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ON NEWTON INTERPOLATING SERIES AND THEIR
APPLICATIONS

GHIOCEL GROZA

Abstract. Newton interpolating series are constructed by means of New-
ton interpolating polynomials with coefficients in an arbitrary field K (see
Section 1). If K = C is the field of complex numbers with the ordinary
absolute value, particular convergent series of this form were used in num-
ber theory to prove the transcendence of some values of exponential series
(see Theorem 1). Moreover, if K = R, by means of these series it can
be obtained solutions of a multipoint boundary value problem for a linear
ordinary differential equation (see Theorem 2). If K = Cp, some particular
convergent series of this type (so-called Mahler series) are used to repre-
sent all continuous functions from Zp in Cp (see [4]).

For an arbitrary field K, with respect to suitable addition and multi-
plication of two elements the set of Newton interpolating series becomes a
commutative K-algebra KS [[X]] which generalizes the canonical K-algebra
of formal power series. If we consider K a local field, we construct a sub-
algebra of KS [[X]], even for more variables, which is a generalization of
Tate algebra used in rigid analytic geometry (see Section 3).

Key words : Newton interpolating series, noetherian ring, Tate algebras,
two-point boundary value problem.
AMS SUBJECT:13J05, 32B05, 32P05, 34B10, 13A18, 13F30.

1. Basic definitions

Consider K a field, R a commutative K−algebra and S = {αn}n≥1 a
fixed sequence of elements of K. By means of Newton interpolating polyno-
mials we construct formal series of the form

f =
∞∑

i=0

aiui, ai ∈ R, (1)
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where

u0 = 1, ui =
i∏

j=1

(X − αj) , i ≥ 1, (2)

which are called Newton interpolating series at α1, α2, .... We denote by
RS [[X]] the set of all Newton interpolating series having the form (1). Then
there exist the elements dk(i, j) in K uniquely defined such that

uiuj =
i+j∑

k=max {i,j}
dk(i, j)uk. (3)

We define addition and multiplication of two elements f =
∞∑
i=0

aiui, g =
∞∑
i=0

biui,∈ RS [[X]] as follows

f + g =
∞∑

i=0

(ai + bi)ui (4)

and

fg =
∞∑

k=0

ckuk (5)

with
ck =

∑

(α,β)∈I(k)

dk(α, β)aαbβ, (6)

where I(k) = {(α, β) ∈ N × N;max {α, β} ≤ k, α + β ≥ k} and dk(α, β) are
given in (3). It is easily seen that with these definitions of addition and mul-
tiplication RS [[X]] becomes a commutative K-algebra which contains R[X].

2. Newton interpolating series with complex coefficients

Consider K = R = C the field of complex numbers. In the first case
we take m a positive integer and the sequence S = {αn}n≥1, where for every
i = 1, 2, ...,m, αi = i = αi+mj , j = 1, 2, ... . By means of these type of
convergent Newton interpolating series can be proved the following result of
Lindeman (see [5], Theorem 6, Ch. 2, Sec. 3):

Theorem 1. If γ is an algebraic number different from zero, then eγ is a
transcendental number.

In second case we take K = R = R the field of real numbers, α1 = 0, α2 =
1, α3 = 1

2 and for k ≥ 4

αk =
2s + 1
2m+1

, where 2m + 1 < k ≤ 2m+1 + 1, s = k − 2m − 2. (7)
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Consider a function f : [0, 1] → R and αk ∈ [0, 1], k = 1, 2, ... . We
say that f can be represented into Newton interpolating series at {αk}k≥1 if
there exists a series of the form (1) which converges uniformly to f on [0,1].
Taking into account the importance of power series in the theory of initial
value problems for differential equations, it seems to be very useful to study
Newton interpolating series in order to find the solution of the multipoint
boundary value problem for differential equations. Now, we consider a linear
differential equation with analytic function coefficients

y(n)(x) = c(x) + b0(x)y(x) + b1(x)y′(x) + ... + bn−1(x)y(n−1)(x), (8)

with x ∈ [0, 1], c, bi ∈ C∞([0, 1]), i ∈ {0, 1, ..., n − 1} and there exists C0 > 0
such that

max
{∥∥∥c(j)

∥∥∥
∞

,
∥∥∥b

(j)
i

∥∥∥
∞

, i ∈ {0, 1, ..., n− 1}
}

< Cj+1
0 , j = 0, 1, ... . (9)

By means of Newton interpolating series given by (7) can be proved the fol-
lowing result (see [3], Theorem 4.1):

Theorem 2. If {αk}k≥1 is a sequence of real numbers from [0, 1] of the form
(7), then every solution y ∈ Cn([0, 1]) of the equation (8) and its deriva-
tives y(k), k = 1, 2, ..., n are represented into Newton interpolating series at
{αk}k≥1.

This theorem is a useful tool to find approximate solutions of two-point
boundary value problems for differential equations of the form (8).
Example. Consider the two-point boundary value problem ([3])

y′′(x)− 2500y(x) = 2500 cos2 (πx), x ∈ [0, 1], y(0) = y(1) = 0. (10)

We know that this two-point boundary value problem has a solution y
which can be represented by a Newton interpolating series with αk given by
(7). Moreover by Theorem 2 the derivatives y′ and y′′ of y can be represented
by a Newton interpolating series which are the derivative series of Newton
interpolating series of y. We approximate the solution by taking the partial

sums S33(x) =
33∑
i=0

aiui(x). The boundary conditions imply a0 = a1 = 0.

Using, for example, 32 equidistant collocation nodes zj+1 = j
32 , j = 0, 1, ..., 31

we obtain the coefficients ai.
Table 1 lists the absolute errors in y. The computations were performed on

a computer with a 14-hexadecimal-digit mantissa.
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Table 1

x simple shooting Newton series (7) with n =
33

0.1 .19 · 10−7 .13 · 10−10

0.2 .28 · 10−5 .25 · 10−12

0.3 .41 · 10−3 .14 · 10−11

0.4 .61 · 10−1 .11 · 10−11

0.5 .90 · 10 .64 · 10−9

0.6 .13 · 104 .48 · 10−8

0.7 .20 · 106 .41 · 10−7

0.8 .29 · 108 .22 · 10−5

0.9 .44 · 1010 .27 · 10−5

1.0 .65 · 1012 0

Errors associated with the example

3. Newton interpolating series with coefficients in a field

Let K be a valued field with respect to a non-trivial non-archimedean
absolute value | | . For x, y ∈ K we put d(x, y) = |x− y| . Then (K, d) is a
metric space and we can introduce the customary topological concepts into
such of space in terms of the metric. If K is a locally compact field, then it is
called a local field.

If R is a commutative ring with identity and ‖ ‖ is a non-archimedean norm

on R, we consider the sets :
◦
R= {x ∈ R; ‖x‖ ≤ 1} ,

∨
R= {x ∈ R; ‖x‖ < 1} (see

[2], Chapter 1). Then
◦
R is a commutative ring with identity and

∨
R is an ideal

in
◦
R . We denote the residue ring

◦
R /

∨
R by R̃. If R = K, then

◦
K is a local

ring called the valuation ring of | | and
∨
K is the maximal ideal of

◦
K . If K is

a local field, then it is a complete field and the residue field K̃ is a finite field
of order m = ps, where p is the characteristic of K̃ ([1], Proposition 2.3.3, p.
51).

Let S = {αn}n≥1 be a fixed sequence of elements of
◦
K. If r is a positive

integer, ν = (ν1, ν2, ..., νr) ∈ Nr, we put N(ν) = ν1 + ν2 + ... + νr and X =
(X1, X2, ..., Xr). We order Nr in the following manner ν < µ if either N(ν) <
N(µ) or N(ν) = N(µ) and ν is less than µ with respect to the lexicographical
order. The symbol ∞r will be an element such that ν < ∞r, for every ν ∈ Nr.
We denote by KS [[X]] the set of formal series of the form

f =
∞r∑

ν=0

aνUν , (11)
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where aν ∈ R, Uν =
r∏

j=1
uνj ∈ K [X] and uνj ∈ K [Xj ] are given by (2). If

τ = (τ1, τ2, ..., τr) ∈ Nr, j ∈ N, we define ν + τ = (ν1 + τ1, ν2 + τ2, ..., νr + τr)

and jν = (jν1, jν2, ..., jνr). If f, g =
∞r∑
ν=0

bνUν ∈ KS [[X]], we define addition

and multiplication of f and g as follows:

f + g =
∞r∑

ν=0

(aν + bν) Uν , (12)

fg =
∞r∑

ν=0

pνUν , (13)

where
pν =

∑

µ,θ∈I(ν)

Dν(µ, θ)aµbθ, (14)

Dν(µ, θ) = dν1(µ1, θ1)...dνr(µr, θr), di(s, t) are defined in (3) and I(ν) =
{(µ, θ) ∈ Nr × Nr;max {µ, θ} ≤ ν, µ + θ ≥ ν}.

Consider f =
∞r∑
ν=0

aνUν ∈ KS [X] a non-zero series. If τ is the smallest

index ν for which aν is different from zero, then τ will be called the order of
f and will denoted o(f). We agree to attach the order ∞r to the element 0
of KS [X] . It follows in the usual way that o(f + g) ≥ min {o(f), o(g)} , but
o(fg) ≥ o(f) + o(g) does not hold for every f, g ∈ KS [[X]].

Remark 1. It is easy to see that there exists an injective map ϕ : K[X] →
KS [[X]] such that for all P, Q ∈ K[X],

ϕ(P + Q) = ϕ(P ) + ϕ(Q)

and
ϕ(PQ) = ϕ(P )ϕ(Q)

where the addition and the multiplication in KS [[X]] are defined by (12) and
(13).

We consider the K-algebra KS [[X]] and we take T = {γν}ν∈Nr a fixed
sequence of elements of K× such that

|γµ+ν | ≤ |γµ| |γν | , (15)

for every µ and ν.
We denote

HT KS [[X]] =

{
f =

∞r∑

ν=0

aνUν ∈ KS [[X]]; lim
N(ν)→∞

aνγν = 0

}
. (16)
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If f =
∞r∑
ν=0

aνUν ∈ HT KS [[X]], the real number

‖f‖ = sup
ν
|aνγν | (17)

is well defined. As usual we call ‖ ‖ , given in (17), the Gauss norm on
HT KS [[X]]. Many properties of HT KS [[X]] are analogues of those of Tate
algebras.

Theorem 3. If K is a complete valued field, then HT KS [[X]] is a subalgebra
of the K- algebra KS [[X]] and the Gauss norm is a K-algebra non-archimedean
norm on HT KS [[X]] making it into a K-Banach algebra.

Proof. Let f, g =
∞r∑
ν=0

bνUν be elements of HT KS [[X]]. Then, by (12) and

(17), we obtain ‖f ± g‖ = sup
ν
|(aν ± bν)γν | ≤ max {‖f‖ , ‖g‖} . Similarly, since

uνj ∈
◦
K [Xj ], it follows that dνj (s, t) ∈

◦
K and (13), (14), (15) and (17) imply

‖fg‖ ≤ sup
ν

{
max

(µ,θ)∈I(ν)
|aµγµbθγθ|

}
≤ ‖f‖ ‖g‖ .

ThusHT KS [[X]] is a subalgebra of KS [[X]] and the Gauss norm is a K-algebra
norm on HT KS [[X]].

We want to show that HT KS [[X]] is complete. We take f [t] =
∞r∑
ν=0

aν,tUν ,

t ≥ 1, a Cauchy sequence of elements from HT KS [[X]]. Since

|aν,t+1 − aν,t| |γν | ≤
∥∥∥f [t+1] − f [t]

∥∥∥ , (18)

for a fixed ν, each sequence aν,t, t = 0, 1, 2, ... is a Cauchy sequence in K. For

ν ∈ Nr, let aν ∈ K be the limit of this sequence. Set f =
∞r∑
ν=0

aνUν ∈ KS [[X]].

We have to prove that f is an element of HT KS [[X]] and lim
t→∞

∥∥f − f [t]
∥∥ = 0.

We may assume
∥∥f [s] − f [t]

∥∥ ≤ 1
t for all s ≥ t, t = 1, 2, ... . By (18) we obtain

|aν,s − aν,t| |γν | ≤ 1
t , s = t, t + 1, ... . Now the continuity of | | implies that

|aν − aν,t| |γν | ≤ 1
t
, (19)

for all ν ∈ Nr, t ∈ N, t 6= 0. Since f [t] ∈ HT KS [[X]], lim
N(ν)→∞

aν,tγν = 0

and by (19) lim
N(ν)→∞

aνγν = 0. Hence f ∈ HT KS [[X]]. Furthermore, we have
∥∥f − f [t]

∥∥ = sup
ν
|aν − aν,t| |γν | ≤ 1

t and this implies lim
t→∞

∥∥f − f [t]
∥∥ = 0. ¤
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Consider K a local field having the residue field a finite field of order m. Let

β1, β2, ..., βm be elements of
◦
K such that the cosets βj+

∨
K, j ∈ {1, 2, ...,m}

are distinct. We take the sequence S = {αn}n≥1, where

αi = βi, αi+mj = αi, i = 1, 2, ..., m, j = 1, 2, ... (20)

and T = {γν}ν∈Nr a fixed sequence of elements of K× such that (15) holds
and for every ν ∈ Nr

γν /∈ ∨
K

h
N(ν)

m

i

, where
∨
K

0

=
◦
K . (21)

Proposition 4. Each series f =
∞r∑
ν=0

aνUν of HT KS [[X]] defines a map ,

denoted also by f,
◦
K

r

→ K, y → f(y) =
∞r∑
ν=0

aνUν(y). Moreover sup
y∈ ◦K

r
|f(y)| ≤

‖f‖ and f gives rise to a continuous function on
◦
K

r

, where for y = (y1, ..., yr) ,
‖y‖ = max

1≤i≤r
{|yi|}.

Proof. If y = (y1, ..., yr) ∈
◦
K

r

, then there exists xi,j ∈ {α1, α2, ..., αm} such

that ỹi = x̃i,j in K̃. Then Uν(y) ∈ ∨
K

h
N(ν)

m

i

, and since
∨
K is a principal ideal

from (21) it follows that lim
N(ν)→∞

aνUν(y) = 0. Thus the series
∞r∑
ν=0

aνUν(y) con-

verges to some element of K, whence the first assertion follows. Furthermore
|aνUν(y)| ≤ |aνγν | ≤ ‖f‖ and hence it follows that |f(y)| ≤ ‖f‖ . Now we

consider a real number ε > 0. If we consider the partial sums Sµ =
µ∑

ν=0
aνUν ,

then there exists µ0 such that for every µ ≥ µ0 and y ∈ ◦
K

r

, |f(y)− Sµ(y)| ≤
sup
µ≥µ0

|aµγµ| ≤ ε. Hence Sµ converges uniformly to f and f gives rise to a

continuous function on
◦
K

r

. ¤

Proposition 5. (Identity Theorem). If f ∈ HT KS [[X]] vanishes for all

y ∈ ◦
K

r

, then f = 0.

Proof. Since the K-algebras KS [[X1, ..., Xr]] and KS [[X1, ..., Xr−1]]S [[Xr]] are

isomorphic it is enough to prove the theorem for n = 1. If f =
∞∑
i=0

aiui and

y = α1, then it follows that a0 = 0. Then by putting y = α2 we obtain a1 = 0
and by induction we find that ai = 0, i ∈ {0, 1, ...,m − 1}. Now we consider

y ∈ ◦
K \ {α1} such that |y − α1| is small enough. Then f (y) = 0 implies
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am = 0. By taking now y ∈ ◦
K \ {α2} such that |y − α2| is small enough we

obtain that am+1 = 0 and the proposition follows by induction on i. ¤
Theorem 6. If K is a local field, S is given by (20), γν+µ = γνγµ for every ν
and µ, and (21) holds, then the K-Banach algebra HT KS [[X]] is a noetherian
domain.

Proof. Since the K-algebras KS [[X1, ..., Xr]] and KS [[X1, ..., Xr−1]]S [[Xr]] are
isomorphic and γν+µ = γνγµ we can consider r = 1. Let I be an ideal in
HT RS [[X]]. Thus we take M = {j; j ≤ m there exists h ∈ I with o(h) ≡
j(mod m)}. We can choose a finite number of elements gi =

∞∑
ν=o(gi)

bν,iuν ∈ I,

with bo(gi),i = 1, i = 1, 2, ..., s, such that:
a) for each i there exists j ∈ M such that o(gi) ≡ j (mod m) and o(gi) 6=

o(gk), for every i 6= k;
b) for every h ∈ I there exists gi such that o(h) = o(gi) + mτ with τ ∈ N.
We shall prove that the ideal I is generated by the elements gi, i = 1, 2, ..., s.

Let f =
∞∑

ν=o(f)

aνuν an element of I. Then by b) there exists gi and vi,o(f) ∈
KS [[X]] such that fo(f) = f − ao(f)vi,o(f)gi belongs to I and has the order
greater than o(f). By successive applications of this method we get, for every
θ the elements vi,θ ∈ KS [[X]] such that

fθ = f −
s∑

i=1

θ∑

ν=0

vi,νgi

is an element of I of order greater than θ. Since for fixed i vi =
∞∑

θ=0

vi,θ

∈ HT KS [[X]] it follows that HT RS [[X]] is a noetherian domain. ¤
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