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Abstract

We present a new method for constructing dynamic S-boxes that combines the chaotic behavior with Galois
Field arithmetic over GF(28). The approach employs the logistic map Xn+1 = µXn(1−Xn), where X0 = 0.5
and 3.57 ≤ µ ≤ 3.99 to generate values, which are then reduced modulo 256 and interpreted as field elements.
Using finite field inversion with an irreducible polynomial, bijective S-boxes are obtained. The proposed
S-boxes are applied in an image encryption scheme to enhance security. Experimental evaluation shows that
our designs are highly resistant against cryptanalytic attacks and improves the quality of encrypted images,
offering a reliable way to protect sensitive image data during transmission.
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1. Introduction

The security of image transmission has become a key research focus in modern cryptography, where
S-boxes play a central role as nonlinear components. Image encryption, as a branch of cryptography, is
inherently interdisciplinary, involving mathematics, information theory, computer science, and engineering.
To resist statistical and differential attacks, researchers have increasingly employed chaotic maps and S-box
transformations in image encryption schemes. Chaotic S-boxes introduce strong nonlinearity, unpredictability,
and key sensitivity, which are essential for secure multimedia communication. In recent years, numerous
image encryption algorithms based on chaotic S-boxes, trigonometric maps, polynomial transformations,
and hybrid algebraic–chaotic structures have been proposed, showing significant improvements in entropy,
histogram uniformity, correlation reduction, and robustness against cryptanalytic attacks.

Substitution boxes (S-boxes), first introduced by Claude Shannon in 1949, are a fundamental component in
symmetric key cryptography. Their primary role is to introduce nonlinearity and confusion into cryptographic
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algorithms, making it significantly more difficult for attackers to deduce the original message from the
ciphertext. The importance of S-box design has become increasingly prominent since the selection of the
Rijndael algorithm as the Advanced Encryption Standard (AES) by the National Institute of Standards
and Technology (NIST) in 2000 [25]. Developed by Joan Daemen and Vincent Rijmen, AES exhibits strong
resistance against well-known cryptanalytic techniques, such as differential cryptanalysis (DC) [24] and linear
cryptanalysis (LC) [21].

Block ciphers, such as DES and AES, rely heavily on the strength and design of the S-box. These nonlinear
substitution mechanisms are critical for increasing the cryptographic robustness of the entire encryption
system. According to Ma et al. [23], the AES S-box has only 9 algebraic terms because it is structured over
the Galois Field GF (28), whereas its inverse has 255 terms. To address potential vulnerabilities associated
with this simplicity, the Affine-Power-Affine (APA) structure was introduced, which increased the S-box’s
algebraic complexity from 9 to 253 terms while maintaining cryptographic performance. This enhancement
significantly increases resistance to algebraic attacks [10].

A number of mathematical methods have been explored to generate S-boxes with better cryptographic
characteristics. Chaotic maps, for example, have been extensively applied due to their sensitivity to initial
value and control parameters, which guaranties unpredictability and sufficient confusion. The proposed a
discrete-space integer multiplication-based chaotic map, resulting in S-boxes with maximum nonlinearity
and minimal differential uniformity [18].

In a different direction, finite field theory has been utilized to ensure bijectivity and balanced mappings. [7]
constructed an S-box based on the action of the modular group upon a projective line over a finite field,
resulting in high nonlinearity and secure algebraic structure. Other related work by [5] employed linear
fractional transformations with permutation functions, with further enhancements of nonlinearity and
avalanche effect.

Other methods depend on polynomial and trigonometric transformations. [4] proposed a dynamicS-based
S-box with a square polynomial transformation and permutation. [13] subsequently used linear trigonometric
transformations to generate dynamic S-boxes efficiently. These schemes add further nonlinearity and
periodicity and enhance resistance against correlation and statistical attacks.

In addition, multidimensional methods like coupled map lattices [12] have been tried to maximize entropy
and randomness, rendering the output of S-box more random. Time-honored results such as those of
Biham and Shamir also stress that resistance against differential cryptanalysis is important, leading to the
designs with low differential uniformity and high nonlinearity. Graph Theory is also used to develop new
cryptographic algorithms. Recently, Bokhary et al. [2] have presented three new graph-theoretic encryption
and decryption techniques that use complete bipartite graphs and the Cartesian product of graphs to improve
communication security.

Lastly, hybrid schemes involving chaos maps blended with algebraic or trigonometric maps have also
revealed even stronger cryptographic features. By merging chaoS-driven randomness with algebraic form,
these schemes at the same time enjoy bijectivity, SAC, BIC, and high nonlinearity. Altogether, the above
methods prove how mathematical tools directly enhance the security of S-boxes against popular attacks like
linear and differential cryptanalysis.

1.0.1. Contributions
S-boxes are important in image cryptography because they provide confusion while also resisting

cryptanalytic attacks. Chaotic maps are broadly used because they generate sequences with high sensitivity
to initial conditions and parameters, which increases unpredictability. However, chaotic maps alone often
suffer from issues such as limited key space, short cycle length, and non-uniform distribution when digitized.
On the other hand, finite field inversion, especially over GF(28), is a well-established technique that guarantees
bijectivity and strong algebraic properties, as seen in the AES S-box. By combining chaotic maps with
finite field inversion, we can take advantage of both worlds: the randomness and sensitivity of chaos and
the strong nonlinearity and bijection of finite fields. This integration ensures that the constructed S-boxes
are not only secure against linear and differential attacks, but also dynamic in nature, making them better
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suited to protecting images that are highly redundant and vulnerable to statistical attacks.
This paper presents a new method for creating S-boxes that combines chaotic behavior with finite field

arithmetic over GF (28). The primary contributions of this work are summarized as follows:

• A proposed S-box construction method combines the logistic map with finite field operations to increase
nonlinearity and unpredictability.

• The logistic map’s rational outputs are processed by finite field inversion and multiplication, which
allows both numerators and denominators as input.

• A dynamic method avoids duplicate values, verifying that the final S-box is bijective.

• The S-box with ideal statistical values is used in an image encryption method and also tested using
different statistical metrics to show its superiority and effectiveness over other methods.

• The process of decryption reverses pixel substitution using the inverse S-box and returns to the original
image structure via transposition to recover the original grayscale image without loss.

1.0.2. Paper Organization
To explain the mathematical tools and theoretical concepts indicated our proposed S-box generation

method, Section 2 reviews the logistic chaotic map and associated finite field arithmetic over the Galois Field
GF(28). Section 3 analyses and compares the making of S-box to existing designs. An image encryption
and decryption method based on the proposed S-box is shown in Section 3.6. Performance evaluation and
comparisons follow.

2. Background

To explain the mathematical equipment and theoretical concepts underlying our proposed S-box generation
method, the logistic chaotic map and relevant finite field arithmetic over GF(28) are first reviewed in the
following section.

2.1. Logistic Chaotic Map
A map (an evolution function) that exhibits chaotic behavior is called a chaotic map. Such maps can be

parameterized using discrete-time or continuouS-time variables. Discrete chaotic maps are often represented
using iterated functions. One popular and well-known one-dimensional discrete chaotic map, introduced by
May [11], is the logistic map, whose state evolves according to

Xn+1 = µXn(1−Xn), (2.1)

where Xn is the state variable at iteration n, determined by the initial condition X0, and the control
parameter satisfies 0 < µ ≤ 4. For all n ≥ 0, the outputs Xn remain within the interval [0, 1] [14]. In
the proposed method, the fractional-order parameters µ and X0 are chosen as secret keys to construct the
S-boxes.

2.2. Galois Field
The Galois Field GF (28) is important in modern cryptography because it enables secure and efficient

arithmetic computations on 8-bit data. Each element of GF(28) can be represented as an 8-bit binary number
or a polynomial of degree at most 7 with coefficients in {0, 1}.

Modulo an irreducible polynomial, arithmetic operations, particularly multiplication and inversion, are
performed, such as

f(x) = x8 + x4 + x3 + x2 + 1.
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The field can thus be defined as
GF(28) ∼= Z2[x]/⟨f(x)⟩,

where Z2 = {0, 1} and f(x) is a primitive irreducible polynomial [1]. It is ensured by this construction that a
unique multiplicative inverse is had by each non-zero element, which is required for the formation of bijective
mappings like S-boxes.

The foundation of cryptographic algorithms like AES, which have nonlinearity and cryptanalysis resistance
added, is provided by the GF(28) for substitution operations. Bijectivity is maintained and cryptographic
strength is ensured by our approach through the conversion of logistic map outputs into valid S-box values
using GF arithmetic. The flow chart of encryption and decryption with the proposed S-box is illustrated in
Figure 1.

Start: S-box Generation Image Encryption

Image Decryption

Initialize Logistic Map:
X0 = 0.5, µ ∈ [3.57, 3.99]

Generate chaotic sequence:
Xn+1 = µXn(1−Xn)

Convert sequence to 8-bit
values (mod 256)

Apply GF(28) inversion
using irreducible polynomial

Construct bijective S-box

Load grayscale image

Apply S-box substitution

Save encrypted image

Load encrypted image

Generate inverse S-box

Apply inverse substitution

Save decrypted image

Figure 1: Flow Chart of construction of S-box
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3. Results

3.1. Construction of S-boxes Using Logistic Map and Finite Field Operations
Several S-boxes are shown in this section, created with the proposed method, which combines the logistic

map with operations over the Galois Field GF(28). The initial seed value is fixed at X0 = 1
2 in all cases, while

the control parameter µ is varied to demonstrate the robustness and variability of the generated S-boxes.

3.1.1. Parameter Selection and Initialization
The chaotic logistic map is described as:

Xn+1 = µXn(1−Xn)

For each S-box, we choose the value of µ as follows:

• Table 1: µ = 3.99

• Table 2: µ = 389
100 = 3.89

• Table 3: µ = 379
100 = 3.79

• Table 4: µ = 369
100 = 3.69

• Table 5: µ = 359
100 = 3.59

All values are chosen within the chaotic regime (µ ≥ 3.57), in which randomness and confusion in the
resulting S-boxes are ensured. We perform the following steps to obtain a field element in GF(28):

1. Rational approximation: compute a rational approximation

X(K)
n = an

bn
≈ Xn,

with a fixed precision K (Implementation: limit_denominator(2ˆ16)). Here an, bn ∈ Z and
gcd(an, bn) = 1.

2. Reduction to 8 bits: reduce numerator and denominator modulo 256,

ãn ≡ an (mod 256), b̃n ≡ bn (mod 256),

producing integers ãn, b̃n ∈ {0, . . . , 255}. If b̃n = 0, a defined fallback (we use b̃n ← 1) is applied to
avoid division by zero.

3. Field interpretation and inversion: interpret ãn, b̃n as elements of GF(28) under the irreducible
polynomial f(x) = x8 + x4 + x3 + x2 + 1. Compute

sn = [ãn] · [b̃n]−1 ∈ GF(28),

where [b̃n]−1 is the multiplicative inverse in GF(28).
4. Collision resolution (permutation enforcement): To produce a bijective S-box (a permutation of
{0, . . . , 255}) we enforce uniqueness of outputs. In the manuscript we use the deterministic rule

if sn ∈ seen then sn ← (sn + 1) mod 256

These steps explicitly map chaotic real outputs Xn to GF(28) elements and produce distinct S-box entries.
Varying µ in the chaotic regime yields different sequences {Xn} and different S-boxes.
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3.1.2. Different Control Parameters for S-box Generation
S-boxes are created by applying GF(28) arithmetic operations to logistic map sequences, and then

mapping them to a bijective 16× 16 matrix.

3.2. Tabulated Results
The generated 8-bit S-boxes using different values of µ are displayed in the following tables. All S-

boxes exhibit distinct permutations of integers in the range [0, 255], validating their use in cryptographic
applications.

Table 1: Generated S-box using logistic map and GF(28) operations with µ=3.99

20 46 133 188 99 232 222 227 236 162 128 22 66 23 42 206
35 194 100 40 165 174 140 72 135 41 186 177 86 250 101 126
98 234 235 190 129 47 92 123 45 210 93 107 201 84 220 238
189 181 191 202 48 178 118 221 254 57 97 15 52 184 255 69
239 24 49 65 130 61 5 38 64 0 164 144 233 67 237 16
185 251 62 50 151 110 85 203 74 43 141 51 60 161 109 197
134 172 240 192 243 14 169 223 4 111 193 146 148 102 138 112
7 17 179 44 108 216 182 70 224 75 2 170 253 36 131 96

113 71 53 195 10 208 196 187 180 154 241 37 204 214 152 198
114 87 183 1 168 199 142 103 163 242 39 225 88 89 171 173
200 120 205 94 226 32 26 8 29 175 116 105 132 25 81 68
244 209 124 143 245 104 248 228 54 156 27 136 33 59 106 249
77 139 137 207 211 145 34 147 58 229 167 115 246 230 149 212
117 217 55 119 73 56 213 215 166 63 3 30 121 176 78 150
31 76 155 79 80 82 252 95 218 83 247 122 231 90 158 91
153 125 6 219 127 9 11 12 157 159 160 13 18 19 28 21

Table 2: Generated S-box using logistic map and GF(28) operations with µ=3.89

228 142 220 18 230 184 161 239 13 171 89 78 81 181 205 244
96 213 22 97 98 186 83 76 82 19 187 167 232 46 62 73
99 71 45 202 188 137 253 219 11 129 16 229 84 131 26 32
245 103 125 116 124 185 47 56 175 4 246 43 183 192 247 210
117 1 121 63 179 212 234 141 93 165 44 189 122 118 166 190
151 115 193 158 214 15 250 39 48 231 233 21 235 173 237 25
49 23 130 126 249 27 236 168 140 243 211 50 225 75 227 88
139 2 147 86 149 59 94 109 34 180 191 29 119 157 176 163
90 77 160 68 136 79 238 154 222 51 10 156 240 241 150 242
148 127 194 12 169 17 221 24 197 128 132 28 248 135 14 177
31 172 143 69 85 5 65 251 138 195 80 196 198 159 226 164
252 9 254 170 255 120 112 0 153 3 20 101 133 178 174 123
41 182 162 6 199 152 200 215 144 36 203 30 110 53 201 87
145 204 67 42 91 33 7 8 206 207 134 35 208 209 37 216
217 146 218 92 223 224 54 155 95 52 38 40 55 57 58 60
61 64 66 70 72 74 100 102 104 105 106 107 108 111 113 114
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Table 3: Generated S-box using logistic map and GF(28) operations with µ=3.79

28 232 14 84 242 246 247 163 112 104 2 138 3 27 156 82
193 130 233 92 26 24 204 160 221 220 134 15 124 179 227 131
144 250 245 132 192 171 154 48 254 68 53 105 95 50 217 241
37 12 45 165 63 35 251 115 69 72 126 119 234 166 59 38
23 235 140 196 252 212 145 228 64 129 60 174 22 157 185 149
133 96 47 152 106 85 213 43 203 91 188 18 51 113 187 89
116 65 79 218 70 19 120 240 167 168 214 100 80 236 202 153
71 5 180 237 9 135 39 223 182 117 16 81 128 40 55 169
150 136 173 86 93 224 219 56 83 229 137 139 125 118 25 87
141 225 142 52 253 238 127 74 4 170 97 222 103 164 172 76
239 6 243 8 155 143 244 248 175 255 158 210 36 159 54 88
62 249 41 161 146 0 191 1 73 29 30 114 208 90 226 98
162 199 75 77 66 7 121 78 230 94 31 197 10 122 99 11
13 123 17 49 198 20 42 147 189 231 21 211 44 32 101 176
151 107 108 194 148 57 33 34 177 181 178 67 183 195 184 186
46 190 200 102 201 205 58 206 61 207 209 109 215 216 110 111

Table 4: Generated S-box using logistic map and GF(28) operations with µ=3.69

236 177 196 29 141 156 234 198 61 55 157 127 120 172 56 26
75 252 218 82 40 23 89 84 60 215 165 58 51 85 240 217
169 53 213 142 242 187 110 49 219 211 78 19 178 183 77 143
97 42 7 30 244 170 194 154 238 163 182 12 35 115 192 193
108 100 184 92 235 4 237 3 62 158 16 63 144 101 57 226
131 99 138 155 52 86 133 202 5 121 126 87 68 102 54 173
59 83 41 44 95 179 128 13 140 90 88 253 206 204 216 180
45 239 69 167 205 254 64 185 18 200 250 20 152 241 15 109
17 243 190 209 67 220 70 195 207 159 98 79 123 21 189 65
22 199 37 246 31 201 114 74 230 153 245 247 33 66 116 80
166 71 231 191 106 91 203 94 255 248 103 145 181 10 107 168
251 105 129 134 130 124 249 174 0 93 125 233 221 208 81 96
188 135 210 76 72 117 222 186 149 73 111 8 104 1 112 43
197 50 212 38 24 113 2 6 118 119 214 175 223 136 122 224
132 225 227 25 146 228 176 14 229 232 27 137 9 11 32 28
34 36 139 39 147 148 150 151 46 47 160 161 162 164 48 171
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Table 5: Generated S-box using logistic map and GF(28) operations with µ=3.59

33 89 124 113 47 167 174 185 48 133 247 169 191 162 71 98
32 104 72 248 160 114 254 128 2 143 153 51 105 120 175 45
34 67 91 171 101 176 49 214 30 150 245 147 198 43 184 93
166 202 107 231 224 137 156 232 186 116 117 141 234 205 215 217
36 0 74 130 46 138 203 235 132 92 233 25 115 134 22 106
255 15 83 183 118 119 52 236 238 179 110 53 158 145 12 121
177 5 163 140 178 135 195 252 144 194 69 50 168 54 42 35
237 3 122 55 126 180 239 170 88 216 230 123 37 56 108 148
240 249 102 111 222 241 181 213 38 149 57 58 4 139 129 250
40 39 41 125 225 172 127 226 243 11 99 204 94 242 100 16
173 44 80 19 59 244 142 182 60 136 9 131 26 146 70 65
1 77 218 151 152 187 87 61 246 90 219 212 165 154 155 164

253 7 188 189 220 190 109 13 157 251 192 95 96 159 97 62
193 78 63 75 14 103 196 227 6 29 73 8 161 81 10 64
197 199 17 66 200 18 201 206 229 207 208 76 20 68 79 112
228 82 21 84 209 210 23 85 211 24 27 221 28 86 223 31

3.3. Performance analysis of the proposed Sbox
This section presents a detailed performance evaluation of the proposed S-box using well-established

cryptographic criteria. The S-box was implemented and tested in Python 3.8 using the PyCharm IDE
on a machine equipped with an Intel Pentium 4417U processor and 4 GB RAM. For practical relevance,
experiments were conducted on both grayscale and colored images.

3.3.1. Nonlinearity (NL)
The shape of the Boolean function is transformed by changing the bits in its truth table. The nonlinearity

is the number of bits that must be changed in the truth table of the Boolean function to achieve the closest
affine function.

The nonlinearity is bounded by:
N(f) = 2n−1 − 2

n
2 −1

for an S-box in GF(2n). The results of the test for nonlinearity analysis are listed in Table 6. It can be seen
that the proposed S-boxes exhibits nonlinear behavior with a maximum value of 108 and a minimum value
of 106.

3.3.2. Strict Avalanche Criterion (SAC):
To evaluate the strict avalanche effect, which contains the basic concept of nonlinearity, the strict avalanche

criterion (SAC) was put out [19]. It suggests that each output bit must change with a half-probability for
each input bit change in order for a function to meet the strict avalanche criterion. By creating a correlation
between the inputs and outputs, an encryption method can be readily broken in the absence of a strict
avalanche effect.
First, the 8-bit vector X is entered into the S-box, and the corresponding to output 8-bit vector Y by
substitution is taken. Second, a family of vectors X1, X2, ..., X8 is formed such that X and Xj differ just in
bit j. The resulting vectors Y1, Y2, ..., Y8 can be determined by Yj=S(Xj), with S(·) being a substitution
operation with S-box.
An 8-bit binary avalanche vector family X1, X2, ..., X8 can be computed by Vj = Y ⊕Yj . An 8 × 8 dependence
matrix is created by incorporating the value of bit i in Vj into element ai,j . Do the above steps n times
by randomly generating the vector X and the final dependence matrix is created by calculate the average
elements.
The ideal value of the elements in dependent matrix is 0.5. An S-box can have high performance in SAC
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when all elements of the matrix approach the ideal value. Table 3 presents the dependent matrix of the
proposed S-box. From the table, it can be seen that the majority of the elements approach the ideal value
0.5. This suggests that the proposed S-box can get relatively ideal values.

3.3.3. Bits Independence Criterion (BIC)
Another important design criterion for reliable S-boxes is bit independence. A BIC test method was

proposed by Adams and Tavares in [22]. Assume v1, v2, . . . , v8 be the component Boolean functions of an
8× 8 S-box. The Boolean functions Vj ⊕ Vk (where j ≠ k and 1 ≤ j, k ≤ 8) should be extremely nonlinear
and meet the avalanche criterion (SAC) if the S-box satisfies BIC. Thus, for any 8 × 8 bijective S-box,
BIC may be checked by computing the nonlinearity and SAC of all 56 functions Vj ⊕ Vk. Table 7 displays
the calculated potential nonlinearity scores and SAC of functions Vj ⊕ Vk for the suggested S-box. The
average scores of BIC with respect to nonlinearities and SAC are found as 103.50 and 0.502, respectively.
The obtained scores justify the satisfactory performance of the proposed S-box for the bits independence
criterion.

3.3.4. Differential Approximation Probability (DP)
Differential Approximation Probability (DP) is an important criterion when evaluating an S-box, as it is

a nonlinear component of a block cipher. In an ideal situation, an S-box should exhibit consistent behavior
against differential attacks.

Let ∆x denote the input differential and ∆y represent the output differential. During differential
cryptanalysis, the key observation is how likely a particular input difference ∆x is to be mapped to an output
difference ∆y.

To evaluate this, we calculate the differential uniformity, which measures the maximum probability that a
given input difference leads to a specific output difference. The DP of a specified S-box can be expressed as:

DP(∆x, ∆y) = |{x ∈ X | S(x)⊕ S(x⊕∆x) = ∆y}|
2m

where: S is the S-box, ∆x is the input difference, ∆y is the output difference, X is the set of all possible
m-bit input values, and - 2m denotes the total number of such inputs.

An S-box with low maximum DP values (i.e., low differential uniformity) is considered resistant to
differential cryptanalysis.

3.3.5. Linear Approximation Probability (LP)
The LP criterion estimates how closely a linear combination of input bits can approximate a linear

combination of output bits. It is defined as:

LP(a, b) =
∣∣∣∣∣ Pr
x∈Fn

2
[a · x = b · S(x)]− 1

2

∣∣∣∣∣
where a, b ∈ Fn

2 , and · denotes the dot product. Lower LP values indicate stronger resistance to linear attacks.
The proposed S-box attained a maximum LP of 0.1406, as shown in Table 6, highlighting its security against
linear approximations.

3.4. Comparison Among Proposed S-Boxes
In Table 6, we compare the proposed S-boxes based on their cryptographic properties, including Maximum

Nonlinearity (Max. NL) for each S-boxe, Maximum and Minimum Strict Avalanche Criterion (SAC), BIC-
SAC, BIC-NL, Maximum Differential Probability (DP), and Maximum Linear Probability (LP).
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Table 6: Comparison of Cryptographic Properties of Proposed S-Boxes

S-Box Max. NL Max. SAC Min. SAC BIC-SAC BIC-NL Max. DP Max. LP
S-box of Table 1 106 0.609 0.406 0.505 103.43 0.647 0.125
S-box of Table 2 106 0.625 0.375 0.505 103.21 0.047 0.1406
S-box of Table 3 108 0.578 0.375 0.502 103.50 0.037 0.1484
S-box of Table 4 108 0.594 0.406 0.499 102.64 0.039 0.1406
S-box of Table 5 108 0.625 0.375 0.497 103.86 0.647 0.1328

As shown in Table 6, the proposed S-box in Table 3 achieves the highest nonlinearity (Max. NL = 108)
among all considered variants. It also demonstrates robust avalanche behavior with Max. SAC = 0.578 and
Min. SAC = 0.375. Furthermore, it provides excellent differential uniformity (Max. DP = 0.037), which is
among the lowest observed. The linear probability (Max. LP = 0.1484) remains within an acceptable range.

3.5. Comparison with Existing S-Boxes from Literature
In Table 7, we compare the proposed S-box with various existing S-boxes reported in the literature. The

goal is to evaluate how well the proposed design performs relative to known S-box constructions across
several critical cryptographic criteria.

Table 7: Comparison with Existing S-Boxes from the Literature

S-Box Max. NL Max. SAC Min. SAC BIC-NL Max. DP Max. LP
Proposed S-box 108 0.578 0.375 103.50 0.037 0.1406
M. Asif et al. [6] 107.3 0.610 0.570 101.3 0.060 0.150
B. Arshad et al. [7] 107.25 0.502 – 107.0 0.109 0.0234
A. A. Naveed et al. [8] 106 0.5233 0.0235 – 0.0391 0.138
A. K. Farhan et al. [15] 106 0.4978 0.002 103.92 0.0391 0.1402
G. Chen et al. [16] 106 0.6093 0.4218 103.1 – –
M. Khan et al. [27] 106 0.4812 0.125 101.9 – –
Hussain et al. [9] 104.75 0.594 0.391 100.0 0.039 0.125

As seen in Table 7, the proposed S-box outperforms several recent designs in terms of nonlinearity and
differential uniformity. For example, M. Asif et al. achieved a Max. NL of 107.3, slightly lower than our
result of 108. While A. A. Naveed et al. reported strong DP and LP values, their minimum SAC is extremely
low (0.0235), suggesting weak avalanche characteristics. Similarly, other constructions exhibit deficiencies
in one or more metrics. In contrast, the proposed S-box maintains a well-balanced performance across all
major cryptographic indicators, making it a robust and reliable choice for secure system design.
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Table 8: Comparison between AES S-box and proposed chaotic S-box

Feature AES S-box Proposed Chaotic S-box
Source of construction Multiplicative inverse in

GF(28) + affine transform
Logistic map Xn+1 = µXn(1−
Xn) + rational approximation
+ GF(28) arithmetic

Fixed or variable? Fixed (same everywhere) Variable (depends on µ, X0)
Design motivation Algebraic resistance to crypt-

analysis
Chaos + algebraic inversion
for unpredictability

Number of possible S-
boxes

Exactly one Many (different µ produce dif-
ferent boxes)

Affine transformation Yes No (uniqueness via collision-
resolution)

Practical use Standardized in AES Dynamic cryptosystems, mul-
timedia, IoT, experimental re-
search

3.6. Image Encryption and Decryption with Proposed Sbox
3.6.1. Encryption Framework

In this encryption method (see Algorithm 1), a two-stage process is adopted to enhance image security
through permutation and substitution. There is no doubt that this method can be used to color images. The
method is essentially the same; the only difference is that the pixel representation is now multi-channel (such
as RGB) instead of single-channel (grayscale). However, in order to effectively show the concept, we limited
our trials in this paper to grayscale images. It is easy to extend to color photos, and this will be covered in
later work.

• Permutation: The input grayscale image undergoes a row-column transformation via matrix transpo-
sition, effectively scrambling pixel positions to introduce confusion.

• Substitution: A pre-defined 8-bit S-box containing 256 unique values is then used to substitute each
pixel value, achieving strong diffusion.

The S-box is imported from an external CSV file, ensuring a bijective mapping. After substitution, the
encrypted image is saved and displayed. The original secret image (Lenna) [3] is shown in Fig. 2(a).
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3.6.2. Algorithm for Image Encryption

Algorithm 1 Image Encryption with Row-Column Interchange and S-box Substitution
Require: Grayscale image I, 8-bit S-box table S, paths to image and S-box file
Ensure: Encrypted image IE stored as PNG

1: function Load_Sbox(filepath)
2: S ← Read CSV from filepath
3: Flatten S to a 1D array of 256 elements
4: return S
5: end function
6: function Load_Image(image_path)
7: I ← Open image from image_path and convert to grayscale
8: I ← Convert image to 2D NumPy array
9: return I

10: end function
11: function Apply_Sbox(I, S)
12: F ← Flatten image array I to 1D
13: for each pixel p in F do
14: p← S[p]
15: end for
16: Reshape F back to shape of I
17: return encrypted image array IE

18: end function
19: function Save_Image(IE , save_path)
20: Create image object from IE

21: Save image to save_path and display it
22: end function
23: function Encrypt_Image(image_path, sbox_path)
24: S ← Load_Sbox(sbox_path)
25: I ← Load_Image(image_path)
26: IT ← Transpose(I) ▷ Row-column interchange
27: IE ← Apply_Sbox(IT , S)
28: Save_Image(IE , “encrypted.png′′)
29: end function

3.6.3. Visualization of Encryption Results
Our S-box performs well when encrypting and decrypting of two images using the same S-box, showing

correct and secure operation. However, if the same S-box is used across many images, patterns in its
construction may become visible to an attacker, weakening security. To prevent this, we can use multiple
S-boxes with strong nonlinearity and good statistical properties, ensuring that each image is encrypted
securely and reducing the risk of any information leakage.
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(a) Original I
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Figure 2: Encryption and decryption of grayscale images using different proposed S-boxes
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Original Image Original Histogram Encrypted Image Encrypted Histogram Decrypted Image

Table 9: Histogram analysis of original, encrypted, and decrypted images.

3.7. Texture-Based Security Analysis
To evaluate the strength of the proposed encryption scheme, texture-based statistical features are analyzed.

These metrics assess the randomness and uniformity of the encrypted image.

3.7.1. Entropy
Entropy reflects the unpredictability in an image:

Entropy = −
255∑
i=0

pi log2(pi)

where pi is the probability of gray level i.
Ideal value: Close to 8.

3.7.2. Contrast
Contrast quantifies pixel intensity differences:

Contrast =
∑
i,j

(i− j)2 · P (i, j)

where P (i, j) is the GLCM value.
Ideal value: High.

3.7.3. Correlation
Correlation assesses dependency between adjacent pixels:

Correlation =
∑

i,j(i− µi)(j − µj)P (i, j)
σiσj

Ideal value: Close to 0.
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3.7.4. Energy
Energy measures image uniformity:

Energy =
∑
i,j

P (i, j)2

Ideal value: Low (close to 0).

3.7.5. Homogeneity
Homogeneity indicates closeness of GLCM entries to diagonal:

Homogeneity =
∑
i,j

P (i, j)
1 + |i− j|

Ideal value: Low.

3.8. Comparison with Existing Schemes

Table 10: Comparison of Texture Features with Other Encryption Algorithms

Feature Proposed [20] [17] [9] [26]
Entropy 7.6218 7.8523 7.6884 7.6596 7.6739
Contrast 9.0285 8.3301 7.7369 6.3684 6.8051
Correlation 0.0605 0.0201 0.2168 0.0996 0.1958
Energy 0.0079 0.0176 0.0229 0.0261 0.0261
Homogeneity 0.0199 0.4208 0.4863 0.4985 0.4951

As shown in Table 10, the proposed method achieves:

• High contrast (9.0285)—indicating strong pixel variation.

• Low correlation (0.0605)—demonstrating broken pixel relationships.

• Minimal energy and homogeneity—signifying high randomness and reduced pattern repetition.

These metrics validate the effectiveness of the proposed S-box in securing image data against statistical
and visual analysis.

3.9. Decryption Framework
The decryption process is designed to reverse all operations performed during encryption and recover

the original grayscale image without any data loss. This involves two primary steps: reversing the pixel
substitution and restoring the original structure of the image.

First, we construct the inverse of the S-box used during encryption. This inverse S-box is applied to
each pixel of the encrypted image, effectively reversing the substitution transformation. Next, we perform a
transpose operation on the image to revert the row and column swapping carried out during encryption.

As a result, we obtain the fully reconstructed original image. Figure 2 shows the decrypted image denoted
by R(I), while Table 11 reports statistical metrics evaluating the fidelity of the reconstructed image relative
to the original. The complete decryption process is outlined in Algorithm 2.
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Algorithm 2 Image Decryption using Inverse S-box and Transpose
Input: Encrypted image IE , 8-bit S-box S, file paths for encrypted image and S-box
Output: Decrypted image ID

1: function Inverse_Sbox(S)
2: S−1 ← array of same shape as S
3: for each index i and value v in S do
4: S−1[v]← i
5: end for
6: return S−1

7: end function
8: function Apply_Inverse_Sbox(IE , S−1)
9: F ← Flatten IE to 1D array

10: for each pixel p in F do
11: p← S−1[p]
12: end for
13: Reshape F to original shape of IE

14: return Restored image IR

15: end function
16: function Decrypt_Image(enc_path, sbox_path, save_path)
17: S ← Load_Sbox(sbox_path)
18: S−1 ← Inverse_Sbox(S)
19: IE ← Load_Image(enc_path)
20: IR ← Apply_Inverse_Sbox(IE , S−1)
21: ID ← Transpose(IR) ▷ Restore original row-column alignment
22: Save_Image(ID, save_path)
23: end function

Metric Original vs. Recon-
structed Image Proposed Scheme

Correlation High (≈ 1)
(Perfect reconstruction) 1.00

RMSE
Low (≈ 0)
(Minimal reconstruction
error)

0.00

PSNR (dB)
High (> 30− 40 dB)
(High reconstruction qual-
ity)

∞

NPCR (%) Low (≈ 0%)
(Minimal pixel variation) 0.00

UACI (%)
Low (≈ 0%)
(Minimal intensity varia-
tion)

0.00

Table 11: Statistical comparison between the original and reconstructed image
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4. Discussion

We present a method for creating dynamic substitution boxes (S-boxes) that combines the sensitivity of
chaotic systems with the algebraic structure of finite fields. The logistic map, which is the foundation of the
design, is described as

Xn+1 = µXn(1−Xn),

The control parameter is µ ∈ (3.5699, 4.0), while the initial condition is X0 ∈ (0, 1). These parameters are
chosen so that the chaotic regime is operated in by the map, resulting in high entropy and randomness of
the generated sequence.

When the control parameter is chosen close to the lower bound (µ ≈3.57 or less), the logistic map does
not show fully developed chaos or weakly chaotic behavior. As a result, the generated sequences are less
unpredictable and random, which has a direct effect on the S-box’s cryptographic strength. Nonlinearity
decreased to 100 in our tests, SAC values were low (minimum 0.109, highest 0.719), and the encryption
statistics significantly reduced. This occurs because increased correlations between values result from
insufficient chaos, which weakens the defense of the substitution process against statistical and differential
attacks.

To construct each S-box, 256 iterations of the logistic map are performed with rational approximations of
Xn. At each step, a rational number is approximated as Xn, with the numerator and denominator reduced
modulo 256. Elements of the Galois Field GF (28) are shown by these values. For example, if Xn = an

bn
, the

S-box entry is calculated as follows:

S[n] = an · b−1
n mod P (x),

where the multiplicative inverse of bn in GF(28) is denoted by b−1
n ., and arithmetic is performed modulo the

irreducible polynomial
P (x) = x8 + x4 + x3 + x2 + 1.

To ensure that the resulting S-box is bijective, uniqueness is enforced by checking for duplicate outputs.
The output value in GF(28) is continuously increased by us until a unique, unused value is obtained if a
collision is discovered (i.e., an S-box value is already assigned).

S-boxes has 256 unique entries and are represented by a 16× 16 matrix. The control parameter µ can
be changed to result in multiple distinct S-boxes, each with unique internal structures. Key sensitivity is
improved by this parametric dependence, and the creation of dynamic S-boxes based on specific cryptographic
keys is enabled. The suggested structure is considered perfect for lightweight and adaptable cryptography
systems since it is regarded as extremely resistant to static analysis and differential attacks.

Higher-dimensional chaotic maps, such as 2- D or 3-D systems, may offer improvements in the statistical
properties of the generated S-box. Compared to 1-D maps, these systems often display richer dynamics and
stronger mixing behavior, which could potentially lead to better values of nonlinearity, SAC, and entropy.
Since our present work is focused only on a 1-D chaotic system, we cannot yet confirm their actual impact on
cryptographic performance. Exploring this direction in the future—by comparing 1-D, 2-D, and 3-D chaotic
maps—could provide valuable insights into whether such extensions deliver measurable gains in security
metrics.

4.0.1. Discussion on Security Resistance
The proposed encryption scheme combines a permutation step (row–column interchange) with a nonlinear

substitution step using an S-box. In this section, we briefly discuss its resistance against common types of
cryptographic attacks.

1. Statistical Attacks: The substitution step introduces confusion by mapping each pixel value through
an S-box, while the row–column interchange ensures diffusion by altering the pixel positions. Together,
these operations reduce the correlation between adjacent pixels in the encrypted image. Histogram
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analysis of the cipher image is expected to be uniform, which prevents an attacker from extracting
meaningful statistical information.

2. Differential Attacks: A small change in the input image (such as modifying one pixel) spreads
across multiple positions after the transpose and substitution operations. The nonlinearity of the S-box
ensures that even a one-bit difference in the input leads to a significant difference in the output values,
thereby providing resistance against differential cryptanalysis.

3. Brute-force Attacks: The security depends on the secrecy of the S-box and the applied permutation.
If the S-box is generated securely (e.g., using a chaos-based or random construction), the attacker cannot
feasibly guess the mapping. The search space for a full 8-bit S-box is 256!, which is computationally
infeasible to exhaust.

4. Known-plaintext and Chosen-plaintext Attacks: Since the encryption uses both substitution
and permutation, the relationship between the plaintext image and the ciphertext is highly nonlinear.
Without access to the specific S-box used, recovering the plaintext from a known or chosen ciphertext
pair is computationally impractical.

5. Limitations: The current scheme uses a single round of permutation and substitution. While this
provides reasonable resistance for lightweight applications, security can be further improved by using
multiple rounds of transpose and substitution, or by employing dynamic S-boxes that change with
each encryption.
Overall, the combination of permutation and S-box substitution provides confusion and diffusion, the
two fundamental requirements of secure encryption as identified by Shannon. This makes the proposed
scheme resistant to common cryptanalytic methods, while still remaining computationally efficient.

4.1. Complexity Analysis
The computational complexity of generating one S-box of size N = 256 is O(N) in practice, with a rare

worst-case of O(N2) due to collision resolution.Unlike the AES S-box, which is fixed and precomputed, our
method regenerates S-boxes dynamically; however, since each iteration involves only constant-time GF(28)
operations, the overall process remains lightweight and suitable for practical applications.

5. Conclusion

This work introduced a dynamic image encryption framework based on substitution boxes (S-boxes)
generated from the chaotic logistic map and arithmetic over GF (28). By varying the control parameter
µ, multiple S-boxes can be produced, ensuring sensitivity to initial conditions and enhancing confusion.
The proposed design achieved strong cryptographic performance, with a nonlinearity of 108, SAC values
between 0.375 and 0.578, BIC-NL of 103.50, BIC-SAC of 0.502, a differential probability of 0.037, and a linear
probability of 0.297, demonstrating resistance against differential and linear cryptanalysis and outperforming
several existing S-box designs.

Validation through statistical and visual tests confirmed secure and reversible encryption, with decrypted
images nearly identical to the originals (PSNR = ∞, RMSE = 0, and low NPCR/UACI). Since the current
encryption method relies only on permutation and substitution, the design remains lightweight and efficient,
making it particularly suitable for real-time multimedia, IoT, and biometric protection. Future extensions
could explore higher-dimensional chaotic maps, integration with symmetric key ciphers such as AES, and
robustness against emerging machine learning–based cryptanalysis.

6. Open Problems and Future Work

Even though good cryptographic characteristics and improved performance are seen by the proposed
dynamic S-box based cryptography scheme compared to some of its existing competitors , there are open
issues for future research:
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• Robustness against advanced attacks: The resistance of the proposed scheme against algebraic,
boomerang, and machine learning–based cryptanalysis has not yet been fully evaluated. Investigating
these attack models remains an important open problem.

• Extension to higher dimensions:To increase nonlinearity and unpredictability, hybrid chaos-based
generators or higher-dimensional chaotic maps could be used by future research.

• Alternative finite fields: Exploring different irreducible polynomials in GF (28), or even extensions
to other fields, may lead to more diverse and secure dynamic S-box constructions.
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