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Abstract

Fractional differential equations appear in the modeling of science and engineering phenomena including
classical mechanics, quantum mechanics, thermodynamics, fluid mechanics, relativity theory and chemical
engineering. In this paper, the least squares method is used to find the numerical solution of fractional
differential equations appearing in mechanics and engineering. The increasing interest in applications of
fractional calculus has motivated the development and study of numerical methods specifically created
to solve fractional differential equations. A unique feature is that engineers, physicists and scientists come
across processes which lead to involve fractional differential equations. When dealing with more complicated
systems with no precise solutions other than approximations, numerical methods are relied on to obtain
solutions. The suggested method is used to solve various linear and non-linear problems of constant-order.
The proposed scheme is found to be computationally effective with fast convergence.

Keywords: Caputo Fractional Derivative, Fractional Calculus, Numerical Analysis, Fractional Differential
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1. Introduction

The theory of arbitrary complex or real order derivatives and integrals is known as fractional calculus.
The definition of derivative and integrals of any real or complex order can be found in fractional calculus,
which is a generalization of ordinary calculus. Particularly when the dynamics is impacted by system-
specific limitations, these fractional operators may more effectively simulate some real-world occurrences
[1]. The classical derivative and integral have geometrical and physical interpretations, which is one of the
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primary advantages of using classical calculus and its applications. It started in 1695 on September 30,
when G.F.A. L’ Hospital asked Gottfried Wilhelm Leibniz to explain the significance of of dny

dxn , where n = 1
2 .

Subsequently, in 1832, J. Liouville proposed the first Liouville definition and was based on the equation for
differentiating the exponential function [2]. In recent years, a considerable number of academics have been
interested in fractional differential equations (FDEs). Many mathematical representations of actual issues
have been created with the use of fractional calculus in a variety of engineering and scientific domains, in-
cluding electromagnetic waves, electrode-electrolyte polarization, viscoelasticity, and dielectric polarization.
As solving fractional differential equations analytically presents so many challenges, numerical methods are
often a more practical way to get solutions [3, 29].

Due to their capacity to simulate complicated processes, fractional differential equations have garnered a
great deal of attention. The numerous applications of FDEs in engineering and science have significantly in-
creased the use of fractional derivatives in modeling processes [4, 22, 23]. Fractional differential equations are
studied in a variety of domains, including biomathematics, plasma physics, control systems, mathematical
biology, elasticity, quantum mechanics, fluid mechanics, optics, bioengineering, complex systems, and others.
Contrary to understand Newtonian derivatives, fractional derivatives can be defined in a variety of ways, and
even for smooth functions, various definitions typically do not all lead to the same conclusion. There are nu-
merous different fractional derivative operators in fractional calculus, such as Grunwald-Letnikov fractional
derivative, the Caputo fractional derivative, the Caputo-Fabrizio fractional derivative, the Riemann-Liouville
fractional derivative, Atangana-Baleanu fractional derivative, Hilfer fractional derivative, and many others
[5, 28]. The corresponding derivatives are found by applying Langrange method for fractional operators.
The order derivative is calculated by computing the nth order derivative over the order integral (n− α).

Fractional derivatives are important for modeling phenomena in various fields of science and engineering,
due to their non-locality, which is an inherent characteristic of many complex systems. FDEs are essential
for accurately modeling systems with memory and hereditary characteristics, which are prevalent in many
physical and engineering applications. However, their complex nature often makes analytical solutions in-
tractable [26, 27]. The fractional differential equations do not, in general, have accurate solutions. Instead,
the importance of analytical and numerical approaches grows as they are used to solve fractional differential
equations [6]. There have been a lot of effective ways to solve FDEs created recently. These techniques
include fixed point theorems, topological degree theory, and monotone iterative methodology. Additionally,
numerical solutions are achieved using Adomian decomposition approach, the variational iteration method,
the homotopy perturbation method, Haar wavelet an operational method, neural networks, and other tech-
niques. A basic statistical procedure known as the least-squares method is used to determine a regression
line, or the line that best fits the given pattern. In other words, the least square method reduces the dif-
ference between the actual data and the anticipated values to identify the line or curve that best matches
the data. The parameters of the model, that explain the association between two variables, are typically
estimated using this technique in linear regression analysis. The least square approach is popular across
many academic disciplines, including economics, finance, engineering, and the social sciences, to mention a
few [7]. The least squares method offers a reliable and efficient numerical alternative, capable of produc-
ing high-accuracy approximations while maintaining computational simplicity. By applying this method
to FDEs, our study contributes a practical and versatile approach that enhances the toolbox of available
techniques for addressing complex real-world problems [24, 25].

It can be used for both basic and multiple regression analysis. In assessment and regression, the method
of least squares is frequently utilized. This technique is reportedly a conventional method in regression anal-
ysis for approximating sets of equations where the number of equations exceeds the number of unknowns.
The minimizing of the sum of squares of deviations, or the errors in solutions of each equation, is really
defined with the least squares approach. Overall, the least square approach offers an effective way for nu-
merically resolving fractional differential equations, even in the absence of closed-form solutions [8].
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For the purpose of handling fractional derivatives, it modifies the conventional least squares method
[9, 10, 11]. The main goal of the process is to reduce the sum of squares representing the variance between
the observed data and the values that were predicted. When dealing with fractional equations, fractional
derivatives rather than regular derivatives are used to derive the expected values.
The rest of the paper is arranged as follows: In Section 2, we present essential definitions and preliminaries
related to fractional calculus. Section 3, introduces the proposed least squares method for solving fractional
differential equations. In Section 4, numerical results are provided to demonstrate the accuracy and efficiency
of the method. Finally, Section 5 concludes the paper with a summary of the findings and suggestions for
future research.

2. Basic Definitions of Fractional Calculus

Definition 2.1. The Riemann-Liouville derivative [12] of order α is defined as:

RL
a Dα

t g(t) =
1

Γ(n− α)

(
d

dx

)n ∫ t

a
(t− v)n−α−1g(v)dv.

Definition 2.2. Let g be a continuous function from a set of positive real numbers to real line, i.e. g :
[0,+α] → R, then the fractional operator of Riemann-Liouville is given as:

RL
0 Dα

t g(t) =
1

Γ(n− α)

(
d

dx

)n ∫ t

a
(t− v)n−α−1g(v)dv, α ∈ (0, 1), t > 0.

Definition 2.3. The fractional Caputo derivative [12] of order α is defined as:

C
a D

α
t g(t) =

1

Γ(n− α)

∫ t

a
(t− v)n−α−1

(
d

dx

)n

g(v)dv.

Definition 2.4. For a continuous function g from set of positive real numbers to real line, i.e. g : [0,+α] →
R, the Caputo fractional derivative is given as:

C
0 D

α
t g(t) =

1

Γ(n− α)

∫ t

a
(t− v)n−α−1

(
d

dx

)n

g(v)dv, α ∈ (0, 1), t > 0.

3. Numerical Method Description

The Polynomial Least Squares Method (PLSM) enables us to find polynomial based approximate ana-
lytical solutions to the fractional differential equations. The research and development of numerical methods
particularly designed to solve fractional differential equations (FDEs) have been inspired by the growing
interest in applications of fractional calculus. Least Square Method is effective for obtaining numerical so-
lutions and can be used to simulate models involving fractional differential equations (FDEs) numerically.
Additionally, this approach can be used to a wide range of issues, saving time and money when dealing with
challenging equations.
For the case of fractional differential equations, we have here extended the least squares method. We have
solved some problems by using the least square method. The Caputo derivative is preferred in this work due
to its compatibility with classical initial conditions. This makes it more useful for real-world applications in
fractional differential equations.
The proposed scheme is highly effective but it has few limitations. It is not effective for solutions with
singularities or discontinuities. Additionally, it is not suitable for irregular or multi-dimensional geometries
and fails to construct appropriate approximations.
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Consider a fractional differential equation (FDE) of the form:

Dαu(t) + u(t) + f(t) = 0, (3.1)

with the conditions:
u(t) = 0, u(1) = 0, 0 < α ≤ 1,

using the approximation:

uapp =
n∑

i=1

Ciϕi. (3.2)

Here Ci represents the constants, and ϕi = ϕi(t), i = 1, 2, ..., n is test function. We will introduce an operator
L for calculations:

L[uapp] = Dαuapp + uapp.

Now, we will define the functional I:

I[C1, C2, . . . , Cn] =
1

Γ(α+ 1)

∫ 1

0
[L[uapp] + f(t)]2 (dt)α → min, (3.3)

By minimization, which gives a system of equations in C1, ..., Cn:

∂I[C1, C2, . . . , Cn]

∂Ci
= 0, i = 1, 2, . . . n.

from which we obtain the constants C1, . . . , Cn.
These constants are used in (3.2) to complete the process of getting approximate solution.

4. Applications

In this section, we explore few applications using the proposed methodology.
Example 4.1: As the first example, Consider a multi-order fractional differential equation (FDE) [13, 14]:

Dα1u(t)−Dα2u(t) + et−1 + 1 = 0,

with boundary conditions:
u(0) = 0, u(1) = 0.

Solution: The exact solution of this multi-order fractional differential equation is:

u(t) = t(1− et−1).

To solve this problem, we suppose the value of α1 = 2 and α2 = 1/2,

D2u(t)−D
1
2u(t) + et−1 + 1 = 0.

By using the polynomial least square method, let us consider the approximate solution:

uapp(t) = C0 + C1t+ C2t
2.

By calculations, we obtain the approximate solution:∫ 1

0

(
−2C1 − C1D

1
2 t+ C1D

(1/2)t2 + et−1 + 1
)(

−2− 2t√
π
+

8t2

3
√
π

)
(dt)

1
2 = 0,

u(t) = 0.375t− 0.375t2.
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Figure 1: Numerical comparison of exact and approximate solution with LSM for Example 4.1, taking α1 = 2, α2 = 0.5

Figure 2: Numerical comparison of exact and approximate solution with LSM for Example 4.1, taking α1 = 1.9, α2 = 0.9

The calculations are performed using MATLAB.
In example 4.1, we initially considered α1 = 2, α2 = 0.5 and produced approximations of the solutions that
is provided below, along with a MATLAB figure visible in table 1 and figure 1.

Table 1 Numerical results of Example 4.1 for α1 = 2, α2 = 0.5
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact 0.0593 0.1121 0.1532 0.1821 0.1973 0.2000 0.1812 0.1443 0.0852 0.000

uapp 0.0346 0.0605 0.0756 0.0895 0.0931 0.0889 0.0756 0.0593 0.0328 0.000

Absol.Error 0.0247 0.0516 0.0776 0.0936 0.1042 0.1111 0.1056 0.0850 0.0534 0.000

Now we choose α1 = 1.9, α2 = 0.9 for example 4.1 and produce approximations to the solutions shown
in table 2 and figure 2.

Table 2 Numerical results of Example 4.1 for α1 = 1.9, α2 = 0.9
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact 0.0679 0.1092 0.1421 0.1793 0.1960 0.1960 0.1783 0.1391 0.0842 0.000

uapp 0.0634 0.1181 0.1591 0.1852 0.2030 0.2030 0.1864 0.1472 0.0851 0.0019

Absol.Error 0.0045 0.0089 0.0170 0.0059 0.0070 0.0070 0.0081 0.0081 0.0009 0.0019

We vary fractional order further for example 4.1 and take α1 = 2, α2 = 1. The approximation results
are given in table 3 and figure 3. Here we note that by taking α1 = 2 and α2 = 1, the solution curves
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Figure 3: Numerical comparison of exact and approximate solution with LSM for Example 4.3

coincide, indicating that there is no error in approximate solution. Further, table 4 shows comparison of
the proposed method approximations with other methods, i.e. Homotopy Perturbation Method(HPM) [19],
Haar wavelet Operational Matrix Method(HWOM) [20].

Table 3 Numerical results of Example 4.1 for α1 = 2, α2 = 1
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact 0.0593 0.1101 0.1510 0.1804 0.1967 0.1978 0.1814 0.1450 0.0856 0.0000

uapp 0.0593 0.1101 0.1510 0.1804 0.1967 0.1978 0.1814 0.1450 0.0856 0.0000

Absol.Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4 Numerical Comparison of solutions for Example 4.1, taking α1 = 2, α2 = 1
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

uexact 0.0593 0.1101 0.1510 0.1804 0.1967 0.1978 0.1814 0.1450 0.0856

uapp 0.0593 0.1101 0.1510 0.1804 0.1967 0.1978 0.1814 0.1450 0.0856

HWOM 0.05934 0.11013 0.15102 0.18047 0.19673 0.19673 0.18142 0.14501 0.08564

HPM 0.05934 0.11014 0.15105 0.18048 0.19673 0.19780 0.18142 0.14501 0.08564

Example 4.2: Consider the following fractional differential equation (FDE) [15]:

D
1
2u(t) + u(t) + u2(t) = f(t), 0 ≤ t ≤ 1,

with boundary conditions:
u(0) = 0,

where

f(t) =
8t3/2

3
√
π

+ t2 + t4.

Solution: The exact solution of this problem is

u(t) = t2.

D
1
2u(t) + u(t) + u2(t) =

8t3/2

3
√
π

+ t2 + t4.

By using the polynomial least square method, let us consider the approximate solution:

uapp(t) = C0 + C1t+ C2t
2,
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Figure 4: Numerical comparison of exact and approximate solution with LSM for Example 4.2

By using initial condition, we obtain C0 = 0. So, the approximate solution will be:

u(t) = C1t+ C2t
2.

In this case the corresponding remainder (3.3) is:

I[C1, C2] =
1

Γ
(
1
2 + 1

) ∫ 1

0

(
2C1√
π
t1/2 +

8C2

3
√
π
t3/2 + C1t+ C2t

2 + C2
1 t

2 + C2
2 t

4 + 2C1C2t
3 − 8t3/2

3
√
π

− t2 − t4

)2

(dt)
1
2

By solving the above equation, we get the values of constants: C1 = 0 and C2 = 1.
The calculations are performed using MATLAB.

In example 4.2, we selected α = 0.5 and computed an exact solution that is provided below, along with a
MATLAB figure. By using MATLAB, we compute the associated values and impose the necessary require-
ments for minimum. These computations can be done precisely (not numerically). We again get the values
d1 = 0 and d2 = 1 for the minimum, giving us the exact solution of the problem. The results are presented
in table 5 and figure 4.

Table 5 Numerical results of Example 4.2 for α = 0.5
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600 0.4900 0.6400 0.8100 1.0000

uapp 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600 0.4900 0.6400 0.8100 1.0000

Absol.Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Example 4.3: Let us consider another fractional differential equation (FDE) [16]:

Dαu(t) + 1− (1 + α)t = 0, 0 < α ≤ 1,

with boundary conditions:
u(0) = 0, u(1) = 0.

Solution: The exact solution of this problem is,

u(t) = − tα

Γ(α+ 1)
+

tα+1

Γ(α+ 1)
.

Consider an approximate solution:
uapp(t) = +C1ϕ1 + C2ϕ2,
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Figure 5: Numerical comparison of exact and approximate solution with LSM for Example 4.3

We obtain:

I[C1, C2] =
1

Γ (α+ 1)

∫ 1

0
[Dαuapp + 1− (1 + α)t]2 (dt)α → min,

∂I[C1, C2]

∂C1
= 0,

∂I[C1, C2]

∂C2
= 0.∫ 1

0
[C1D

αϕ1 + C2D
αϕ2 + 1− (1 + α)t]Dαϕ1(dt)

α = 0,∫ 1

0
[C1D

αϕ1 + C2D
αϕ2 + 1− (1 + α)t]Dαϕ2(dt)

α = 0,

and using the notation,

Aij =

∫ 1

0
[(Dαϕi)(D

αϕj)] (dt)
α, Bj = −

∫ 1

0
[(1− (1 + α)t)(Dαϕi)] (dt)

α,

here i, j = 1, 2. In matrix form it is written as:

A =

(
A11 A12

A21 A22

)
, B =

[
B1 B2

]
, C =

[
C1 C2

]
.

Finally, the system will be:
ACT = BT , CT = A−1BT .

The calculations for values of C1, C2 and other calculations are performed using MATLAB.

Table 6 Numerical results of Example 4.3 for α = 0.5
T 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact -0.339 -0.404 -0.434 -0.419 -0.397 -0.359 -0.284 -0.201 -0.109 0.0000

uapp 0.659 0.868 0.718 0.334 -0.163 -0.645 -0.992 -1.080 -0.796 0.0000

Absol.Error 0.988 1.272 1.152 0.753 0.234 0.286 0.708 0.879 0.687 0.0000

In example 4.3, the fractional order is chosen as α = 0.5 and the computed approximations of the so-
lutions are provided in table 6 and figure 5.

Example 4.4: Consider the fractional differential equation (FDE) [17]:

D2u(t) +D
3
2u(t) + u(t)− t− 1 = 0,



S. Ahmed, S. Ullah, F. Rasool, Journal of Prime Research in Mathematics, 21(2) (2025), 13–24 21

Figure 6: Numerical comparison of exact and approximate solution with LSM for Example 4.4

with boundary conditions:
u(0) = 1, u

′
(0) = 1.

Solution: The exact solution of this problem is

u(t) = t+ 1.

D2u(t) +D
3
2u(t) + u(t)− t− 1 = 0,

By using the polynomial least square method, let us consider the approximate solution:

uapp(t) = C0 + C1t+ C2t
2,

By applying initial conditions, we obtain C0 = 1 and C1 = 1. So, the approximate solution will be:

u(t) = 1 + t+ C2t
2.

Now, we will define the functional I which satisfy the approximate solution of the problem:

I[C2] =
1

Γ (α+ 1)

∫ 1

0
[Du(t)]2 (dt)α,

I[C2] =
1

Γ
(
3
2 + 1

) ∫ 1

0

[(
2 +

4√
π
t1/2 + t2

)
C2 +

1√
π
t−1/2 − 1

2
√
π
t−3/2

]2
(dt)

3
2 .

We solve this above equation and obtain the value of C2 = 0 and u(t) = 1 + t.
The calculations are performed using MATLAB.
In example 4.4, we initially selected α = 1, and produced approximations of the solutions provided in table
7 and figure 6.
We note here that even if we use a larger degree polynomial in the absence of knowing the exact solution,
the computation will still produce the exact solution.

Table 7 Numerical results of Example 4.4
T 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

uexact 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

LSMapp 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

Example 4.5: Consider the fractional differential equation (FDE) [18]:

D
5
2u(t)− 3D

3
2u(t) = g(t), t ∈ [0, 1],
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Figure 7: Numerical comparison of exact and approximate solution with LSM for Example 4.5, taking β = 1

u(0) = 1, u′(0) = β, u′′(0) = β2.

Solution: The exact solution of this problem is

u(t) = eβt.

By using the polynomial least square method, let us consider the approximate solution:

uapp =

n∑
i=1

Ciϕi, i = 1, 2, 3.

By applying initial conditions, we obtain C0 = 1 and C1 = β−1 and C2 =
β2

2 . So, the approximate solution
will be:

u(t) = 1 + (β − 1)t+
β2

2
t2 + C3t

3.

Now, we will define the functional I which satisfy the approximate solution of the problem:

I[C2] =
1

Γ(α+ 1)

∫ 1

0
[Du(t)]2 (dt)α.

The calculations are performed using MATLAB. We obtain the approximate solution for β = 1. The results
are shown in table 8 and figure 7.

uapp(t) = 1 + t+ 0.5t2 + 0.16667t3 + 0.04167t4.

Now, we selected β = 5, and the approximations produced are shown in table 8 and figure 8.

uapp(t) = 1 + t+ 0.5t2 + 34.0010t3 + 51.9962t4.

Table 8 Comparison of approximate solutions for Example 4.5 with β = 1, β = 5
β 1 5

STM [18] 1.6× 10−5 5.6× 10−5

UWCM [21] 5.2× 10−10 2.14× 10−8

PLSM 1.5× 10−10 7.5× 10−9

5. Discussions and Conclusion

The major objective of this paper is to design the numerical method for solving fractional differential
equations in order to obtain approximate solutions. The Polynomial Least Squares Method gives a simple
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Figure 8: Numerical comparison of exact and approximate solution with LSM for Example 4.5, taking β = 5

and effective way to calculate analytical approximate solution for fractional differential equations. It is
computationally effective and easy to implement for problems involving fractional derivatives. This method
is an original innovation that can be used to address problems in applied sciences. The applications that are
presented show the accuracy of the method. The presented scheme is preferred with Caputo derivative due
to suitable operational matrices. But it is applicable with other fractional derivatives and can be utilized.
In that case, matching operational matrix will be required and which will further be integrated to the least
squares framework.

This approach provides a faster convergence of numerical solution for fractional differential equations
that are more realistic. PLSM offers incredibility precise approximations, particularly for issues requiring
smooth solutions. Since fractional derivatives do not need to be evaluated, it is computationally efficient.
A large class of fractional differential equations, including ones with non-integer orders, can be solved using
PLSM. This approach is reliable and capable of handling erratic or noisy data. The collected results demon-
strated the method’s effectiveness in comparison to exact solutions and also demonstrated the resemblance
between the exact and approximate solutions. Calculations revealed that PLSM is a strong and effective
method for locating an excellent solution for linear or non-linear equations as well as for many other physical
issues in sciences and engineering. Additionally, the results are shown graphically to further illustrate the
process. The most recent developments in the study of fractional differential equations in applied mathe-
matics has given rise to many complex problems which can be approximated with this proposed scheme.

As future research direction, it is recommended to extend the proposed scheme for fractional partial
differential equations. Another promising for future research is the application of the proposed scheme to
stochastic fractional differential equations. The proposed scheme can also be utilized to develop hybrid
computational frameworks for a particular domain. This will enhance the applicability of the proposed
scheme to multiple domains.
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[16] C. Milici, G. Drăgănescu and J. T. Machado, Introduction to fractional differential equations, Vol. 25, Springer,
2018. 4

[17] H. Jafari, S. Das and H. Tajadodi, Solving a multi-order fractional differential equation using homotopy analysis
method, J. King Saud Univ. Sci. 23(2) (2011), 151–155. 4

[18] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term
fractional orders differential equations, Appl. Math. Model. 35 (2011), 5662–5672. 4, 4

[19] S. H. Hosseinnia, A. Ranjbar and S. Momani, Using an enhanced homotopy perturbation method in fractional
differential equations via deforming the linear part, Comput. Math. Appl. 56 (2008), 3138–3149. 4

[20] Y. Li, N. Sun, B. Zheng, Q. Wang and Y. Zhang, Wavelet operational matrix method for solving the Riccati
differential equation, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 483–493. 4

[21] W. M. Abd-Elhameed and Y. H. Youssri, New spectral solutions of multi-term fractional order initial value
problems with error analysis, Comput. Model. Eng. Sci. 105 (2015), 375–398. 4

[22] M. Tanveer, S. Ullah and N. A. Shah, Thermal analysis of free convection flows of viscous carbon nanotubes
nanofluids with generalized thermal transport: a Prabhakar fractional model, J. Therm. Anal. Calorim. 144
(2021), 2327–2336. 1

[23] S. Ullah, S. Zulfiqar, A. A. Buhader and N. A. Khan, Analysis of Caputo-Fabrizio fractional order semi-linear
parabolic equations via effective amalgamated technique, Phys. Scr. 96(3) (2021), 035214. 1
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