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MATRIX LIE RINGS THAT CONTAIN A
ONE-DIMENSIONAL LIE ALGEBRA OF SEMI-SIMPLE

MATRICES

EVGENII L. BASHKIROV ∗

Abstract. Let k be a field and k̄ an algebraic closure of k. Suppose that k
contains more than five elements if char k 6= 2. Let h be a one-dimensional
subalgebra of the Lie k-algebra sl2(k̄) consisting of semi-simple matrices.
In this paper, it is proved that if g is a subring of the Lie ring sl2(k̄)
containing h, then g is either solvable or there exists a quaternion algebra
A over a subfield F of k̄ such that F ⊇ k and g is isomorphic to the Lie
F -algebra of all elements in A that are skew-symmetric with respect to a
symplectic type involution defined on A.
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This paper addresses a task which has its roots in the theory of linear
(matrix) groups. Within the framework of this theory the attention of many
authors was for long attracted to the study of linear groups over various asso-
ciative rings containing the subgroup of diagonal matrices. One should remark
that the most complete survey devoted to the subject is presented in 1. In the
course of such an investigation the question about the description of subgroups
of the special linear group of degree 2 over a field that contain the subgroup of
diagonal matrices (with determinant 1) turned out to be unexpectedly tough
(2., 3., 4., 5.). Such situation is favored by linear groups of small degrees
which are not subject to many of rules that apply to linear groups of larger
degrees. Accordingly, while small linear groups sound straightforward, many
of very real problems concerning them are far from being settled. For exam-
ple, the solution of the above question given in 6. has extremely calculating
character and, therefore, can not be extended to groups which contain not
the whole group of diagonal matrices but only a part (a subgroup) of this
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group, for instance, the subgroup of diagonal matrices over a proper subfield.
In connection with this, it seems appropriate to consider a comparable ques-
tion about matrix Lie rings, that is, the question about the examination of
Lie rings consisting of matrices of degree 2 with trace zero provided these
rings contain the abelian Lie algebra of diagonal matrices. Under enough gen-
eral assumptions, such rings turned out to admit a simple, clear and uniform
description, namely, each Lie ring of this kind is a Lie algebra of elements
of a suitable quaternion algebra that are skew-symmetric with respect to an
involutary anti-automorphism defined on this quaternion algebra.

In order to formulate our main result, we first remind some standard facts
concerning the structure of associative division algebras with involutions.

Let A be an associative division algebra of finite dimension m2 (m > 1)
over its center F . Assume that A is an algebra with an involution σ the
restriction of which to F is identical. Then the dimension (over F ) of the
space of elements in A, which are symmetric with respect to σ, is equal to
either m(m+1)

2 or m(m−1)
2 . In the first case we say that σ is of orthogonal type

and in the second that σ is of symplectic type.
For the reader convenience we recall now the definition of quaternion alge-

bras. Let a field F of characteristic 6= 2 and two non-zero elements a, b ∈ F
be given. Denote by A a 4-dimensional F -vector space and take a base
1, u, v, w for A. We define an associative multiplication on these basis ele-
ments by the following conditions: the element 1 satisfies the identity relation,
u2 = a, v2 = b, uv = −vu = w. Then we extend this multiplication by linearity
to a multiplication on A. The algebra over F obtained by this construction is
called a quaternion algebra and is denoted by

A =
(

a, b

F

)
.

The algebra A admits a unique symplectic type involution, namely, the invo-
lution defined by the following conditions: 1 → 1, u → −u, v → −v, w → −w.
One can associate to each element c = c0 + c1u + c2v + c3w (ci ∈ F ) in A the
matrix

gc =
(

c0 + c1
√

a (c2 + c3
√

a)b
c2 − c3

√
a c0 − c1

√
a

)

such that the equalities gc+gd = gc+d, gcgd = gcd hold for all c, d ∈ A. Thus we
construct an exact representation of the quaternion algebra A by matrices of
degree 2 either over the field F (if a is a square in F ) or over the field F (

√
a)

(if a is not a square in F ). Besides, it is well known that each quaternion
algebra is either a division algebra or is isomorphic to the algebra of 2 × 2
matrices with entries lying in its center.

If A is an associative ring and a, b ∈ A, then we write [ab] to denote the
Lie product ab− ba. If P is a field, n is an integer such that n ≥ 2, then the



Matrix Lie rings 113

set sln(P ) of n × n matrices over P with trace zero is a Lie P -algebra with
respect to [ab]. Now we are in a position to formulate our main result.

Theorem 1. Let k be a field and k̄ an algebraic closure of k. Suppose that k
contains more than five elements if char k 6= 2. Let h be a one-dimensional
subalgebra of the Lie k-algebra sl2(k̄) consisting of semi-simple matrices. If g is
a subring of the Lie ring sl2(k̄) containing h, then g is either solvable, or there
exists a quaternion algebra A over a subfield F of k̄ such that F ⊇ k and g is
isomorphic to the Lie F -algebra of all elements in A that are skew-symmetric
with respect to a symplectic type involution defined on A.

Crucial here, in the proof of Theorem 1, is the fact that the Lie ring g, which
appears in Theorem 1, is in reality, a Lie algebra over a suitable subfield of
the field k̄. To prove Theorem 1 we begin with giving notations which will be
used hereafter in this paper.

Now let n be again a natural number not less than 2. Let δ denote the
”Kronecker delta map”: δij = 0 unless i = j and δii = 1. Then we define the
set of matric units {eij | 1 ≤ i, j ≤ n} where eij is the matrix whose entry in
the (i, j) position is δij .

Let P be a field. By Mn(P ) we denote the set of all n × n matrices over
P . Suppose P admits a non-trivial automorphism J . If x =

∑n
i,j=1 xijeij ∈

Mn(P ) (xij ∈ P ), then xJ =
∑n

i,j=1 xJ
ijeij , and tx is the transpose of x. Fix

Φ ∈ Mn(P ). Let us designate by sun(P, Φ, J) the set of all x ∈ Mn(P ) such
that the trace of x is zero and the equation xΦ + Φ txJ = 0 is satisfied. If
P0 is a subfield of P consisting of elements fixed by J , then sun(P, Φ, J) is a
subalgebra of the Lie P0-algebra sln(P ).

If X is a subset of an additive abelian group, then X# denotes the set of
all non-zero elements in X.

If the field P is a quadratic extension of a subfield k, J is a unique non-

trivial automorphism of P over k, b ∈ k# and Φ =
(

b 0
0 −1

)
, then, in what

follows, we write su2(P, k, b) instead of su2(P, Φ, J).
When n = 2, set X = e12, Y = e21,H = e11− e22. If k is a field, b ∈ k# and

θ is a fixed non-zero element in an algebraic closure k̄ of k such that θ2 ∈ k,
then the set kθH + k(bX + Y ) + kθ(bX − Y ) is denoted by wsu2(k(θ), b).
Clearly, wsu2(k(θ), b) is a subalgebra of the Lie k-algebra sl2(k̄). Assume
char k 6= 2. Then it is evident that wsu2(k(θ), b) = su2(k(θ), k, b) if θ 6∈
k and wsu2(k(θ), b) = sl2(k) if θ ∈ k. In addition, if we used the above
representation of the quaternion algebra

(
θ2,b
k

)
:= A by matrices of degree 2,

then wsu2(k(θ), b) is the set of all elements in A that are skew symmetric
with respect to a unique symplectic type involution defined on A. Therefore, to
prove Theorem 1 it is enough to predict the validity of the following statement.
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Proposition 2. Let k, k̄, g, h be as in Theorem 1. Suppose also that the ring
g is not solvable. Then g is conjugate by an appropriate matrix in the general
linear group GL2(k̄) to the Lie ring wsu2(R(θ), b) where R is a subfield of k̄
containing k.

The proof of Proposition 2 requires beforehand establishing several auxiliary
results. The first of these results, which concerns the description of subrings
of the ring sl2(k̄) containing sl2(k), will be proved in the more general setting
than it is required within the framework of this paper. This will serve to
highlight the lack, in full measure, of parallelism between linear groups and
matrix Lie rings. Notice that for fields of characteristic zero, Proposition 3
below follows from 7. In what follows, we denote by diag(a1, . . . , an) the
diagonal matrix of order n, which contains elements a1, . . . , an on the diagonal.

Proposition 3. Let k be a field of characteristic p, k̄ an algebraic closure
of k, n an integer, n ≥ 2. Suppose p 6= 2. Let g be a subring of the Lie
ring sln(k̄) containing sln(k). Then there exists a subfield L of k̄ such that g
normalizes sln(L). More precisely, either g = sln(L) where L is a subfield of k̄
containing k, or p > 0, n is divisible by p, and g is generated by the ring sln(L),
where L is a subfield of k̄ containing k, and by a set of diagonal matrices
diag(c1, c2, . . . , cn) ∈ sln(k̄) such that the elements c1 − c2, c1 − c3, . . . , c1 − cn

belong to L.

Proposition 3 is an immediate consequence of the following statement.

Lemma 4. Let k, k̄, n, p be such as in Proposition 3. If g is a subring of the Lie
ring sln(k̄) generated by sln(k) and by a matrix a =

∑n
i,j=1 aijeij ∈ sln(k), then

there exists a subfield P of k̄ such that g normalizes sln(P ). More precisely,
either g = sln(P ) where P is a subfield of the field k̄ obtained by adjunction
to k of the elements aij (1 ≤ i 6= j ≤ n), a11 − ajj (2 ≤ j ≤ n), or p > 0, n
is divisible by p, and g is generated by the ring sln(P ) where the field P is as
above, and by the matrix diag(a11, a22, . . . , ann).

Proof. We divide the proof of the lemma into several steps.
1) If i0, j0 are integers such that 1 ≤ i0 6= j0 ≤ n, then kaj0i0ei0j0 ⊆ g for

[−r

2
ei0j0 , [ei0j0 , a]] = raj0i0ei0j0

where r ∈ k.
2) If i0, j0 are integers such that 1 ≤ i0 6= j0 ≤ n and αei0j0 ∈ g for a

non-zero α ∈ k̄, then kαej0i0 ⊆ g for [ r
2ej0i0 , [αei0j0 , ej0i0 ]] = rαej0i0 where

r ∈ k.
3) Let i0, j0, q0 be pairwise distinct integers belonging to the set {1, 2, . . . , n}

and α a non-zero element in k̄ such that kαei0j0 ⊆ g. Then kαei0q0 ⊆ g and
kαej0q0 ⊆ g.
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Indeed, the first inclusion follows from the equality [rαei0j0 , ej0q0 ] = rαei0q0

with r ∈ k. To prove the second we recall that by 2) kαej0i0 ⊆ g, and so,
according to the first inclusion of the present step, kαej0q0 ⊆ g.

4) Let i0, j0, q0, p0 be pairwise distinct integers in the set {1, 2, . . . , n} and
kαei0j0 ⊆ g for some non-zero α ∈ k̄. Let us make certain of that kαeq0p0 ⊆ g.

Indeed, we apply 3) to the numbers i0, j0, q0 to get the inclusion kαej0q0 ⊆ g.
So, making use of 3) to the triplet j0, q0, p0, we obtain kαeq0p0 ⊆ g, as required.

5) Steps 1)–4) imply kai0j0ei1j1 ⊆ g for any quadruple {i0, j0, i1, j1} ⊆
{1, 2, . . . , n} such that i0 6= j0, i1 6= j1. In particular, aijeij ∈ g for all i, j, 1 ≤
i 6= j ≤ n, and so a′ = a11e11 + a22e22 + · · · + annenn ∈ g. Therefore,
[a′, ke1j ] = k(a11 − ajj)e1j ∈ g for all j = 2, 3, . . . , n.

6) Again, let i0, j0 be integers such that 1 ≤ i0 6= j0 ≤ n. If α, β are non-
zero in k̄ and αei0j0 , βei0j0 ∈ g, then kαβei0j0 ⊆ g by virtue of the equality
[[βei0j0 , αej0i0 ],

r
2ei0j0 ] = rαβei0j0 (r ∈ k). Since all the elements aij (1 ≤ i 6=

j ≤ n), a11 − ajj (2 ≤ j ≤ n) are algebraic over k, we obtain from step 5)
that sln(P ) ⊆ g. Further, as a11 − a22 ∈ P, a11 − a33 ∈ P, . . . , a11 − ann ∈ P ,
we have (n − 1)a11 − a22 − a33 − · · · − ann = na11 ∈ P . Suppose first that
n is not divisible by p (this always takes place when p = 0). Then a11 ∈ P ,
and so a22, a33, . . . , ann ∈ P . With this in mind, we have a ∈ sln(P ), and
therefore g = sln(P ). Suppose now that n is divisible by p (in particular,
p > 0). By 5), a′ =

∑n
i=1 aiieii ∈ g, and if b =

∑n
u,q=1 buqeuq ∈ sln(P ), then

[a′b] =
∑n

u,q=1 euqbuq(auu − aqq) ∈ sln(P ), i. e., a′ normalizes sln(P ). The
lemma is proved. ¤

When n = 2, Lemma 4 may be formulated as follows.

Lemma 5. Let k be a field and k̄ be an algebraic closure of k. Assume
char k 6= 2. Let g be a subring of the Lie ring sl2(k̄) such that g ⊇ sl2(k).
Then g = sl2(L) where L is a subfield of k̄ such that L ⊇ k.

It is the last lemma that is the statement which will be used in the proof of
Proposition 2.

Now let K be a field with characteristic different from 2 and θ be an element
in an algebraic closure of K such that θ 6∈ K, θ2 ∈ K. Let b ∈ K#. The
following lemma features the more meaningful cases of the description of Lie
rings which are intermediate between su2(K(θ),K, b) and sl2(K(θ)).

Lemma 6. Any subring g of the Lie ring sl2(K(θ)) containing the subring
su2(K(θ),K, b) and the matrix U = dθH + eX + fY with d ∈ K, e, f ∈ K(θ)
and ef ∈ K, coincides either with su2(K(θ),K, b) or with sl2(K(θ)).

Proof. We distinguish three cases for U : 1) e = f = 0; 2) e 6= 0, f 6= 0; 3)
exactly one of e, f does not vanish.

If 1) takes place, then U ∈ su2(K(θ),K, b), and so g = su2(K(θ), K, b).
Let 2) occurs. Denote by J a unique non-trivial automorphism of the field



116 Bashkirov

K(θ) over K. From the condition of the lemma, we can write e = rfJ with
r ∈ K#. If r = b, then U ∈ su2(K(θ),K, b), and so g = su2(K(θ), K, b).
Assume r 6= b. Then V = dθH + bfJX + fY ∈ su2(K(θ),K, b), and hence
V − U = (b − r)fJX ∈ g. Thus g contains a matrix W = sX with s ∈
K(θ)#. Employing this fact, we find successively [KθH, W ] = KθsX ⊆ g and
[KθH, θsX] = KsX ⊆ g. Since the elements θs, s form a basis of K(θ) over
K, we have K(θ)X ⊆ g. Therefore, [K(θ)X, bX + Y ] = K(θ)H ⊆ g, and so
[K(θ)H, bX + Y ] = K(θ)(bX − Y ) ⊆ g. Now, letting t to be an arbitrary
element in K(θ), we see that tbX and t(bX − Y ) lie in g whence K(θ)Y ⊆ g.
Thus, K(θ)H, K(θ)X,K(θ)Y ⊆ g, and we conclude that g = sl2(K(θ)).

If 3) takes place, then it is easily seen that g contains an element sX with
s ∈ K(θ)#. So proceeding as in 2), we show that g = sl2(K(θ)) completing
the proof of the lemma. ¤

Our next lemma gives, in fact, the description of Lie rings containing an
abelian Lie algebra of diagonal matrices.

Lemma 7. Let k be a field, k̄ an algebraic closure of k; let θ, a, b be non-
zero elements in k̄, and h the subring kθH of the Lie ring sl2(k̄). Assume
char k 6= 2. If g1 is the subring of the Lie ring sl2(k̄) generated by h and by
the matrix U = aH + bX + Y , then g1 = wsu2(k(b, a2, θ2, aθ)(θ), b).

Proof. If r ∈ k, then [ r
2θH, U ] = rθ(bX − Y ), and by induction on m,

kθm(bX + (−1)mY ) ⊆ g1 (1)

for any integer m ≥ 1. The element θ is algebraic over k. So taking in (1) m
first to be even and then to be odd, we obtain

k(θ2)(bX + Y ) ⊆ g1, (2)

k(θ2)θ(bX − Y ) ⊆ g1. (3)

Therefore,
[k(θ2)(bX + Y ), θ(bX − Y )] = k(θ2)θbH ⊆ g1.

In particular, kθbH ⊆ g1, i. e., the inclusion

kθbmH ⊆ g1 (4)

is valid for m = 1. Suppose now that m is a fixed integer greater than 1 for
which (4) holds. We have already shown that the following implication is true:
kθH ⊆ g1 ⇒ kθbH ⊆ g1. In view of (4), one may replace here θ by θbm to get
kθbm+1H ⊆ g1. Hence, (4) holds for any integer m ≥ 1. Since b is algebraic
over k, this yields

k(b)θH ⊆ g1. (5)
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But as it has already been established, the inclusion kθH ⊆ g1 implies (2)
and (3). So by virtue of (5), in (2), (3) the field k may be replaced by k(b) to
obtain

P (bX + Y ) ⊆ g1, Pθ(bX − Y ) ⊆ g1

with P = k(b, θ2). Further, aH = U − (bX + Y ) ∈ g1. Therefore, easy
induction on m shows that

Pam(bX + (−1)mY ) ⊆ g1 (6)

for any integer m ≥ 0. If, further, Q to be the field P (a2), then proceeding
as while obtaining (2), (3), we derive Q(bX + Y ) ⊆ g1, Qa(bX − Y ) ⊆ g1.
Consequently,

[Q(bX + Y ), a(bX − Y )] = QaH ⊆ g1,

[Q(bX + Y ), θ(bX − Y )] = QθH ⊆ g1,

[QθH, bX + Y ] = Qθ(bX − Y ) ⊆ g1,

[QθH, a(bX − Y )] = Qθa(bX + Y ) ⊆ g1,

So g1 contains the linear Q-hull M of the elements aH, θH, a(bX−Y ), θ(bX−
Y ), bX + Y, θa(bX + Y ). But

M = Q(aθ)θH + Q(aθ)(bX + Y ) + Q(aθ)θ(bX − Y ) = wsu2(Q(aθ)(θ), b),

and so g1 = wsu2(Q(aθ)(θ), b) since U ∈ M . To complete the proof it suffices
to notice that Q(aθ) = k(b, θ2, a2, aθ). The lemma is proved. ¤

The next step in the proof of Proposition 2 is to describe subrings of the Lie
ring sl2(k̄) over an algebraic closure k̄ of the field k that contain the subring
su2(k(θ), k, b) where θ ∈ k̄ \ k, θ2 ∈ k, b ∈ k.

Lemma 8. Let k be a field of characteristic different from 2. Let b be an
element in k# and θ be an element in an algebraic closure k̄ of k. Assume
that θ 6∈ k, θ2 ∈ k and that k contains more than five elements. Let g be a
subring of the Lie ring sl2(k̄) generated by the subring su2(k(θ), k, b) and by
the matrix U = dH + eX + fY ∈ sl2(k̄) with non-zero d, e, f . Denote by R
the field k(fe, d2, dθ, θ(bf − e), bf + e). Then g = wsu2(R(θ), b).

Proof. We set g1 to be the subring of g generated by the subring

kθH ⊆ su2(k(θ), k, b)

and by U . If D =
(

f 0
0 1

)
, then by Lemma 7, Dg1D

−1 coincides with

wsu2(L(θ), fe) where L = k(fe, d2, dθ). Consequently, [LθH, bX + Y ] =
Lθ(bX − Y ) ⊆ g and [LθH, θ(bX − Y )] = L(bX + Y ) ⊆ g. For any x1, x2 ∈ k,
the matrix U + x1(bX + Y ) + x2θ(bX − Y ) is contained in g. Thus, the above
reasoning shows that g contains the subring wsu2(R(θ), b) where R is a sub-
field of k̄ obtained by adjunction to L of all elements x1(bf + e) + x2θ(bf − e)
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such that the matrix U +x1(bX +Y )+x2θ(bX−Y ) has non-zero entries only.
Pick an element x1 in k. Since k contains at least seven elements, one may
choose x2 ∈ k so that all the entries of the matrices

U + x1(bX + Y ) + x2θ(bX − Y ),

U + (x1 + 1)(bX + Y ) + x2θ(bX − Y ),

U + x1(bX + Y ) + (x2 + 1)θ(bX − Y )

are non zero. This means that the elements

x1(bf + e) + x2θ(bf − e), (x1 + 1)(bf + e) + x2θ(bf − e),

x1(bf + e) + (x2 + 1)θ(bf − e)

are contained in R whence bf + e ∈ R, θ(bf − e) ∈ R. Therefore, R =
L(bf + e, θ(bf − e)), and so f, e ∈ R(θ). Since dθ ∈ R, d ∈ Rθ. Thus U =
d1θH + eX + fY where d1 ∈ R, ef ∈ R, and applying Lemma 6 completes the
proof of the lemma. ¤

Now we are able without any difficulties to prove Proposition 2 thereby
completing the proof of Theorem 1.

Proof of Proposition 2. First we observe that char k 6= 2 for h consists of
semi-simple matrices only. Further, replacing g by TgT−1 where T is a suitable
element in the group GL2(k̄), one may regard h as consisting of diagonal
matrices only. From this it is easy to infer that g contains a matrix U =

aH + bX + cY with a 6= 0, b 6= 0, c 6= 0. Then C =
(

c 0
0 1

)
∈ GL2(k̄) and

replacing g by CgC−1 one may suppose that c = 1. Let h = kθH where θ
is non zero element in k̄. If g1 denotes a subring of g generated by h and U ,
then by Lemma 7, g1 = wsu2(K(θ), b) with K = k(b, a2, θ2, aθ). If θ ∈ k,
then g1 = sl2(K) and, by Lemma 5, g = sl2(L) where L is a subfield of k̄
containing k. If θ 6∈ k, then wsu2(K(θ), b) = su2(K(θ),K, b) and invoking
Lemmas 8 and 5 completes the proof of the proposition.
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