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A DEGENERATE HYDRODYNAMIC DISPERSION MODEL

SERGEY SAZHENKOV∗

Abstract. A Cauchy problem for a two-dimensional ultra-parabolic
model of filtration through a porous ground of a viscous incompressible
fluid containing a solute (tracer) is considered. The fluid is driven by
the buoyancy force. The phenomenon of molecular diffusion of the tracer
into the porous ground is taken into account. The porous ground consists
of one-dimensional filaments oriented along some smooth non-degenerate
vector field. Two cases are distinguished depending on spatial orientation
of the filaments, and existence of generalized entropy solutions is proved
for the both. In the first case, all filaments are parallel to the buoyancy
(gravitational) force and, except for this, the equations of the model have
rather general forms. In the second case, the filaments can be nonparallel
to the buoyancy force and to each other, in general, but their geometric
structure must be genuinely nonlinear. The proofs rely on the method of
kinetic equation and the theory of Young measures and H-measures.

Key words : Ultraparabolic Equation, Genuine Nonlinearity, Non-Isotropic
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1. Problem formulation and main results

In a space-time layer Π := R2
x × (0, T ), T = const > 0, we consider the

Cauchy problem for the non-isotropic model of filtration, which consists of the
ultra-parabolic equation of balance of mass

ut + divx(a(u)v + Ac(u)) = ∂∗n∂nb(u), (x, t) ∈ Π, (1a)

Darcy’s law
v = −∇xp∗ + g(u)e1, (x, t) ∈ Π, (1b)

and the continuity equation

divxv = 0, (x, t) ∈ Π, (1c)
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endowed with 1-periodic initial data belonging to L∞(R2),

u(x, 0) = u0(x), 0 ≤ u0(x) ≤ 1, x ∈ R2, (1d)

and periodicity conditions

u(x + ei, t) = u(x, t), ∇xp∗(x + ei, t) = ∇xp∗(x, t), (x, t) ∈ Π. (1e)

Here ei (i = 1, 2) are standard basis vectors in R2. Functions u(x, t), p∗(x, t)
and v(x, t) = (v1(x, t), v2(x, t)) are unknown. Functions a(u), b(u), c(u) =
(c1(u), c2(u)), g(u), and initial data u0 are given such that a, b, c1, c2, g ∈
C2(R), b′(u) > 0 ∀u ∈ R, u0(x + ei) = u0(x) ∀x ∈ R2, i = 1, 2. A is a given
2 × 2-matrix with constant entries Aij . The differential operators ∂n and ∂∗n
are defined by the formulas

∂n = n1(x)∂x1 + n2(x)∂x2 , ∂∗n = ∂x1(n1(x)·) + ∂x2(n2(x)·),
where the given vector field n(x) is smooth, 1-periodic, and non-degenerate,
i.e., |n(x)|2 6= 0.

Model (1a)–(1c) describes a process of filtration through a porous ground
of a viscous incompressible fluid containing a solute (tracer), with taking
into account the phenomenon of molecular diffusion of the tracer into the
porous ground, and under assumption that the porous ground consists of one-
dimensional filaments (threads) oriented along the direction of the vector field
n⊥ = (−n2, n1) [2, chapters 4, 10], [11]. In (1a)–(1c) u(x, t) is the mass
concentration of the tracer in the fluid, v(x, t) is the velocity of filtration,
p∗(x, t) is the pressure, a(u)v(x, t) + Ac(u) is the instantaneous mass flux of
the tracer, g(u)e1 is the density of the buoyancy (gravitational) force, and
b(u) is the diffusion function. The term ∂∗n∂nb(u) may be equivalently repre-
sented as divx(B∇xu), where B = n ⊗ n (or, equivalently, B = (ninj)) is the
diffusion matrix. Such form of the diffusion matrix implies that the diffusion
phenomenon is absent in the direction perpendicular to n.

Note that equations (1b)–(1c) yield the second order elliptic equation

∆xp∗ = g(u)x1 , (x, t) ∈ Π. (2)

Hence the model under consideration may be represented as the coupled sys-
tem of ultra-parabolic equation (1a) for the concentration and elliptic equation
(2) for the pressure. In this case Darcy’s law (1b) is inserted into (1a). Thus
the velocity field v(x, t) does not appear in the system of equations and is
recovered a posteriori from Darcy’s law.

The following notation for the linear spaces of periodic functions is used
throughout this work. By Q we denote Ω × (0, T ), where Ω := [0, 1) × [0, 1).
By Lp ⊂ Lp

loc(R
2) and Hs,p ⊂ Hs,p

loc (R
2) we denote the Banach spaces, which

consist of 1-periodic functions and are supplemented with the norms ‖u‖Lp =
‖u‖Lp(Ω), ‖u‖Hs,p = ‖u‖Hs,p(Ω). For l ≥ 0 let C l be the closed subspace of
u ∈ C l(R2) such that u is 1-periodic in x1 and x2.
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The differential operator B = ∂∗n∂n: C∞ 7→ L2 is symmetric and non-
negative in the Hilbert space L2. By the Friedrichs theorem, it has the self-
adjoint extension B: D(B) 7→ L2, where D(B) consists of all functions u ∈ L2

such that ∂nu ∈ L2. Being supplemented with the norm

‖u‖2
H := ‖u‖2

L2 + ‖∂nu‖2
L2 ,

D(B) becomes the Hilbert space, which will be denoted by H.
We are now in a position to define an entropy solution of problem (1).

Definition 1. A pair of functions u ∈ L∞(0, T ; L∞) ∩ L2(0, T ; H) and p∗ ∈
Lr(0, T ; H1,r) (∀ r ∈ [1, +∞)) is an entropy solution of problem (1) if the
bound 0 ≤ u(x, t) ≤ 1 holds a.e. in Q, the integral equality∫

Q
(∇xp∗ · ∇xζ − g(u)ζx1)dxdt = 0 (3)

holds for all 1-periodic in x test functions ζ ∈ C1
loc(Π), and the integral in-

equality
∫

Q
{ϕ(u)ηt + (ψ1(u)v + Aψ2(u)) · ∇xη + w(u)∂∗n∂nη

−ϕ′′(u)b′(u)|∂nu|2η}
dxdt +

∫

Ω
η(u0)β(x, 0)dx ≥ 0, (4)

where v is given by Darcy’s law (1b), holds for all functions ϕ, ψ1, ψ2, and
w such that ϕ ∈ C2

loc(R), ϕ′′(u) ≥ 0, ψ′1(u) = a′(u)ϕ′(u), ψ′
2(u) = c′(u)ϕ′(u),

and w′(u) = b′(u)ϕ′(u), and for all non-negative 1-periodic in x functions
η ∈ C2

loc(Π) such that η|t=T = 0.

We say that model (1a)–(1c) is genuinely nonlinear, if the equation of bal-
ance of mass (1a) is genuinely nonlinear, i.e., if its coefficients satisfy the
following condition.

Condition G. For a.e. x ∈ R2 the function

λ 7→
2∑

k=1

(
A1kck(λ)n2(x)

−A2kck(λ)n1(x)
)

+ (1/2)b(λ)
(
n2(x)∂nn1(x)− n1(x)∂nn2(x)

)

is nonlinear on any nondegenerate subinterval of the interval 0 ≤ λ ≤ 1, and
the function a′′(λ) is linearly independent of the function

λ 7→
2∑

k=1

(
A1kc

′′
k(λ)n2(x)

−A2kc
′′
k(λ)n1(x)

)
+ (1/2)b′′(λ)

(
n2(x)∂nn1(x)− n1(x)∂nn2(x)

)

on any nondegenerate subinterval inside the set {λ ∈ [0, 1] | a′′(λ) 6= 0}.
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The following theorems are the main results of this article.

Theorem 1. Let n(x) · e1 = 0 for all x ∈ R2. Whenever u0 ∈ L∞ and
0 ≤ u0 ≤ 1 for a.e. x ∈ R2, problem (1) has at least one entropy solution in
the sense of definition 1.

Theorem 2. Assume that n(x) · e1 6= 0, in general, and condition G holds.
Whenever u0 ∈ L∞ and 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R2, problem (1) has at
least one entropy solution in the sense of definition 1.

Peculiarity of problem (1) consists of the spatially degenerate character of
the diffusion process. This feature is not observed in the well-known classical
models of two-phase filtration, for whom the extended theory of classical and
generalized solutions has been constructed [1, 2, 11]. So, the above stated
results complement this vast theory. Proofs of Theorems 1 and 2 rely on
the method of kinetic equation, which allows to reduce quasilinear equations
and systems to linear scalar equations on ‘distribution’ functions involving
additional ‘kinetic’ variables, and on the theory of Young measures and H-
measures.

2. Parabolic approximate problem. Partial compactness of the
family of approximate velocity fields

For a fixed ε > 0 we consider the approximate system

∆xp∗ε = g(uε)x1 , (x, t) ∈ Π, (5)
∂tuε + divx(a(uε)vε + Ac(uε)) = ∂∗n∂nb(uε) + ε∆xuε, (x, t) ∈ Π, (6)

vε = −∇xp∗ε + g(uε)e1, (x, t) ∈ Π, (7)

endowed with boundary conditions (1d) and (1e). From the well-known results
in the theory of the Muskat–Leverett model [1] it follows that problem (5)–
(7), (1d), (1e) has a unique smooth solution for any initial data u0 ∈ L∞
(the pressure p∗ε is defined up to an arbitrary additional constant, which can
be fixed zero by imposing that

∫
Ω p∗ε(x, t)dx = 0). Maximum principle and

energy estimates imply the inequalities

0 ≤ uε ≤ 1, ‖uε‖L2(0,T ;H) + ε‖∇xuε‖L2(Q) + ‖∇xp∗ε‖Lr(Q) ≤ C∗(Q), (8)

where the exponent r ∈ [1,∞) is arbitrary and the constant C∗ does not
depend on ε. From these inequalities it follows that there exist a sequence of
solutions uε, pε, vε to problem (5)–(7), (1d), (1e), and functions u, p, and v
such that

uε → u weakly* in L∞(Q), weakly in L2(0, T ; H),
vε → v, ∇xp∗ε → ∇xp∗ weakly in Lr(Q), ∀ r ∈ [1,∞), as ε ↘ 0. (9)
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Since problem (1) is nonlinear then it is necessary to prove strong conver-
gence of a sequence of solutions of problem (5)–(7), (1d), (1e). We start with
establishing a partial compactness property for approximate velocity fields.

Introduce

mε(x, t) = −vε(x, t) +
g(uε(x, t))n1(x)n(x)

|n(x)|2 . (10)

Proposition 3. For any bounded set K ⊂ R2
x there is a constant C1(K) such

that
‖mε‖L2(0,T ;H1,2(K)) + ‖∂tmε‖L2(0,T ;H−1,2(K)) ≤ C1(K).

The families {mε}ε>0 and {vε · n⊥}ε>0 are relatively compact in L2
loc(Π).

Proof is just a slight modification of [7, proof of proposition 2]. ¤

3. Kinetic equation

Method of kinetic equation has been created and applied recently to study
a wide range of problems, for example, to study the equations of isentropic
gas dynamics and p-systems, and the first and second order quasilinear con-
servation laws [6, 8]. In this paper we make use of the version of method, that
has been constructed in [8].

In order to state a theorem on kinetic equation corresponding to problem
(1), recall some facts from the measure theory. FurtherM(Rn) denotes the Ba-
nach space of bounded Radon measures on Rn. Recall that a mapping σ: R2

x×
(0, T ) 7→M(Rn) is said to be bounded weakly* measurable and 1-periodic if for
all F ∈ L1

loc(R2
x× (0, T );C0(Rn)) the function (x, t) 7→ ∫

Rn
p

F (x, t, p)dσx,t(p) is

measurable and
∫
Rn

p
F (x, t, p)dσx+ei,t(p) =

∫
Rn

p
F (x− ei, t, p)dσx,t(p), i = 1, 2.

Here we use the standard notation σx,t = σ(x, t) as if measures σx,t were
parametrized by (x, t) and, in line with the notation from [3], we say that
σ ∈ L∞w (R2

x × (0, T );M(Rn)).
Now let us consider in detail the notion and properties of Young measures

associated with a sequence of approximate saturations uε: R2
x×(0, T ) 7→ [0, 1].

We start with the observation that, by Tartar’s theorem [3, section 3.2], there
exist a subsequence, still denoted by uε, and a family of probability Radon
measures µx,t supported uniformly on [0, 1] such that

h(uε) → h weakly* in L∞(Q), h =
∫

Rλ

h(λ)dµx,t(λ) ∀h ∈ C(Rλ). (11)

The mapping (x, t) 7→ µx,t is weakly* measurable and 1-periodic in x. In
particular, the distribution function of the Young measure µx,t

f(x, t, s) :=
∫

(−∞,s]
dµx,t(λ)
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is 1-periodic in x, monotone and right continuous in s. In terms of f , measure
µx,t is the Stieltjes measure, µx,t = dλf(x, t, λ).

Set qε := ∂nuε. The functions qε: R2
x × (0, T ) 7→ Rq are measurable and

1-periodic in x. From (8) it follows that the sequence (uε, qε) is bounded in
L2, which along with Ball’s theorem [3, section 4.2] yields the following.

Lemma 4. There exist a subsequence still denoted by (uε, qε) and a nonneg-
ative measure-valued 1-periodic in x function σ ∈ L∞w (Q,M(Rλ × Rq)) such
that

∫
Rλ×Rq

dσx,t(λ, q) = 1, h(uε, qε) → h weakly in Lr(Q) (1 < r ≤ 2/p),

h =
∫
Rλ×Rq

h(λ, q)dσx,t(λ, q) for a.e. (x, t) ∈ Q for all continuous functions
h: Rλ × Rq 7→ R satisfying the growth condition |h(λ, q)| ≤ c(1 + |λ| + |q|)p

(0 ≤ p < 2), and the probability measure σx,t is supported in [0, 1]× Rq.

Measure σx,t has additional useful properties [8, lemmas 9, 12] as follows.

Lemma 5. The following bound and identity hold true:

∫

Q

(∫

Rλ×Rq

q2dσx,t(λ, q)
)
dxdt < ∞, ∂nf(x, t, λ) = −

∫

Rq

qdσx,t(λ, q).

The identity here is understood in the distributions sense, i.e., in the sense of
the integral equality

∫

Q×Rλ

f(x, t, λ)∂∗nζ(x, t, λ)dxdtdλ =
∫

Q×Rλ×Rq

ζ(x, t, λ)qdσx,t(λ, q)dxdt,

(12)
for arbitrary smooth 1-periodic in x and vanishing for large |λ| functions
ζ(x, t, λ).

In particular, the function

χ(x, t, s) :=
∫

(−∞,s]×Rq

q2dσx,t(λ, q)

is 1-periodic in x, monotone and right continuous in s, and the Stieltjes mea-
sure dλχ(x, t, λ) is supported on [0, 1] for a.e. (x, t) ∈ R2

x × (0, T ).
The following theorem introduces the notion of the kinetic equation:

Theorem 6. There exists a nonnegative 1-periodic in x defect measure M ∈
M(R2

x × (0, T )×Rλ) with sptM ⊂ R2
x × (0, T )× [0, 1] such that this measure,

the Stieltjes measure dλχ, and the distribution function f satisfy the integral
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equality
∫

Q×Rλ

{
∂tζ − a′(λ)m · ∇xζ + (n1/|n|2)a′(λ)g(λ)∂nζ

+ Ac′(λ) · ∇xζ + b′(λ)∂∗n∂nζ
}

f(x, t, λ)dxdtdλ

+
∫

Q×Rλ

a′(λ)(n1/|n|2)
(∫ ∞

λ
g′(s)f(x, t, s)ds

)
∂nζdxdtdλ

+
∫

Q

∫

Rλ

b′(λ)∂λζdλχ(x, t, λ)dxdt +
∫

Q×Rλ

∂λζdM(x, t, λ)

+
∫

Ω×Rλ

f0(x, λ)ζ(x, 0, λ)dxdλ = 0 (13)

for all 1-periodic in x smooth functions ζ(x, t, λ) vanishing in a neighborhood
of the plane {t = T} and for sufficiently large λ. Moreover,

f(·, t, ·) → f0 weakly* in L∞(Ω× Rλ), as t ↘ 0. (14)

In (13), (14)

f0(x, λ) =
{

1 if λ ≥ u0(x),
0 if λ < u0(x), (15)

m = lim
ε↘0

mε, m ∈ Lr
loc(Π) ∀ r < ∞. (16)

Remark 1. On the strength of proposition 3, limiting relation (16) is strong.

In the sense of distributions the integral equality (13) and the limiting
relation (14) are equivalent to the following kinetic equation and Cauchy’s
data:

∂tf − a′(λ)divx(mf) + a′(λ)g(λ)∂∗n(n1f/|n|2)

+ Ac′(λ) · ∇xf − b′(λ)∂∗n∂nf + a′(λ)∂∗n

(
(n1/|n|2)

∫ λ

−∞
g′(s)f(x, t, s)ds

)

+ ∂λ

(
b′(λ)∂λχ + M

)
= 0, in Q× Rλ, (17)

f(x, 0, λ) = f0(x, λ), in Ω× Rλ. (18)

Proof of theorem 6 is analogous to [8, proof of theorem 5]. ¤

4. Proof of theorem 1

In the case n(x) · e1 = 0 formula (10) reduces to mε = −vε. Hence, on the
strength of Remark 1, there exist a subsequence from ε > 0 and a 1-periodic
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in x vector-field v ∈ L2(0, T ; H1,2) such that vε → v strongly in L2
loc(Π) and

weakly in L2(0, T ; H1,2), as ε ↘ 0. Thus equality (13) takes the form
∫

Q×Rλ

{
∂tζ + a′(λ)v · ∇xζ + Ac′(λ) · ∇xζ + b′(λ)∂∗n∂nζ

}
f(x, t, λ)dxdtdλ

+
∫

Q

∫

Rλ

b′(λ)∂λζdλχ(x, t, λ)dxdt +
∫

Q×Rλ

∂λζdM(x, t, λ)

+
∫

Ω×Rλ

f0(x, λ)ζ(x, 0, λ)dxdλ = 0. (19)

Equation (19) has already been studied in detail and the following result for
it has been established [8, theorem 7].

Proposition 7. From equation (19) it follows that the distribution function
f(x, t, λ) satisfies the equality f(x, t, λ)

(
1− f(x, t, λ)

)
= 0 a.e. in Π×Rλ. In

other words, f attains the values 0 and 1 only.

On the strength of proposition 7, we shortly complete justification of theo-
rem 1 by following arguments of [8, remark 3] and [9, Sec. 8, 9].

5. Notion of H-measures

Now we turn to consideration of the case, when the genuine nonlinearity
condition holds and n(x) · e1 6= 0, in general. In this section we consider in
detail the general properties of H-measures corresponding to subsequences of
{uε}. We start with the following observation.

Remark 2. System (5)–(7) admits the kinetic equation of the form (17), in
which dM := dMε(x, t, λ) = ε|∇xuε|2dγuε(x,t)(λ)dxdt, dλχ := dλχε(x, t, λ) =
|∂nuε(x, t)|2dγuε(x,t)(λ), γuε(x,t) is the parametrized Dirac measure on Rλ con-
centrated at the point λ = uε(x, t), m := mε is given by (10), and

f := fε(x, t, λ) =
{

1 if λ ≥ uε(x, t),
0 if λ < uε(x, t).

This remark is quite clear in view of the evident representation

ϕ(uε(x, t)) = −
∫

R
ϕ′(λ)fε(x, t, λ)dλ ∀ϕ ∈ C1

0 (R). (20)

Moreover, due to (20) and (11), distribution functions fε of the Dirac measures
γuε(x,t) and the distribution function f of the Young measure µx,t are connected
by the limiting relation

fε → f weakly* in L∞(Q× Rλ), as ε ↘ 0. (21)

Introduce the set

E := {λ0 ∈ R | f(·, ·, λ) → f(·, ·, λ0) strongly in L1
loc(Π), as λ → λ0}.
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From [4, lemma 4] and Panov’s theorem on a modification of Tartar’s H-
measures [4, theorem 3] the following two propositions follow immediately.

Lemma 8. The complement of E in R is at most countable and for any λ ∈ E
the limiting relation fε(·, ·, λ) −→

ε↘0
f(·, ·, λ) weakly* in L∞(Π) holds true.

Theorem H. (Existence of H-measures). There exist a family of locally fi-
nite Radon measures {νpq}p,q∈E on Π×S2 and a subsequence {fk(λ)−f(λ)}k∈N
from {fε(λ) − f(λ)}ε>0, λ ∈ E, such that for any Φ1,Φ2 ∈ C0(Π) and ψ ∈
C(S2) the equality

∫

Π×S2
Φ1(x, t)Φ2(x, t)ψ(y)dνpq(x, t, y) =

lim
k↗∞

∫

R3

F [Φ1(fk(p)− f(p))](ξ)F [Φ2(fk(q)− f(q))](ξ)ψ
(

ξ

|ξ|
)

dξ (22)

holds for all p, q ∈ E.
In the formulation of theorem H and further fk := fεk

, {εk} is the extracted
subsequence from {ε ↘ 0}, ϕ̄ is the complex conjugate of ϕ. By F we denote
the Fourier transform in x and t: F [ϕ](ξ) =

∫
R3 ϕ(x, t)e2πi(ξ0t+ξ1x1+ξ2x2)dxdt

for any integrable function ϕ. If ϕ is originally defined merely for t ∈ [0, T ]
then it is supposed to be equal to zero outside [0, T ].

Family of measures {νpq}p,q∈E is called the H-measure associated with the
extracted subsequence {fk − f}. The following properties are consequences of
the general theory of H-measures.

Lemma 9. (1) For any finite set E := {p1, . . . , pn} ⊂ E the set of measures
(νpipj )i,j=1,...,n is hermitian non-negative, i.e., νpipj = ν̄pjpi and∑n

i,j=1〈νpipj ,ΦiΦjψ〉 ≥ 0 for all Φ1, . . . ,Φn ∈ C0(Π) and ψ ∈ C(S2), ψ ≥ 0
[10, corollary 1.2].
(2) Mapping (p, q) 7→ νpq is continuous from E×E into M(Π×S2) [4, theorem
3].
(3) For any p, q ∈ E measure νpq is absolutely continuous with respect to
Lebesgue’s measure on Π. As the functional defined on C(Q × S2), it ad-
mits the natural extension on L2(Q,C(S2)) and therefore the decomposition
dνpq(x, t, y) = dΛpq

x,t(y)dxdt takes place. Mapping (x, t) 7→ Λpq
x,t, where (x, t) ∈

Π, is 1-periodic in x, belongs to L2
w,loc(Π, M(S2)), and is uniquely defined by

νpq. For a.e. (x, t) ∈ Π the mapping λ 7→ Λλλ
x,t is right-continuous from E into

the space M(S2) [5, proposition 3, corollary 1].
(4) Fix (x, t) in the set of the full measure on Q such that the mapping
Λλλ

x,t ∈ M(S2) is well-defined, according to the previous item. For λ ∈ E by
L(λ) ⊂ R3 denote the minimal linear subspace, which contains the support of
the measure Λλλ

x,t. Among the subspaces L(λ) choose the subspace L := L(λ0)
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with the maximal dimension. The following result on stabilization of linear
span of supports of measures Λλλ

x,t is valid: there exists a number δ > 0 such
that, for any λ in the set [λ0, λ0 + δ] ∩ E, the subspace L(λ) coincides with L
[5, lemma 3].
(5) fk(·, ·, λ) →

k↗∞
f(·, ·, λ) strongly in L2

loc(Π) for λ ∈ E if and only if νλλ ≡ 0

[10].

In item 3 of lemma 9 by L2
w,loc(Π,M(S2)) there is denoted the space of

weakly measurable with respect to Lebesgue’s measure on Π mappings (x, t) 7→
Λx,t from Π into M(S2) such that its restriction to Q has the finite norm

‖Λ‖L2
w(Q,M(S2)) =

(∫

Q
‖Λx,t‖2

M(S2)dxdt
)1/2

, ∀Λ ∈ L2
w(Q,M(S2)).

6. The localization principle for H-measures.
Proof of theorem 2

The following additional property of the H-measure is crucial for justifica-
tion of theorem 2:

Theorem 10. (The localization principle.) For a.e. λ ∈ R, the support
of the H-measure νλλ, associated with the extracted subsequence {fk−f}, lies
in the intersection of the sets

{(x, t, y) ∈ Π× S2 | n1(x)y1 + n2(x)y2 = 0}
and

{
(x, t, y) ∈ Π× S2 | y0 −

2∑

r=1

[
a′(λ)mr(x, t)

−
2∑

k=1

Arkc
′
k(λ)− (1/2)b′(λ)∂nnr(x)

]
yr = 0

}
.

Proof of theorem 10 is analogous to [9, proof of theorem 3 and corollary
1]. ¤

We start proof of theorem 2 with justification of the triviality of the H-
measure due to the localization principle and the genuine nonlinearity condi-
tion:

Lemma 11. If condition G holds then the H-measure νλλ is zero measure for
a.e. λ ∈ R.

Proof. On the strength of theorem 10, the support of the H-measure νλλ

lies in the set Eλ
0 := E1 ∩ (Eλ

2 ∪ Eλ
3 ) for a.e. λ ∈ [0, 1], where

E1 :=
{
(x, t, y) ∈ Π× S2 |n1(x)y1 + n2(x)y2 = 0

}
,
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Eλ
2 :=

{
(x, t, y) ∈ Π× S2 : y0 −

2∑

r=1

(
a′(λ)mr(x, t)−

2∑

k=1

Arkc
′
k(λ)

− (1/2)b′(λ)∂nnr(x)
)
yr = 0, n1(x) 6= 0

}
,

and

Eλ
3 :=

{
(x, t, y) ∈ Π× S2 : y0 −

2∑

r=1

(
a′(λ)mr(x, t)−

2∑

k=1

Arkc
′
k(λ)

− (1/2)b′(λ)∂nnr(x)
)
yr = 0, n1(x) = 0

}
.

Observe that if n1(x) 6= 0 then the equality n1(x)y1 + n2(x)y2 = 0 yields
that either y2 6= 0 and y1/y2 = −n2(x)/n1(x) or y1 = y2 = 0. But in the
latter case obviously we have E2 ∩ {(x, t, y) ∈ Π × S2 | y1 = y2 = 0} is the
empty set. Thus we conclude that

E1 ∩ Eλ
2 =

{
(x, t, y) ∈ Π× S2 : n1(x)y1 + n2(x)y2 = 0,

n1(x)y0 −
[
a′(λ)(m1(x, t)n2(x)−m2(x, t)n1(x))

−
2∑

k=1

A1kc
′
k(λ)n2(x) +

2∑

k=1

A2kc
′
k(λ)n1(x)

−(1/2)b′(λ)(n2(x)∂nn1(x)−n1(x)∂nn2(x))
]
y2 = 0, n1(x) 6= 0, y2 6= 0

}
.

(23)

The similar simple considerations show that

E1 ∩ Eλ
3 =

{
(x, t, y) ∈ Π× S2 :

n2(x)y0 −
[
a′(λ)

(
m1(x, t)n2(x)−m2(x, t)n1(x)

)

−
2∑

k=1

A1kc
′
k(λ)n2(x) +

2∑

k=1

A2kc
′
k(λ)n1(x)

− (1/2)b′(λ)
(
n2(x)∂nn1(x)− n1(x)∂nn2(x)

)]
y1 = 0,

n1(x) = 0, y2 = 0, y1 6= 0
}

, (24)

where the summand involving zero multiplier n1(x) are added in order to make
further outline more lucid.

Now we prove the assertion of the lemma by the contradiction method.
Let us suppose that the H-measure νλλ is nontrivial, i.e., that there exists a
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nonnegative interval I ⊂ [0, 1] such that νλλ is not identical to zero measure
on Q× S2 for all λ ∈ I ∩ E .

On the strength of this assumption and assertion 3 of lemma 9, for any
λ ∈ I ∩ E there exists the set Vλ ⊂ Q having a positive Lebesgue measure
such that for all (x, t) ∈ Vλ the measure Λλλ

x,t is not identical to zero measure
on S2. Consider the union V := ∪λ∈I∩EVλ. Clearly it has a positive Lebesgue
measure and for any (x, t) ∈ V there exists λ ∈ I ∩E such that the dimension
of the minimal linear subspace L(λ) ⊂ R3 containing the support of Λλλ

x,t is
greater than or equal to one. For an arbitrarily fixed (x, t) ∈ V among all
subspaces L(λ) select a subspace L = L(λ0) whose dimension is maximal.
Moreover, make this selection along the whole range λ ∈ [0, 1] ∩ E so that, in
general, λ0 does not necessarily belong to I ∩ E . Clearly dimL ≥ 1 thanks
to the above construction of V , and λ0 < 1 since the function λ 7→ Λλλ

x,t is
identically equal to zero for λ > 1 and is right-continuous in λ, due to item 3
of lemma 9. On the strength of assertion 4 of lemma 9, we conclude that there
exists a number δ > 0 such that for all λ ∈ [λ0, λ0 + δ] ∩ E the subspace L(λ)
coincides with L and, in particular, dimL(λ) ≥ 1. The above arguments show
that if the H-measure νλλ is nontrivial then there exists a set V ⊂ Q with
measV > 0 such that for an arbitrarily fixed (x, t) ∈ V there is an interval
[λ0, λ0 + δ] such that for any λ ∈ [λ0, λ0 + δ]∩E the dimension of the minimal
subspace L(λ) containing the support of Λλλ

x,t is greater than or equal to one,
and, moreover, L(λ) = L(λ0) = L. In particular, L ∩ S2 is nonempty and
(x, t, y) belongs to supp νλλ for the fixed (x, t) ∈ V and for any y ∈ L ∩ S2.
Since supp νλλ ⊂ E1∩ (Eλ

2 ∪Eλ
3 ) and representations (23) and (24) take place,

the latter means that for any vector y ∈ L ∩ S2 for all λ ∈ [λ0, λ0 + δ] the set
of relations

n1(x)y0 −
[
a′(λ)(m1(x, t)n2(x)−m2(x, t)n1(x))−

2∑

k=1

A1kc
′
k(λ)n2(x)

+
2∑

k=1

A2kc
′
k(λ)n1(x)− (1/2)b′(λ)(n2(x)∂nn1(x)− n1(x)∂nn2(x))

]
y2 = 0,

n1(x) 6= 0, y2 6= 0 (25)

or the set of relations

n2(x)y0 −
[
a′(λ)(m1(x, t)n2(x)−m2(x, t)n1(x))−

2∑

k=1

A1kc
′
k(λ)n2(x)

+
2∑

k=1

A2kc
′
k(λ)n1(x)− (1/2)b′(λ)(n2(x)∂nn1(x)− n1(x)∂nn2(x))

]
y1 = 0,

n2(x) 6= 0, y1 6= 0 (26)
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is valid.
Whichever the set of relations holds, upon differentiation of either (25) or

(26) with respect to λ on [λ0, λ0 + δ] for a fixed y ∈ L ∩ S2, we conclude that
on subintervals of [λ0, λ0 + δ] either the function

λ 7→
2∑

k=1

(
A1kc

′′
k(λ)n2(x)−A2kc

′′
k(λ)n1(x)

)

+ (1/2)b′′(λ)
(
n2(x)∂nn1(x)− n1(x)∂nn2(x)

)

is identical zero if a′′(λ) = 0 or (and) m1(x, t)n2(x) −m2(x, t)n1(x) = 0, or
the functions λ 7→ a′′(λ) and

λ 7→
2∑

k=1

(
A1kc

′′
k(λ)n2(x)−A2kc

′′
k(λ)n1(x)

)

+ (1/2)b′′(λ)
(
n2(x)∂nn1(x)− n1(x)∂nn2(x)

)

are linearly dependent. This contradicts with condition G. Consequently, the
assumption that the H-measure νλλ is nontrivial on some nondegenerate set
in Rλ is incorrect. This conclusion finishes the proof of the lemma. ¤

Lemma 11 and item 5 of lemma 9 yield the limiting relation fk(·, ·, λ) →
f(·, ·, λ) strongly in L1

loc(Π) for a.e. λ ∈ R and almost everywhere in Π×Rλ, as
k ↗∞. Since fk attains only two values, either 0 or 1, and f is monotonous
non-decreasing and right-continuous in λ for a.e. (x, t), this limiting relation
implies that f has the form

f(x, t, λ) =
{

1 if λ ≥ ũ(x, t),
0 if λ < ũ(x, t)

with some function ũ ∈ L∞(Π), 0 ≤ ũ ≤ 1. From formula (20) and limiting
relation (21) it follows that ũ coincides with the weak limit u = w- lim

k↗∞
uεk

and

that ‖uεk
‖L2(Q) −→

k↗∞
‖u‖L2(Q). Hence uεk

−→
k↗∞

u strongly in L2(Q). On the

strength of this limiting relation, we complete the proof of theorem 2 following
the arguments of [8, remark 3] and [9, sections 8, 9]. ¤
Remark 3. (Suppression of fine oscillations in the genuinely nonlin-
ear model.) We end this paper noticing that, as a byproduct of the proof of
theorem 2, we also established a property of the genuinely nonlinear model to
rule out fine oscillations developing from initial data, in the following sense:

Suppose that model (1a)–(1c) is genuinely nonlinear and is provided with
highly oscillatory initial data uk

0 ∈ L∞, k = 1, 2, . . ., in the sense that uk
0 → u0

weakly* in L∞, as k ↗ ∞. Then there exists a subsequence of entropy
solutions (uk, pk∗), corresponding to initial data uk

0, which tends strongly in
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L∞(0, T ; L∞)×L2(0, T ;H1,2), as k ↗∞, to an entropy solution (u, p∗), cor-
responding to initial data u0 ∈ L∞.
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