the Sumudu decomposition method (SDM)
[36], the Elzaki homotopy analysis method [37], the modified homotopy perturbation method [38], the
Laplace variational iteration method [39], the Laplace homotopy analysis method [40], among many others
[A1], 42, 43, {4, 45, 46, 47, 48, 49, 50, K1, 52, 53, 54, 55].

Specific applications to Burger’s-type equations demonstrate this methodological diversity. For instance,
the authors in [I1] employed the triple Laplace Adomian decomposition method to solve both regular and
singular coupled Burger’s equations. Jassim et al. [12] successfully applied the Sumudu variational iteration
method (SVIM) to obtain solutions for fractional Burger’s and coupled fractional Burger’s equations. Shafiq
et al. [I3] developed an efficient numerical scheme based on cubic B-spline functions for solving the time-
fractional Burger’s equation involving the Atangana—Baleanu derivative. Alhefthi et al. [I5] introduced a
robust technique, namely the G-Laplace transform, to derive exact solutions of both the Burger and coupled
Burger equations. Similarly, Agarwal et al. [I6] constructed effective approximate analytical and numerical
solutions for one and two-dimensional fractional coupled Burger’s equations using the homotopy analysis
Elzaki transform method (HAETM) and the iterative Elzaki transform scheme (IETM). More recently, El-
badri [17] provided approximate solutions to the fractional Burger’s equation with the Caputo-Katugampola
fractional derivative by employing the v-Laplace decomposition method. These advancements collectively
highlight the persistent interest in enhancing the accuracy and efficiency of solving such complex equations.

Recently, Zaid Odibat introduced the optimized decomposition method (ODM) [19, 20] as an effective
analytical technique for solving nonlinear differential equations. The core strength of ODM lies in its linear
approximation of nonlinear terms, which facilitates the decomposition of the solution into a convergent se-
ries. This methodology has been extended to address a broad class of initial value problems involving both
fractional ODEs and time-fractional PDEs [21]. Building on this foundation, Ahmed [30] successfully ap-
plied the Laplace optimized decomposition method (LODM) to investigate the fractional logistic differential
equation under the Caputo derivative.

The primary motivation for proposing the Optimized Decomposition Method in this work stems from
its unique capability to address the fundamental challenges posed by the fractional Burger’s equation. This
equation embodies the complex interplay between nonlinear convection and fractional diffusion processes,
which often causes conventional methods to struggle with balancing accuracy and convergence. ODM effec-
tively tackles these challenges through its innovative linearization approach, which optimizes the treatment
of nonlinear terms while preserving the essential physical characteristics of the solution. The method’s
mathematical consistency, computational efficiency, and demonstrated superior accuracy compared to ex-
isting techniques make it an ideal choice for handling complex fractional models in scientific computing and
engineering applications.

2. The Governing Equation

The Burgers’ equation, also referred to as the Bateman-Burgers equation, is a cornerstone of nonlinear
partial differential equations. It was first introduced by Bateman in 1915 [25] and later studied in greater
depth by Burgers in 1948 [24]. The equation finds wide applications across several branches of applied
mathematics and engineering, including fluid mechanics, gas dynamics, traffic flow, nonlinear acoustics, and
cancer growth modeling [26, 27, 28, 29]. The fractional Burgers’ equation (FBE) is defined as follows:

°Difu+ auuy = Vg, t>0, 0<a<l, (2.1)
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subject to the initial condition:

u(z,0) = f(x). (2.2)

Here, a is an arbitrary constant and v denotes the kinematic viscosity. When v = 0, the equation reduces
to the inviscid Burgers equation [24].

This work extends the application of the optimized decomposition method (ODM) to derive approx-
imate analytical solutions for the fractional Burger’s equation. The obtained results are compared with
those derived from the Sumudu variational iteration method (SVIM) [12] to demonstrate the efficacy and
advantages of the proposed approach.

3. Preliminaries

In this section, we briefly recall some fundamental definitions and properties of fractional calculus that
will be useful in the subsequent analysis.

Definition 3.1 (Riemann-Liouville fractional integral). The Riemann-Liouville fractional integral of order
a > 0 of a function f(t) € C([a,b]), with a < t < b, is defined as [14, [1§]:

(Ito‘f)(t):rl)/ : I g aso, (3.1)

(a

where I'(+) denotes the gamma function.

Key properties of the Riemann-Liouville integral (for «, 5 > 0, and k£ > —1) include:
e Identity: I?f(t) = f(t)

e Semigroup property: IgBItaf(t) = ItaIth(t) = I,gBJFaf(t)

_ _D(k+1) toz-'rk

e Power rule: [*tF = Tlathtl)

Definition 3.2 (Caputo fractional derivative). The Caputo fractional derivative of order m — 1 < o« < m,
m € N, for a function f(t) is defined as [14} 18]:

DR = s [ (=7 (3.2)

I'm-—a«
Basic properties of the Caputo derivative include:

e Fundamental theorem: I¢D$f(t) = f(t) — Sy g f* (0)%
e Inverse property: ¢D{ I f(t) = f(t)

e Power rule: $D¢tF = %tkﬂl for k > [a] —1

e Constant rule: $D¢(c) = 0 for any constant ¢

Remark 3.3. A crucial property of the Caputo derivative is its consistency with integer-order calculus. In
the limit as the fractional order o approaches an integer m (i.e., « — m™), the definition in (3.2]) converges
to the standard m-th derivative:

tim [op () = L0,

a—m— o dtm
This limiting behavior ensures a smooth transition between fractional and classical calculus, making the
Caputo definition particularly suitable for modeling physical systems.

(3.3)
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4. Analysis of the Optimized Decomposition Method (ODM)

We begin by considering the general form of the following nonlinear fractional partial differential equation
(FPDE):
82
22

where N[u] denotes a nonlinear operator. Let the nonlinear function be defined as F (°Df‘u, u, tyzy) =
°Du — ugy — Nu]. Applying the first-order Taylor expansion of F' (°Df*u, u, uz;) at t = 0 yields:

cDu(z,t) = ~—u(z,t) + N[u(z,t)], t>0, 0<a<l, (4.1)

F (°Dfu, u,ugy) = “Difu(x,t) — ugy(x,t) — Co[N]u, (4.2)
where
ON
N = 220 4.
aoiv = Gal (4.3

Hence, Eq. (4.1) can be rewritten as:

Rlu(z, )] = Nfu(z, )] — Co[N]u(z, 1), ¢ >0, (4.4)
with

Rlu(x,t)] = ‘Dfu(x,t) — ugy(x, t) — Co[N]u(z,t), (4.5)

denoting a linear operator.
In the optimized decomposition method (ODM), the unknown solution is expressed as a series expansion:

t)=> un(x,t), (4.6)
n=0

and the nonlinear operator N[u] can be decomposed by an infinite series of polynomials:

= f: An, (4.7)
n=0

where A,, are the Adomian-type polynomials defined by:

Ap(x,t) = 1 [d)\" (Z )\kuk (z,t >] , n>0. (4.8)
A=0

Theorem 4.1 (Theorem 1). The solution of nonlinear FPDE with the initial condition u(x,0) = f(x)
can be represented in series form @, with the components un(xz,t) generated iteratively as follows:

(4.9)

o)+ gt
|

ug(z,t) = I | Ay (z,t) + @ul(a:,t) - <88 5+ C’O[N]> ul(x,t)} ,

1
2 2
Upy1(x,t) = If [An(a:,t) + aaxzu”(xat) — (88 5+ Co[N ]) (Un(x,t) — up—1(x,t))|, n>2.

Remark 4.2. Equation (4.9) clearly shows that the Adomian decomposition method (ADM) [22] 23] emerges
as a special case of ODM when Cy[N] = 0.
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5. Convergence Analysis

In this section, we provide a rigorous convergence analysis of the Optimized Decomposition Method
(ODM) applied to the general nonlinear fractional PDE of the form:

°Diu(z,t) = Llu(z,t)] + Nu(x,t)], t>0, 0<a<l, (5.1)

where L is a linear operator and N is a nonlinear operator. The initial condition is given by wu(z,0) =

f(x).
Let B be a Banach space of continuous functions on a suitable domain Q C R x [0, 7], equipped with
the supremum norm:

Jull = sup |u(z,1)].
(z,t)eQ

We assume the following:
1. The nonlinear operator IV is Lipschitz continuous in u, i.e., there exists a constant Ly > 0 such that:
IN[u] = N[v]|| < Ly|lu—v| Yu,v € B.

2. The linear operator L is bounded on B.
3. The fractional integral operator I{* is bounded on B.

The ODM recurrence relation, as defined in (4.9)), can be expressed as a fixed-point iteration:

Upt1 = Tuyp], n >0, (5.2)

where the iteration operator 7' is defined by:

T(u] = uo + I? [L[u] + N{u] — Co[N]u] . (5.3)

Theorem 5.1 (Convergence of ODM). Under the above assumptions, and for a sufficiently small time
T, the ODM iteration converges to the unique solution of the nonlinear fractional PDE i the
Banach space B.

Proof. We show that T' is a contraction mapping on B.
Let u,v € B. Then:

[T [u] = T[]} = [If [Lu — v] + (N[u] = N[v]) = Co[N](u — v)]|
< IEEIFALL - flu = o]l + Ly flw = o] + [Co[N]] - [|u = v])
< I (NEN 4 L + |Co[NT|) [Ju — ]|
Let:

K = [[IF[ (1L 4+ L + |Co[N]]) -

Since ||If|| — 0 as T — 0, we can choose T sufficiently small such that K < 1. Therefore, T is a
contraction mapping on B.
By the Banach fixed-point theorem, the sequence {u,} generated by the ODM recurrence converges to

the unique fixed point u* € B, which is the solution of the original fractional PDE. O
ON . . . .
Remark 5.2. The parameter Cy[N] = B plays a critical role in the convergence. By optimally choosing
U li=o

Cp[N], the constant K is minimized, leading to faster convergence compared to the standard ADM where
Cy[N] = 0. This explains the superior numerical performance of ODM observed in Section 5.
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6. Applications

In this section, the Optimized Decomposition Method (ODM) is applied to solve the Burger fractional
equation (2.1). The linear approximation of the function
F (°Dfu, ugy, u) = Difu + auty — Vg, (6.1)

at t = 0 is given by

F (°Dfu, ugg, u) = Dfu — vugy + (aug(z,0)) u. (6.2)
Hence, from Eq. (6.1]), we have:

Co[N] = —auy(z,0) = —a({%f(ac). (6.3)

According to Theorem the recursive relation for the solution series is:

= I |—ado(e.t) + v ()]
uz(z,t) = If* | —aAi(z,t) + vy Qul(:c t) — < 88 aaaxf(a:)) ul(az,t)} ,

Upt1(z,t) = I |—aAp(z, t) + V8x2 Up(z, 1) ( A — aax )) (un(x,t) — un_l(x,t))] , n>2.
(6.4)

The Adomian polynomials A, (z,t) corresponding to the nonlinear term are defined as follows:

Ap(z,t) = ugyuo,

Aq(x,t) = upgug + ugzup,

Ag(x,t) = upzug + uizu + ugug, (6.5)
Az(x,t) = uopus + UizU2 + U2, Ut + UBLU-

6.1. Example 1

Consider the inviscid case of the fractional Burger equation, taken a = 1, v = 0, and u(z,0) = f(x) =

Cx + &, where ¢ # 0 and £€ R. This corresponds to Eqs. (2.1) and (2.2). The fractional PDE reduces to

‘Difu+wuu, =0, t>0, 0<a<l, (6.6)
with the initial condition;
u(z,0) =z +¢&. (6.7)
For a = 1, the exact solution is u(z,t) = lef:gf

Applying the optimized decomposition method, the first few components of the series of solution are as

follows:
ug(z,t) = Cx + &,
uy(z,t) = _CFC(Zigl)ta’ 08
ug(z,t) = C2r€2ma—'fl)t2a’ I'(2a+1) "
1 o 1 5 “
us(z,1) = (Cx +€)C2 [th - (1"(3a+1) + FQ(a+1)F(3a+1)> t ] ’

Thus, an approximate solution up to the third term is given by:
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3
u(z,t) = uo(x,t) + Zun(a:,t)
n=1 (6.9)

B ¢ . 22 N 1 I'2a+1) o
_@x+9[1_rm+¢f T@asD _@<P®a+w*ﬁﬂw+1ﬁ@a+n>ﬁ]'

6.2. FExample 2

Consider the fractional Burgers equation with a = 1, v = 1, and initial condition u(z,0) = f(x) = =z,
which corresponds to Egs. (2.1) and (2.2)). The problem reduces to:
‘Difu+uty = Uz, t>0, 0<a<l, (6.10)

with the initial condition:

u(x,0) = . (6.11)

For a = 1, the exact solution is u(z,t) = -
Applying the optimized decomposition method (ODM), the first few components of the solution series
are:

uo(x,t) =,
uy(z,t) = — Lo

1L, F(%-F 1) ’

I A (6.12)
@) = eyt
1 1 I‘(2a+ 1)
=g | g2 _ i

us(z,t) = I'(20 + 1) (F(3a+1) FQ(QH)F(?’QH)) }

Thus, the approximate solution up to the third term is:

3
u(z,t) = uo(x,t) + Zun(ac,t)
n=1 (613)

A 2 . 1 (20 + 1) .
_$[1 Matl) +F(2a+1)t2 <r(3a+1)+r2(a+1)r(3a+1)> 3]'

The problem is solved using the Optimized Decomposition Method (ODM). A comparison of absolute
errors between the exact solution, the Sumudu variational iteration method (SVIM) [12], and ODM is
presented in Table[l] Figure [I]illustrates the computed solutions for the first three terms obtained by ODM
in comparison with those derived from SVIM. Furthermore, Figure [2| displays the approximate solutions
generated by ODM for different values of the fractional order «. The results clearly indicate that ODM
provides more accurate solutions and achieves faster convergence than SVIM [12].

7. Conclusion

In this work, we applied the Optimized Decomposition Method (ODM) to solve the fractional non-
linear Burgers’ equation. The results show that ODM provides highly accurate approximate solutions,
outperforming the Sumudu Variational Iteration Method (SVIM) and matching well with exact solutions
where available. This demonstrates ODM’s strength as a reliable approach for handling nonlinear fractional
differential equations.

Looking forward, ODM could be extended to tackle more complex scenarios—such as problems in higher
dimensions or real-world applications—and could be further refined to achieve even faster convergence rates.
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Table 1: Absolute errors of approximate solutions for the fractional Burgers’ equation (6.10) when a = 1.

T t Exa.ct SVIM ODM Absolute Error
Solution

SVIM ODM

0.05 0.09524 0.09525 0.09524 0.00001 0.00000
0.1 0.1 0.09091 0.09097 0.09095 0.00006 0.00004
1 0.05000 0.06667 0.05000 0.01667 0.00000

0.06 047619 0.47623 0.47622 0.00004 0.00003
0.5 0.1 0.45455 0.45483 0.45475 0.00028 0.00020
1 0.25000 0.33333 0.25000 0.08333 0.00000

0.06 0.85714 0.85721 0.85719 0.00007 0.00005
0.9 0.1 0.81818 0.81870 0.81855 0.00052 0.00037
1 0.45000 0.60000 0.45000 0.15000 0.00000

11

u(1,t)

—— exact =+ SVIM ==== ODM

Figure 1: Comparison of ODM (3-term approximation) and SVIM (2-term approximation) solutions with the exact solution
for « = 1 at £ = 1. The superior convergence of ODM is evident, with the 3-term ODM solution nearly overlapping the
exact solution, while SVIM shows significant deviation, particularly for ¢ > 0.5. This demonstrates the accelerated convergence
achieved through the optimized linearization in ODM.
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Figure 2: Behavior of ODM solutions for the fractional Burgers’ equation (6.10)) with varying « values. The figure demonstrates
the continuous transition from fractional to classical dynamics, highlighting the effect of fractional differentiation on temporal
behavior and wave propagation characteristics.
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