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QUALITY SURFACE CONSTRUCTION

CRIPPS R. J.

ABSTRACT. Current surface construction methods in CADCAM use para-
metric polynomial equations in the form of a NURBS. This representation
is ideal for computer-based implementations, allowing efficient interroga-
tion. However, issues exist in constructing and manipulating such sur-
faces. When constructing a NURBS surface there are difficulties in de-
termining constraints such as parameterisation, tangent magnitudes and
twist vectors. Controlling the geometric features like curvature profiles
of sectional/longitudinal curves on a NURBS surface is problematical as
is joining several such surfaces together. A cause of these difficulties in
control is that the control points do not lie on the surface itself. An al-
ternative approach to surface construction is to specify the curvature and
construct the surface so that it satisfies the curvature constraints. Since
NURBS does not directly allow this, a fundamentally different approach
is required. The key is to adopt a point-based approach where the surface
is defined by a small number of points lying on the surface. Intermediate
points are then constructed using a recursive approach which is defined
to ensure that the curvature profile between adjacent points is of a very
high quality. A case study is presented that illustrates the point-based
approach.

Key words : Surface construction, Genralised Corn Spiral, NURBS, pa-
rameterisation.
AMS SUBJECT:16W60, 16W22, 16W20.

Generally, curves and surfaces can be represented mathematically either

e Explicitly, i.e. y = f(z) or z = f(z,y),

e Implicitly, i.e. f(z,y) =0 or f(x,y,z) =0,

e Parametrically, i.e. <z =2z(u),y = y(u),z = z(u) > or
<= $(U,U),y = y(”)”)) = (Z(U,U) >.
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Both the explicit and implicit forms are axis dependent making them unsuit-
able for use in computer graphics or CAGD. The parametric form is axis inde-
pendent and can represent multi-valued curves and surfaces, are well defined
for infinite derivatives and are relatively easy and quick to evaluate points and
derivatives. Further more the parametric form is more flexible and therefore
is ideally suited to computer-based applications. The use of the parametric
representation for curves and surfaces is not without its problems. For exam-
ple the derivative is now a function of the parameterisation which can leads
to difficulties when trying to specify or control construction or modification of
curves and surfaces. Further, some operations are more difficult in parametric
form, for example finding the distance from a point to a surface. The aim
is to construct high quality curves and surfaces that can be used in a wide
range of applications including computer graphics and especially CADCAM
applications where downstream activities are dependant on well-defined high
quality surfaces. The term high quality relates to geometric quality, measured
in terms of curvature. A high quality curve or surface has smooth curva-
ture profiles with no unnecessary undulations and with continuous, to within
acceptable tolerances, curvature across adjoining curves or surfaces.

A review of the basic ideas behind surface construction using parametric
forms is given. Some of the inherent properties of the parametric form that
affect the quality of geometry of the resulting surface are identified and current
solutions are outlined. A fundamentally different approach to curve and sur-
face construction is then given which is purely geometric in nature and which
avoids the difficulties of the parametric form. Some of the basic algorithms
are introduced followed by a discussion of how the point-based surface can be
represented in parametric form thus making it available to existing CADCAM
systems. A a case study illustrating the point-based approach to surface con-
struction is then discussed and the article is concluded by summerising the
advantages of the point-based approach and further work is identified.

SURFACE CONSTRUCTION IN CAGD

Surface Representation. A Cartesian or tensor product parametric surface
of degree (m,n) is given by:

S(u,v) = Z Z Bip(u)Bjq(v)Pi j,

i=0 j=0

where B; ,(u) & Bj4(v) are the basis functions and P; j; = V; j/w; ;,0 < i <
m,0 < j < n, are homogeneous representation of the Cartesian control points
V. =< i ;,¥ij, %, > and w;; > 0 are the weights associated with each
vertex. The parameters u,v are usually normalised to 0 < w,v < 1. The
surface S(u;,v;) represents a mapping from u,v-space into object space <
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x,1y,z >. The nature and properties of the parametric surface are determined
by the choice of the basis functions B;,(u) & Bj4(v). The most common
surface used in CAGD is the open clamped NUBS form. Here, the basis
functions, N; p(u) & Nj4(v) are defined recursively in terms of the knot vectors
U] = (uo, - s Umagpt1) & [V] = (vo,- -+, Vpggr1) with up < u < uppq,vy <
v < vg41 and knots at either end of [U] and [V] are repeated p+ 1 and ¢ + 1
times respectively. The weights are assigned a constant value, since in general
values are difficult to specify. There use lies in reproducing known analytic
curves and surfaces, for example conic sections, etc. The i*" basis function,
N; p(u), is givenby

Nio(u) 1 it w <u <
o(w) =
»0 0 otherwise

Nip(u) = MNi,p—l(u) 4 MNHLp—l(U) 0<i<m
Ui+1 — Uy Uit+p+1 — Ui41

noting that the quotient 0/0 is defined as zero. The resulting NUBS surface
consists of (m + 1 — p) x (n + 1 — q) sub-patches, which are CP~! and C?~1
continuous in the u- and v-directions respectively, assuming there are no re-
peated interior knots. The open clamped knot vectors ensure that the surface
passes through the four corner control points:Pg o, Py 0, Pon and Py, ,, ie.
S(uo,v0) = Po.o-

Since each of the basis functions are positive and sum to 1, the resulting
surface point can be seen to be a convex linear combination of all the control
points, the surface is guaranteed to lie inside the bounding box of the control
points. This property is especially useful for computer graphics, visualisation
and many interrogation algorithms. Evaluating the surface for a fixed value
of u say and varying v results in a parametric curve lying on the surface.
In particular the extremes of u, v result in four surface boundary curves, i.e.
S(u,v0) = Y Nip(w)P; g is a p degree NURBS curve. Thus, the surface
can be thought of as a blend between four boundary curves (Fig. 1). It is noted
that when the knot vectors consist of 0's and 1’s then the basis functions are
the Bernstein basis functions and the curve or surface is in Bézier form. This
shows that the Bézier form is a true sub-set of NURBS.

Surface Interpolation. In order to construct a surface a mesh of surface
points and possibly boundary derivatives is required. A surface can then be
constructed that interpolates the given data. It is noted that this constrained
interpolation is a linear system which is readily solved, whereas controlling
curvature results in non-linear equations. Alternatively a more local approach
can be taken where by boundary curves are constructed and then blended
together to form the surface. This second approach is more problematic than
the first since the resulting NUBS surface is not guaranteed to have any form
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FIGURE 1. Open clamped B-spline surface with 2x2 sub-
patches, and control polygon.

of continuity between sub-patches, and can result in multiple internal knots
within the knot vector [1]. Adopting the global interpolation approach, there
are several factors that affect the quality of the resulting surface.

Data specification: Number and spacing. Specifying geometric data is a real-
istic request. The number of data points directly corresponds to the number
of control points required to represent the interpolated entity, so it is undesir-
able to use more points than necessary; doing so can lead to data proliferation
and compromise downstream activities [2]. Also, sampling sparse data points
from a poor quality object allows the interpolation process to ’smooth’ over
undesirable fluctuations in the geometry, whereas a dense point sampling will
result in the blemishes being inherited. The aim is therefore to find the mini-
mum number of data points that will satisfy the quality requirements. Closely
related to the number of data points is the point spacing. Where curvature is
constant (lines, planes, circles, cylinders), evenly spaced points yield optimal
results [2]. This is not true of entities with varying curvature profiles. The
method used to space points can have a significant effect on the quality of
the interpolated entity; a good algorithm will characterise the geometry of the
original shape and minimise positional /curvature errors.

Parameterisation. Parameterisation is the process that assigns a particular
parameter value to each point on the surface. This can have a large effect on
the quality of the resulting curve or surface as shown in Fig. 2. There are a
number of parameterisation algorithms but the most common is chord length
parameterisation.
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FIGURE 2. Effect of parameterisation on a quadratic curve.

Knot vector generation. The spacing of knots in the knot vector has a signifi-
cant effect on the shape of a B-spline curve and [1] warn that a poor choice of
knot vector can lead to a singular system of equations.

Derivative magnitude estimation. Greater control of the quality of the re-
sulting surface can be gained by specifying boundary constraints. Boundary
tangent directions are geometric and can be given. However, the interpolation
process requires parametric derivatives which are more difficult to specify and
therefore have to be estimated. Despite the magnitude being a function of the
parameterisation, it is commonplace to approximate it using an estimate of
the interpolated curves length, e.g. summing the chord lengths between data
points.

Degree. The degree of a B-spline curve or surface dictates the degree of each
span or sub-patch; the maximum possible degree is defined by the number of
control points, i.e. for a curve p < m, and for a surface p < m,q < n. When
p = 1, the curve is piecewise linear; it is clearly unsuitable for representing
general freeform shapes. The quadratic curve, p = 2, has C! continuous
spans. In general they do not provide sufficient flexibility for design: a single
span cannot represent an inflection, nor can the derivative magnitudes at
either end of the span be controlled independently. The cubic curve,p = 3,
has C? continuous spans, and overcomes the problems encountered by the
quadratic case. It is the most frequently used degree for interpolation [3].
The quartic curve,p = 4, has C3 continuous spans; the additional continuity
constraints of polynomials of degree p > 4 often force the curve to ’exaggerate’
the features of the interpolated data, and undesirable oscillations may occur.
When the flexibility of a higher degree curve is required, e.g. for refinement or
manipulation of curvature without affecting tangents it is usual to interpolate
with p = 3, and then raise to the desired degree (see [1]).

Reconciliation of parameter values. When interpolating surfaces, a single pa-
rameterisation has to be specified for each parametric direction. This requires
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a single parameterisation for both S(u,0) and S(u, 1) boundaries. Except in
the trivial cases, the parameterisation on these two boundaries is likely to
be different. One method is simply to average the corresponding parameter
values, however the parameterisation is a compromise for both boundaries,
causing possible distortions and undulations. Unfortunately, some form of
parameter reconciliation method is necessary, because global interpolation re-
quires that parallel strips of points have identical parameterisations. The only
way to avoid poor quality results is to ensure the reconciliation process causes
minimal disruption to the ideal parameter values, i.e. by careful point distri-
bution.

Twist vector estimation. Specifying data points and cross-boundary deriva-
tives leaves four outstanding vector-valued pieces of information. These are
the mixed second order partial derivatives, or twist vectors, from each corner
of the interpolated surface,S,,(a,b),a,b = (0,1). Since they are a function
of the surfaces parameterisation, they have no geometric interpretation and
must be estimated. In terms of their effect on the surface, they control the
rate of change of the cross boundary derivatives, which must be identical in
both parametric directions at the corners. Inappropriate control of the twist
vectors can lead to poor surface geometry and / or poor parameterisation.

POINT-BASED SURFACES

As indicated, when constructing a NURBS surface there are difficulties in
determining constraints such as parameterisation, tangent magnitudes and
twist vectors. Further, controlling geometric features like curvature is also
problematical. An alternative approach is to specify the curvature and con-
struct the surface to satisfy the curvature constraints. Since NURBS does not
directly allow this, a fundamentally different approach is required. The key is
to adopt a point-based approach where the surface is defined by a small num-
ber of points lying on the surface. Intermediate points are then constructed
using a recursive approach which is defined to ensure that the curvature profile
between adjacent points is of a very high quality.

The idea of using a discrete set of points to define the geometry of a surface
was first introduced by [4]. in which the need for a closed-from mathematical
model, NUBS, was questioned. The typical process in the CADCAM chain is
to start with geometric data, usually in the form of discrete points. The next
step is to fit a closed-form function, most likely NURBS, that approximates
the data. This closed-form expression is then discretised in order to use it in
follow-on processes for example interrogations, FE analysis, NC machining,
etc. McLaughlin argued that the fitting stage was not always necessary. The
fitting stage is not only time consuming but can actually lead to distortion of
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the original shape of the data. This phenomenon is unavoidable and is due to
the nature of polynomial interpolation and approximation.

Rather than find a closed-form approximation, [4] suggested looking for
a geometric approach to describing the shape by refining or filling-in data
between original points. If this refinement can be controlled it should avoid the
oscillatory problems associated with polynomials. Essentially the point-based
approach requires the user to supply a grid of 3D design points which have
been selected to characterise the intended design shape. It is assumed that
the number of points and their physical location are sufficient for this purpose.
This then defines the surface. Any intermediate point can be generated by
using recursion.

Recursive Scheme. The recursive scheme is based on the GCS [5] which
is a 2D curve that has a rational linear curvature profile, parameterised with
respect to arc length, s, and is given by:

(k1 — Ko + rK1) S + KoS

wls) = rs+.S
where kg and k1 are the curvatures at the start and end of the curve segment,
S is the total arc length and r is the shape factor which controls the fullness
of the curve. It is easy to show that x(s) is a monotonic function wrt s since
its first derivative is always greater than zero. Points on the GCS curve are
given by:

2(S) = /Oscos (% [(1 ) (ko — k1) In(1+ %t) (14 )Ry — RO)ED dt

,r > —1, (1)

y(S) = /OS sin (% [(1 +7r)(ko — k1) In(1 + %t) +r((1+7)k — /io)é:|> dt

These are Fresnel integrals and numerical evaluation has to be used. The end
slope of the GCS segment is given directly by:

T% (14 7r)(ko— k1) (1 +7)+7r((1+7r)k1 —Ko)] ,7#0

S(noz-l—fﬂ) =0
where (|61 < 3).

It is noted that the GCS contains straight lines (p = ¢ = 0), circular arcs
(¢ = r = 0), logarithmic spirals (¢ = 0;r # 0) and Cornu spirals (¢ # 0;r = 0).

Thus, given a string of points the next stage is to construct GCS segments
between adjacent pairs of points. To achieve this, arc lengths are estimated
using circular arc interpolation from which accurate estimates of curvature
vectors and hence tangent vectors can be found [6]. The GCS can match
end points and tangents and approximate end curvatures. It is conjectured
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F1GURE 3. 3D GCS construction.

that the curvature discontinuities between adjacent GCS segments will be
acceptable if the original string of data characterised the required geometry.
Large discontinuities in curvature indicates that the data is either not dense
enough or uncharacteristic of the intended shape. So far only planar GCSs
have been constructed. Assuming both of the planar GCSs are single-valued
with respect to the chord between the end points, 1;, then the 3-D curve
is well-defined and is the intersection curve between the two ruled surfaces
constructed by extruding each of the planar GCSs parallel to their respective
plane normals. Fig. 3 illustrates two planar GCSs, the corresponding ruled
surfaces and the 3-D intersection curve on which the intermediate point, q;,
lies.

The original design grid is now the 3D surface. Any intermediate points
can be generated by the recursive scheme by treating the surface as strings of
points in two directions. However, to remove any bias, refine using rows then
columns followed by columns then rows and average the two refined grids.

NURBS APPROXIMATION

The high quality point-based surface, to be of any use to the CADCAM
community, has to be able to used by existing software. This implies that
it has to be converted to a NURBS representation. Clearly this cannot be
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FIGURE 4. NURBS surface representation.

achieved exactly an dhas to be approximated. Since the geometry of the limit
surface of the point-based definition is known, the selection of the parameters
of the interpolation process can be guided by the information contained in the
point-based data [7].

Since the initial mesh of points is small the number of sub-patches will also
be small thus satisfying the assertion that fewer sub-patches result in fairer
surfaces [8]. The tolerance to the point-based surface can readily checked by
recursion of the data set and matching with a grid of parametrically generated
points taken from the approximate NUBS surface. If the discrepancies are
out of tolerance, the point-based surface can be further refined and a new
approximation constructed. This clearly increases the number of sub-patches
which is the usual trade-off between accuracy and data proliferation.

CASE STUDY

A canopy and windscreen was supplied by BAe Systems, UK with the aim
of validating the point-based approach. The parametric definition, as shown in
Fig. 4 was required to match the front optically defined windscreen to the free-
form canopy whilst maintaining point and boundary tangent angle tolerances
and controlling the blend between the two surfaces without compromising the
optical surface. A minimal point set that characterised the underlying shape
of the component was sampled from the parametric definition (Fig. 5(a)).
The resulting point-based surface after two levels of refinement is shown in
Fig. 5(b).

Gaussian curvature and isophotes were generated from the refined point-
based data to assess the shape characteristics and are shown in Figs. 6(a) and
(b) respectively. For the shaded Gaussian curvature, eight colours, spanning
between —1.4¢7% and 1.8¢76 with each colour spanning 4e~* were used. For
the isophote analysis a light direction of [0,0, 1] and isophote angles between
10° and 90°, spaced every 10° were used. As can be seen, the Gaussian curva-
ture shows no unnecessary undulations and has a smooth transition from the
optic surface through the blend region into the free-form canopy. The isophotes
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FIGURE 6. Gaussian curvature map(a) Isophotes(b).

(Fig. 6(b)) gives further evidence of the high quality of the surface as the light
lines show no unnatural behaviour indicating that the optical properties have
been maintained. The NURBS approximation was constructed from the point-
based surface and matched against the original parametric definition to ensure
boundary tolerances were maintained.

CONCLUSIONS

A point-based surface construction method has been introduced that uses
curves that possess a rational linear curvature profile. The resulting surfaces
are of high quality in terms of the curvatures. The construction of a NUBS
approximation to enable the point-based surface to be accessed by existing
polynomial based software is guided by the knowledge of the geometry of the
point-based definition. Outstanding research is to develop the methods to deal

with irregular topologies and to consider an improved construction of the 3D
GCS curve.
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