

Nontrivial Deformation of $\text{Vec}(\mathbb{R})$ -Modules of Symbols

Khaled Basdouri^{a,*}

^a University of Sfax, Faculty of Sciences of Sfax, 3000 Sfax, Tunisia.

Abstract

In this paper, we introduce a new notion on deformation: *nontrivial* deformation. The action of the Lie algebra of vector fields $\text{Vec}(\mathbb{R})$ on the space of symbols \mathcal{S} is given by the Lie derivative. If we restrict ourselves to the Lie subalgebra $\mathfrak{a}(1)$, we get a family of infinite dimensional $\mathfrak{a}(1)$ -modules, we compute the $\mathfrak{a}(1)$ -nonrelative space $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\nu})$. We study *nontrivial* deformations of this action. We give concrete examples of *nontrivial* deformations. This work is the *nontrivial* case of a results by D. B. Fuchs and Imed Basdouri et al. [D. B. Fuchs, *Coho. of infinite-dim. Lie algebras*, Con. Bu., New York, 1987 and Imed Basdouri et al., *Deformation of $\text{VectP}(\mathbb{R})$ -Modules of Symbols*. J. Geom. Phys. 60 (2010), no. 3, 531–542.]

Keywords: Nonrelative Cohomology, affine Lie subalgebra, nontrivial Deformation, Symbols..

2020 Mathematics Subject Classification: 17B56, 53D55, 58H15.

1. Introduction

The Lie algebra, $\text{Vec}(\mathbb{R})$, of vector fields on \mathbb{R} naturally acts, by the Lie derivative, on the space

$$\mathcal{F}_\lambda = \left\{ h dx^\lambda : h \in C^\infty(\mathbb{R}) \right\},$$

of weighted densities of degree λ . The action L_Y^λ on the space \mathcal{F}_λ by the vector field $Y \frac{d}{dx}$ is given by

$$L_Y^\lambda = Y \partial + \lambda Y'. \quad (1.1)$$

We define a 2-parameter family of $\text{Vec}(\mathbb{R})$ -modules on the space $D_{\lambda,\nu}$ of linear differential operators : $A : \mathcal{F}_\lambda \rightarrow \mathcal{F}_\nu$. The Lie algebra $\text{Vec}(\mathbb{R})$ acts on $D_{\lambda,\nu}$ by:

$$L_Y^{\lambda,\nu}(A) = -A \circ L_Y^\lambda + L_Y^\nu \circ A. \quad (1.2)$$

*Corresponding author

Email address: khaled.basdouri2016@gmail.com (Khaled Basdouri^{a,*})

For arbitrary $\ell \in \mathbb{N}$ and $\gamma \in \mathbb{R}$, we note the space of symbols by:

$$\mathcal{S}_\gamma^\ell = \bigoplus_{j=0}^{\ell} \mathcal{F}_{\gamma-j}$$

and we note the space \mathcal{D}_γ^ℓ of differential operators on \mathcal{S}_γ^ℓ . That is,

$$\mathcal{D}_\gamma^\ell = \bigoplus_{\gamma-\ell \leq \lambda, \nu \leq \gamma} D_{\lambda, \nu},$$

where $\gamma - \lambda$ and $\gamma - \nu$ are integers. The Lie derivative by the vector field $Y \frac{d}{dx}$ on \mathcal{D}_γ^ℓ , which will be simply denoted by L_Y , is defined on each component $D_{\lambda, \nu}$ by $L_Y = L_Y^{\lambda, \nu}$.

In [5] I. Basdouri et al. study the deformations of the structure of $\text{Vect}_P(\mathbb{R})$ -module \mathcal{S}_δ^n (see also [6, 8, 12, 18, 9, 16] and [1, 13, 14]).

In this work, we compute the $\mathfrak{a}(1)$ -nonrelative space $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda, \mu})$. We study the $\mathfrak{a}(1)$ -nontrivial deformations of the $\text{Vec}(\mathbb{R})$ -modules \mathcal{S}_γ . We show that any $\mathfrak{a}(1)$ -nontrivial formal deformation is equivalent to its infinitesimal part and we give an examples of $\mathfrak{a}(1)$ -nontrivial deformation. Nontrivial deformation is a very important problemma in Physics and Science and Engineering [? 20].

2. Cohomology

Let \mathfrak{g} be a Lie algebra, \mathfrak{h} be a subalgebra of \mathfrak{g} and \mathcal{N} be a \mathfrak{g} -module. The space of \mathfrak{h} -relative q -cochains of \mathfrak{g} with values in \mathcal{N}

$$C^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N}) := \text{Hom}_{\mathfrak{h}}(\wedge^q(\mathfrak{g}); \mathcal{N}).$$

The coboundary operator $\delta^n : C^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N}) \rightarrow C^{q+1}(\mathfrak{g}, \mathfrak{h}; \mathcal{N})$ is a \mathfrak{g} -map verifying $\delta^2 = 0$.

The kernel of δ^q , denoted $Z^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N})$, is the space of \mathfrak{h} -relative q -cocycles, among them, the elemmaents in the range of δ^{q-1} are called \mathfrak{h} -relative q -coboundaries. We denote $B^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N})$ the space of q -coboundaries.

The q^{th} \mathfrak{h} -relative cohomolgy space is the quotient space

$$H^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N}) = Z^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N}) / B^q(\mathfrak{g}, \mathfrak{h}; \mathcal{N}).$$

We will only need the formula for δ^q for degrees 0, 1 and 2: for $\vartheta \in C^0(\mathfrak{g}, \mathfrak{h}; \mathcal{N}) = \mathcal{N}^{\mathfrak{h}}$, $\delta\vartheta(g) := g\vartheta$, and $\mathfrak{b} \in C^1(\mathfrak{g}, \mathfrak{h}; \mathcal{N})$,

$$\delta\mathfrak{b}(g_1, g_2) := g_1\mathfrak{b}(g_2) - g_2\mathfrak{b}(g_1) - \mathfrak{b}([g_1, g_2])$$

and for $\Omega \in C^2(\mathfrak{g}; \mathfrak{h}; \mathcal{N})$,

$$\delta\Omega(g_1, g_2, g_3) := g_1\Omega(g_2, g_3) - \Omega([g_1, g_2], g_3) + \circlearrowleft(g_1, g_2, g_3), \quad (2.1)$$

where \circlearrowleft : the cyclic permutation of the symbols g_1, g_2, g_3 . The first \mathfrak{h} -nonrelative cohomology space $H_{\mathfrak{h}}^1(\mathfrak{g}; \text{End}(\mathcal{N})) =: H^1(\mathfrak{g}; \text{End}(\mathcal{N})) / H^1(\mathfrak{g}, \mathfrak{h}; \text{End}(\mathcal{N}))$ classifies infinitesimal \mathfrak{h} -nontrivial deformations up to equivalence.

In this work, we are interested in the differential $\mathfrak{a}(1)$ -nonrelative cohomology spaces

$$H_{\mathfrak{a}(1)}^1(\text{Vect}(\mathbb{R}), D_{\lambda, \mu}) \quad \text{and} \quad H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), D_{\lambda, \lambda+k}).$$

and we study the $\mathfrak{a}(1)$ -nontrivial deformations of the $\text{Vec}(\mathbb{R})$ -modules \mathcal{S}_γ .

2.1. The Space $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu})$

The space $H^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu})$ was calculated by Feigin et al. in [17] and cohomology space $H^1(\text{Vec}(\mathbb{R}), \mathfrak{a}(1); D_{\lambda,\mu})$ was calculated by the author et al. [11]. So we get $\mathfrak{a}(1)$ –nonrelative space $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu})$, the result is given by

Theorem 2.1. *The space $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu})$ has the following structure:*

$$H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \text{if } \nu = \lambda, \text{ for all } \lambda, \\ \mathbb{R} & \text{if } \lambda = 0 \text{ and } \nu = 1, \\ 0 & \text{otherwise.} \end{cases} \quad (2.2)$$

These spaces are span by the classes of 1-cocycles., $\Lambda_{\lambda,\lambda+k} : \text{Vec}(\mathbb{R}) \rightarrow D_{\lambda,\lambda+k}$, $\forall Y \frac{d}{dx} \in \text{Vec}(\mathbb{R})$ and $hdx^\lambda \in \mathcal{F}_\lambda$, we write

$$\Lambda_{\lambda,\lambda+k}(Y \frac{d}{dx})(hdx^\lambda) = \Lambda_{\lambda,\lambda+k}(Y)(h)dx^{\lambda+k}$$

and we give by $\Lambda_{\lambda,\lambda+k}(Y)(h)$:

$$\begin{aligned} \Lambda_{\lambda,\lambda}(Y)(h) &= X'h, \\ \Lambda_{0,1}(Y)(f) &= X'h'. \end{aligned}$$

We need the following lemma

Lemma 2.2. *Any 1-cocycle $\Lambda \in Z_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}), D_{\lambda,\mu})$ $\mathfrak{a}(1)$ –noninvariant is nonvanishing on $\mathfrak{a}(1)$.*

Proof. The 1-cocycle equation for Λ is written as follows:

$$L_{X_F}^{\lambda,\mu} \Lambda(X_G) - L_{X_G}^{\lambda,\mu} \Lambda(X_F) - \Lambda([X_F, X_G]) = 0, \quad (2.3)$$

for $X_F, X_G \in \text{Vec}(\mathbb{R})$. If Λ is $\mathfrak{a}(1)$ –noninvariance for all $X_F \in \mathfrak{a}(1)$, thus, the equation $\mathfrak{a}(1)$ –invariance becomes

$$L_{X_F}^{\lambda,\mu} \Lambda(X_G) - \Lambda([X_F, X_G]) \neq 0 \quad (2.4)$$

The difference between the two equations gives:

$$(2.3) - (2.4) = \Lambda(X_F) \neq 0$$

□

Proof. By lemma (2.2), we have that all $\mathfrak{a}(1)$ –nonrelative cocycles are $\mathfrak{a}(1)$ –noninvariant bilinear bidifferential operators. Moreover, Feigin et al. [17] calculated $H_{\text{diff}}^1(\text{Vec}(\mathbb{R}); D_{\lambda,\mu})$:

$$H^1(\text{Vec}(\mathbb{R}); D_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \text{if } \nu - \lambda \in \{0, 2, 3, 4\} \text{ for all } \lambda, \\ \mathbb{R}^2 & \text{if } (\lambda, \nu) = (0, 1) \\ \mathbb{R} & \text{if } \lambda \in \{0, -4\} \text{ and } \nu = \lambda + 5, \\ \mathbb{R} & \text{if } \lambda = -\frac{5 \pm \sqrt{19}}{2} \text{ and } \nu = \lambda + 6, \\ 0 & \text{otherwise.} \end{cases} \quad (2.5)$$

Moreover, Khaled Basdouri et al. [11] calculated $H^1(\text{Vec}(\mathbb{R}), \mathfrak{a}(1); D_{\lambda,\mu})$. The result is as follows

$$H^1(\text{Vec}(\mathbb{R}), \mathfrak{a}(1); D_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \begin{cases} \nu - \lambda \in \{2, 3, 4\} \text{ for all } \lambda, \\ (\lambda, \nu) = (0, 1), \\ \lambda \in \{0, -4\} \text{ and } \nu = \lambda + 5, \\ \lambda = -\frac{5 \pm \sqrt{19}}{2} \text{ and } \nu = \lambda + 6, \end{cases} \\ 0 & \text{otherwise.} \end{cases} \quad (2.6)$$

Using the cohomology (2.6), the cohomology (2.5) and the equation

$$H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}); D_{\lambda,\nu}) =: H^1(\text{Vec}(\mathbb{R}); D_{\lambda,\nu}) / H^1(\text{Vec}(\mathbb{R}), \mathfrak{a}(1); D_{\lambda,\nu}). \quad (2.7)$$

Hence, the spaces $H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}); D_{\lambda,\nu})$ vanish for $\nu - \lambda \neq 0, 1$. By lemma (2.2), so we only have to study $\dim(H_{\mathfrak{a}(1)}^1(\text{Vec}(\mathbb{R}); D_{\lambda,\nu})) = 1$ if $\nu - \lambda = 0, 1$. More precisely, these cohomology spaces are spanned by the $\mathfrak{a}(1)$ -nonrelative cohomology classes of the 1-cocycles, $\Lambda_{\lambda,\lambda}$ and $\Lambda_{0,1}$. A straightforward but long computation leads to the result. \square

3. The General Framework: *nontrivial* deformations

In this section, we define *nontrivial* deformations of Lie algebra homomorphisms and introduce the concept of miniversal deformations on commutative algebras.

3.1. The Second \mathfrak{h} -relative Cohomology Space

Let \mathfrak{g} a Lie algebra, \mathfrak{h} a Lie subalgebra and \mathcal{N} a \mathfrak{g} -module, the *cup-product* defined, for two linear maps $\Lambda_1, \Lambda_2 : \mathfrak{g} \rightarrow \text{End}(\mathcal{N})$, is defined by:

$$\begin{aligned} \Lambda_1 \vee \Lambda_2 : \mathfrak{g}^{\otimes 2} &\rightarrow \text{End}(\mathcal{N}) \\ \Lambda_1 \vee \Lambda_2(x_1, x_2) &= [\Lambda_1(x_1), \Lambda_2(x_2)] + [\Lambda_2(x_1), \Lambda_1(x_2)]. \end{aligned} \quad (3.1)$$

Therefore, we naturally deduce that the operation (3.1) defines a bilinear map:

$$H_{\mathfrak{h}}^1(\mathfrak{g}, \text{End}(\mathcal{N})) \otimes H_{\mathfrak{h}}^1(\mathfrak{g}, \text{End}(\mathcal{N})) \rightarrow H_{\mathfrak{h}}^2(\mathfrak{g}, \text{End}(\mathcal{N})). \quad (3.2)$$

3.2. \mathfrak{h} -nontrivial Infinitesimal deformations

Let $\sigma_0 : \mathfrak{g} \rightarrow \text{End}(\mathcal{N})$ be an action of a Lie algebra \mathfrak{g} on a vector space \mathcal{N} , and let \mathfrak{h} be a subalgebra of \mathfrak{g} . When studying non-trivial deformations of the action σ_0 of \mathfrak{g} , one typically begins by considering *nontrivial* infinitesimal deformations with respect to \mathfrak{h} :

$$\sigma = \sigma_0 + t \Lambda,$$

verifying

$$[\sigma(x_1), \sigma(x_2)] = \sigma([x_1, x_2]),$$

where t is a formal parameter, $x_1, x_2 \in \mathfrak{g}$, is satisfied in order 1 in t if and only if Λ is a 1-cocycle \mathfrak{h} -nontrivial.

In the case where this \mathfrak{h} -nonrelative cohomology space is multidimensional, it is natural to consider \mathfrak{h} -nontrivial with multiple parameters. If $\dim H_{\mathfrak{h}}^1(\mathfrak{g}; \text{End}(\mathcal{N})) = n$, next, choose the 1-cocycles $\Lambda_1, \dots, \Lambda_n$ that represent a basis of $H_{\mathfrak{h}}^1(\mathfrak{g}; \text{End}(\mathcal{N}))$ and consider the \mathfrak{h} -nontrivial infinitesimal deformation

$$\sigma = \sigma_0 + \sum_{\ell=1}^n t_{\ell} \Lambda_{\ell}, \quad (3.3)$$

with independent parameters t_1, \dots, t_n .

The concept of equivalence of deformations in commutative and associative algebras has been studied in publications [3, 4, 10, 14, 18], and the notion of a miniversal deformation is considered fundamental in these works [14, 18].

3.3. Integrability conditions of \mathfrak{h} -nontrivial formal deformations

Let's consider the problemma of integrability of *nontrivial* infinitesimal deformations. The problemma of nontrivial deformation is very important in physics and energy sciences and image processing....[? 20]. Starting from the \mathfrak{h} -*nontrivial* infinitesimal deformation with respect to \mathfrak{h} (3.3), we seek a formal power series:

$$\sigma = \sigma_0 + \sum_{\ell=1}^n t_\ell \Lambda_\ell + \sum_{\ell,j} t_\ell t_j \sigma_{\ell j}^{(2)} + \cdots, \quad (3.4)$$

whith the higher-order terms, namely $\sigma_{\ell j}^{(2)}, \sigma_{\ell j k}^{(3)}, \dots$, are linear mappings from \mathfrak{g} to $\text{End}(\mathcal{N})$ such that

$$\sigma : \mathfrak{g} \rightarrow \text{End}(\mathcal{N}) \otimes \mathbb{C}[[t_1, \dots, t_n]] \quad (3.5)$$

satisfies Λ is a 1-cocycle. The first \mathfrak{h} -*nonrelative* cohomology space

$$H_{\mathfrak{h}}^1(\mathfrak{g}; \text{End}(\mathcal{N})) =: H^1(\mathfrak{g}; \text{End}(\mathcal{N})) / H^1(\mathfrak{g}, \mathfrak{h}; \text{End}(\mathcal{N}))$$

classifies \mathfrak{h} -*nontrivial* infinitesimal deformations up to equivalence.

However, this problemma often has no solution. Following the approaches in [18] and [14], we will impose additional algebraic relations on the parameters t_1, \dots, t_n . Let \mathcal{I} be an ideal of $\mathbb{C}[[t_1, \dots, t_n]]$ spanned by a set of relations; consider the quotient

$$\mathcal{B} = \mathbb{C}[[t_1, \dots, t_n]] / \mathcal{I} \quad (3.6)$$

is a commutative and associative algebra with a neutral elemmaent, and it is possible to study its deformations with respect to the basis \mathcal{B} ; for more details, see [18]. The map (3.5) sends \mathfrak{g} to $\text{End}(\mathcal{N}) \otimes \mathcal{B}$. The notion of miniversal deformation is fundamental [14, 18].

3.4. Computing the second-order Maurer-Cartan equation

In our study, a *nontrivial* infinitesimal deformation of the action of $\text{Vec}(\mathbb{R})$ on \mathcal{D}_δ^n , related to the Lie algebra $\mathfrak{a}(1)$, takes the following form:

$$L_Y + \mathcal{L}_Y^{(1)}, \quad (3.7)$$

where L_Y denotes the Lie derivative of \mathcal{D}_δ^n along the vector field $Y \frac{d}{dx}$ given by (1.2), and

$$\mathcal{L}_Y^{(1)} = \begin{cases} \sum_\lambda t_{\lambda,\lambda} \Lambda_{\lambda,\lambda}(Y) & \text{if } \gamma \notin (\mathbb{N} + 1) \\ t_{0,1} \Lambda_{0,1}(Y) + \sum_\lambda t_{\lambda,\lambda} \Lambda_{\lambda,\lambda}(Y) & \text{if } \gamma \in (\mathbb{N} + 1), \end{cases}$$

and where $t_{\lambda,\lambda}$ and $t_{0,1}$ are independent parameters, $\gamma - \lambda \in \mathbb{N}$, $\gamma - n \leq \lambda \leq \gamma$ and the 1-cocycles $\Lambda_{\lambda,\lambda}$ and $\Lambda_{0,1}$ are given in theorem (2.1).

Theorem 3.1. *The following conditions are necessary and sufficient for integrability of the $\mathfrak{a}(1)$ -nontrivial infinitesimal deformation (3.7):*

$$t_{1,1} t_{0,1} = 0. \quad (3.8)$$

Moreover, any $\mathfrak{a}(1)$ -nontrivial formal deformation is equivalent to its infinitesimal part.

Proof. If $\gamma \notin (\mathbb{N} + 1)$, then the parameters t_k can be considered as zero, and in this case, there are no integrability conditions.

Let's assume that the $\mathfrak{a}(1)$ -nontrivial infinitesimal deformation (3.7) can be integrated to form a formal deformation

$$\mathcal{L}_Y = L_Y + \mathcal{L}_Y^{(1)} + \mathcal{L}_Y^{(2)} + \mathcal{L}_Y^{(3)} + \cdots \quad (3.9)$$

where $\mathcal{L}_Y^{(1)}$ is defined by equation (3.4) and $\mathcal{L}_Y^{(2)}$ is a second-degree polynomial in t whose coefficients belong to \mathcal{D}_δ^n . We determine the conditions related to the second-order terms $\mathcal{L}^{(2)}$. Let us consider the quadratic terms in the homomorphism condition.

$$\mathcal{L}_{[Y,X]} = [\mathcal{L}_Y, \mathcal{L}_X]. \quad (3.10)$$

The homomorphism condition (3.10) gives for the second-order terms the following (Maurer-Cartan) equation

$$-\frac{1}{2}(\mathcal{L}^{(1)} \vee \mathcal{L}^{(1)}) = \delta(\mathcal{L}^{(2)}), \quad (3.11)$$

This ensures that the right-hand side of equation (3.11) is automatically a 2-cocycle. In our case, we have:

$$\delta(\mathcal{L}^{(2)})(Y, X) = -\frac{1}{2}\left(\sum_{\lambda} t_{\lambda,\lambda} \Lambda_{\lambda,\lambda} + t_{0,1} \Lambda_{0,1}\right) \vee \left(\sum_{\lambda} t_{\lambda,\lambda} \Lambda_{\lambda,\lambda} + t_{0,1} \Lambda_{0,1}\right)(Y, X) \quad (3.12)$$

Consider the following 2-cocycles:

$$\Omega_{\lambda,\nu}(Y, X) = -\left(\sum_{\lambda} t_{\lambda,\lambda} \Lambda_{\lambda,\lambda} + t_{0,1} \Lambda_{0,1}\right) \vee \left(\sum_{\lambda} t_{\lambda,\lambda} \Lambda_{\lambda,\lambda} + t_{0,1} \Lambda_{0,1}\right)(Y, X) : \mathcal{F}_\lambda \rightarrow \mathcal{F}_\nu.$$

(In general, $\Omega_{\lambda,\nu}(Y, X)h = \delta b_{\lambda,\nu}(Y, X)h + Q(t_1, \dots, t_n)\omega(Y, X)h$, $Q(x_1, \dots, x_n) \in \mathbb{R}[x]$ must be equal to 0, $\omega \in H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), \mathcal{D}_{\lambda,\nu})$, Q is the conditions for the integrability and b is the second-order solution.)

The necessary conditions for the $\mathfrak{a}(1)$ nontrivial infinitesimal deformation of (3.4) to be integrable are that every 2-cocycle $\Omega_{\lambda,\nu}$, with $k \in \{0, 1\}$, is a coboundary.

That means

$$\delta b_{\lambda,\nu}(Y, X)f = \Omega_{\lambda,\nu}(Y, X)f, \quad (3.13)$$

where

$$\delta b_{\lambda,\nu}(Y, X)f = b_{\lambda,\nu}([Y, X])f - L_Y^{\lambda,\mu}(b_{\lambda,\nu}(X))f + L_Y^{\lambda,\nu}(b_{\lambda,\nu}(Y))f, \quad (3.14)$$

and, for any $Y \frac{d}{dx} \in \text{Vec}(\mathbb{R})$, the linear map $b_{\lambda,\nu}(Y) : \mathcal{F}_\lambda \rightarrow \mathcal{F}_\nu$ is given:

$$b_{\lambda,\nu}(Y)(hdx)^\lambda = \sum_{\ell=0}^{\nu-\lambda+1} a_{\lambda,\nu}^\ell Y^{(\ell)} h^{(k+1-\ell)}(dx)^\nu.$$

We compute successively the 2-cocycles $\Omega_{\lambda,\nu}(Y, X)$:

1) $\Omega_{\lambda,\lambda}(Y, X) = 0$.

$$\Omega_{\lambda,\lambda+1}(Y, X)(h) = \begin{cases} t_{1,1} t_{0,1} \omega_{0,1}(Y, X)h & \text{if } \lambda = 0, \\ 0, & \text{if } \lambda \neq 0. \end{cases}$$

□

We will now prove the following lemma, and then we will conclude based on the Theorem 3.1.

In the sequel, we consider some 2-cocycles $\omega_{\lambda,\nu} : \text{Vec}(\mathbb{R})^{\otimes 2} \rightarrow \mathcal{D}_{\lambda,\nu}$. For $Y \frac{d}{dx}, X \frac{d}{dx} \in \text{Vec}(\mathbb{R})$ and $hdx^\lambda \in \mathcal{F}_\lambda$, we find

$$\omega_{\lambda,\nu}(Y \frac{d}{dx}, X \frac{d}{dx})(hdx^\lambda) = \omega_{\lambda,\nu}(Y, X)(h)dx^\nu,$$

but, owing to the simplicity, we give only the expressions of $\omega_{\lambda,\nu}(Y, X)(h)$.

We need the following lemma

Lemma 3.2. Let $b \in C^1(\text{Vec}(\mathbb{R}), D_{0,1})$ defined as follows: for $Y \frac{d}{dx} \in \text{Vec}(\mathbb{R})$ and $h dx^\lambda \in \mathcal{F}_\lambda$

$$b(Y)(h) = \sum_{\ell=0}^2 a_\ell h^{(2-\ell)} Y^{(\ell)} \quad (3.15)$$

where the coefficients $a_j \in \mathbb{R}$. So the map $\delta b : \text{Vec}(\mathbb{R})^{\otimes 2} \rightarrow D_{0,1}$ is given by

$$\delta b(Y, X)(f) = -a_0(XY'' - X''Y)h' - a_0(XY' - X'Y)h'' \quad (3.16)$$

Proof. A straightforward computation. \square \square

Lemma 3.3. The $\mathfrak{a}(1)$ –nonrelative cohomology spaces $H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), D_{0,1})$, is generated by the $\mathfrak{a}(1)$ –nonrelative cohomology classes of the nontrivial 2-cocycle $\omega_{0,1}$ defined by

$$\Omega_{0,1}(Y, X)(h) = (X'Y'' - X''Y')h,$$

Proof. The function $\Omega_{0,1}$ is the cup-product (" \vee ") of the 1-cocycles $\Lambda_{0,1}$ and $\Lambda_{1,1}$. Therefore, $\Omega_{0,1}$ is a 2-cocycle, and it will suffice to show that it is *nontrivial*, since the space $H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), D_{0,1})$ is one dimension.

By lemma 3.16, therefore

$$\Omega_{0,1}(Y, X)f \neq \delta b(Y, X)f.$$

Thus $\Omega_{0,1}$ is $H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), D_{0,1})$. To complete the proof of lemma 3.3, using the equation 2.7, we must prove that $\dim(H_{\mathfrak{a}(1)}^2(\text{Vec}(\mathbb{R}), D_{0,1}))$ equal 1. \square

The solution $\mathcal{L}^{(2)}$ of equation (3.12) can be chosen to be zero. We will now demonstrate that these conditions are sufficient. By setting the higher-order terms $\mathcal{L}^{(n)}$ (with $n \geq 3$) to zero as well, we obtain a deformation (of first order in t_k). Any $\mathfrak{a}(1)$ –nontrivial formal deformation of type $\mathfrak{a}(1)$ is equivalent to its infinitesimal part, since different choices of solutions to the Maurer-Cartan equation correspond to equivalent deformations.

4. Examples of $\mathfrak{a}(1)$ –nontrivial deformations

In this section, we present examples of symbol spaces \mathcal{D}_δ^n : we study the nontrivial formal deformations of these spaces with respect to the Lie algebra $\mathfrak{a}(1)$.

Example 4.1. Consider \mathcal{D}_2^2 . The $\mathfrak{a}(1)$ –nontrivial infinitesimal deformation of the action of $\text{Vec}(\mathbb{R})$ on \mathcal{D}_2^2 is of the form $L_Y + \mathcal{L}_Y^{(1)}$, where $\mathcal{L}_Y^{(1)}$ given by

$$\mathcal{L}_Y^{(1)} = \sum_{\lambda=1}^2 t_{\lambda, \lambda+j} \Lambda_{\lambda, \lambda+j}(Y) = (t_{0,0}\Lambda_{0,0} + t_{1,1}\Lambda_{1,1} + t_{0,1}\Lambda_{0,1} + t_{2,2}\Lambda_{2,2})(Y). \quad (4.1)$$

We obtain the 1 equation:

$$t_{1,1}t_{0,1} = 0. \quad (4.2)$$

as necessary and sufficient integrability condition of this $\mathfrak{a}(1)$ –nontrivial infinitesimal deformation.

Proposition 4.2. There are two $\mathfrak{a}(1)$ –nontrivial deformations of the action of $\text{Vec}(\mathbb{R})$ on \mathcal{D}_2^2 , characterized by three independent parameters:

$$\mathcal{L}_Y = L_Y + t_0\Lambda_{0,0}(Y) + t_1\Lambda_{1,1}(Y) + t_2\Lambda_{2,2}(Y), \quad (4.3)$$

or

$$\mathcal{L}_Y = L_Y + t_0\Lambda_{0,0}(Y) + t\Lambda_{0,1}(Y) + t_2\Lambda_{2,2}(Y). \quad (4.4)$$

Proof. We have the $\mathfrak{a}(1)$ –nontrivial deformation (see equation 4.1), and we then study the solutions of equation (4.2).

- 1- The first case is : $t_{0,1} = 0$, we put $t_1 = t_{1,1}$, $t_2 = t_{2,2}$, $t_0 = t_{0,0}$ and then we have (4.3).
- 2- The second case is : $t_{1,1} = 0$, we put $t_0 = t_{0,0}$, $t_2 = t_{2,2}$ and $t_{0,1} = t$ and then we have the second $\mathfrak{a}(1)$ –nontrivial deformation. The solution $\mathcal{L}^{(2)}$ of (3.11) can be chosen to be equal to zero. By choosing the higher-order terms $\mathcal{L}^{(m)}$ with $m \geq 3$ and setting them all equal to zero, we obviously obtain a non-trivial deformation of the algebra $\mathfrak{a}(1)$ (of first order in t). \square

Example 4.3. Consider \mathcal{D}_4^3 . We obtain in this case

$$\begin{aligned} \mathcal{L}_Y^{(1)} = & t_1 \Lambda_{1,1}(Y) + t_2 \Lambda_{2,2}(Y) \\ & + t_3 \Lambda_{3,3}(Y) + t_4 \Lambda_{4,4}(Y). \end{aligned} \quad (4.5)$$

In this case, there is no integrability equation for the $\mathfrak{a}(1)$ -nontrivial infinitesimal deformation of $L_Y + \mathcal{L}_X^{(1)}$. So \mathcal{D}_4^3 admits a single $\mathfrak{a}(1)$ –nontrivial deformation with four independent parameters.

Example 4.4. Consider \mathcal{D}_3^3 .

$$\begin{aligned} \mathcal{L}_Y^{(1)} = & t_{0,0} \Lambda_{0,0}(Y) + t_{0,1} \Lambda_{0,1}(Y) + \\ & + t_{1,1} \Lambda_{1,1}(Y) + t_{2,2} \Lambda_{2,2}(Y) + t_{3,3} \Lambda_{3,3}(Y). \end{aligned} \quad (4.6)$$

We have the unique equation:

$$t_{1,1} t_{0,1} = 0. \quad (4.7)$$

In this case, any nontrivial formal deformation of \mathcal{D}_3^3 with respect to $\mathfrak{a}(1)$ is equivalent to a $\mathfrak{a}(1)$ –nontrivial infinitesimal deformation that satisfies this condition (4.7).

We can construct a large number of examples of nontrivial deformations of \mathcal{D}_3^3 with respect to the Lie algebra $\mathfrak{a}(1)$, using 2 (or fewer) independent parameters.

However, the nontrivial deformation

$$\mathcal{L}_Y = L_Y + \mathcal{L}_Y^{(1)}$$

is the nontrivial deformation miniversal of \mathcal{D}_3^3 with respect to $\mathfrak{a}(1)$, where base $\mathcal{B} = \mathbb{C}[t_{0,0}, t_{0,1}, \dots]/\mathcal{I}$ and \mathcal{I} is the ideal generated by $t_{1,1} t_{0,1} = 0$.

5. Problem

The cohomology $H_{\mathfrak{sl}(2)}^1(\text{Vec}(\mathbb{R}); D_{\lambda, \mu})$ determines and classifies $\mathfrak{sl}(2)$ nontrivial infinitesimal deformations up to equivalence.

Conjecture: Any formal $\mathfrak{sl}(2)$ -nontrivial deformation is no equivalent to its infinitesimal part.

References

- [1] M. Afi, O. Basdouri, On the isomorphism of non-abelian extensions of n-Lie algebras, *J. Geom. Phys.* Volume 173, March 2022, 104427.
- [2] B. Agrebaoui, F. Ammar, B.P. Lecomte On the Cohomologie of the space of differentials operators acting on skew-symmetric tensor fields or on forms, as moduls of the Lie algebrea of vector fields. *Differential Geometry and its Applications* 20 (2004). 241–249.
- [3] B. Agrebaoui I. Basdouri, S. Hammami, S. Saidi, *Deforming the orthosymplectic Lie superalgebra $\mathfrak{osp}(3|2)$ inside the Lie superalgebra of superpseudodifferential operators $\mathcal{S}\psi\mathcal{D}\mathcal{O}(3)$* . Accept in *Advanced Studies Euro-Tbilisi Mathematical Journal*.
- [4] I. Basdouri, S. Benabdellahidh, A. Saghrouni, S. Silvestrov, *Cohomology and deformations of crossed homomorphisms on Lie conformal algebras*. October 2025 *Advanced Studies Euro-Tbilisi Mathematical Journal* 18(3).
- [5] I. Basdouri, M. Ben Ammar, B. Dali and S. Omri, *Deformation of Vect $\mathbb{P}(\mathbb{R})$ -Modules of Symbols*. math. RT/0702664 (2007). *J. Geom. Phys.* 60 (2010), no. 3, 531–542. MR 2600013.

- [6] I. Basdouri, M. Ben Ammar, *Cohomology of $\mathfrak{osp}(1|2)$ Acting on Linear Differential Operators on the Supercircle $S^{1|1}$* . Letters in Mathematical Physics(2007)81:239–251.
- [7] I. Basdouri, M. Ben Ammar, *Deformations of $\mathfrak{sl}(2)$ and $\mathfrak{osp}(1|2)$ -modules of symbols*. Acta Mathematica Hungarica, Volume 137, Issue 3, Year 2012.
- [8] I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kammoun, *Cohomology of the Lie Superalgebra of Contact Vector Fields on $\mathbb{R}^{1|1}$ and Deformations of the Superspace of Symbols*. Jour of Nonlinear Math Physics, Vol. 16, No. 4 (2009) 1–37.
- [9] I. Basdouri, M. Ben Nasr, S. Chouaibi and H. Mechi, Construction of supermodular forms using differential operators from a given supermodular form. Journal of Geometry and Physics, August 2019. DOI: 10.1016/j.geomphys.2019.103488.
- [10] I. Basdouri, D. Ammar, S. Saidi, *Second Cohomology of $\mathfrak{aff}(1)$ Acting on n-ary Differential Operators*. Bull. Korean Math. Soc. 56(1): 13–22 January 2019.
- [11] K. Basdouri et al. *The Binary $\mathfrak{aff}(n|1)$ -Invariant Differential Operators On Weighted Densities On The Superspace $\mathbb{R}^{1|n}$ And $\mathfrak{aff}(n|1)$ -Relative Cohomology*. Journal of Geometry and Physics, Volume 123, p. 235-245.
- [12] K. Basdouri et al. *Cohomology and Deformation of $\mathfrak{aff}(1|1)$ Acting on Differential Operators*. International Journal of Geometric Methods in Modern Physics, Dec 2017.
- [13] K. Basdouri, G. Chaabane. *Cohomology of Bihom-Lie superbialgebras*. Journal of Geometry and Physics, Volume 221, March 2026, 105714.
- [14] M. Ben Ammar, M. Boujelbene, $\mathfrak{sl}(2)$ –Trivial Deformation of $\text{Vect}_{\mathbb{P}}(\mathbb{R})$ -Modules of Symbols. math. RT/0702712 (2007). SIGMA 4 (2008), 065, 19 pages.
- [15] S. Bouarroudj, On $\mathfrak{sl}(2)$ -relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys., no.1, (2007), 112–127.
- [16] S. Chouaibi, A. Zbidi, *Rankin Cohen brackets on supermodular forms*. Journal of Geometry and Physics, August 2019.
- [17] B. L. Feigin D.B. Fuks, *Homology of the Lie algebras of vector fields on the line*, Func. Anal. Appl., 14 (1980) 201–212.
- [18] A. Fialowski, D. B. Fuchs, *Construction of miniversal deformations of Lie algebras* J. Func. Anal. **161:1** (1999) 76–110.
- [19] D. B. Fuchs, *Cohomology of infinite-dimensional Lie algebras*, Consultants Bureau, New York, 1987.
- [20] P. Gupta1, P. Dhar, Devranjan Samanta1 *Rheology and electro-magnetism stimulated non-trivial deformation dynamics of viscoelastic compound droplets*. Proceedings of the Royal Society A, May 2025 Volume 481Issue 2314.
- [21] P. Lecomte, V. Ovsienko, *Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold*, Compositio Mathematica **124:1** (2000) 95–110.
- [22] A. Nijenhuis, R. W. Richardson Jr., *Deformations of homomorphisms of Lie groups and Lie algebras*, Bull. Amer. Math. Soc. **73** (1967), 175–179.
- [23] V. Ovsienko, C. Roger, *Deforming the Lie algebra of vector fields on S^1 inside the Lie algebra of pseudodifferential operators on S^1* , AMS Transl. Ser. 2, (Adv. Math. Sci.) vol. 194 (1999) 211–227.
- [24] V. Ovsienko, C. Roger, *Deforming the Lie algebra of vector fields on S^1 inside the Poisson algebra on \dot{T}^*S^1* , Comm. Math. Phys., **198** (1998) 97–110.
- [25] E.V. Vtorushin, V.N. Dorovsky *Application of nonstationary nonEuclidean model of inelastic deformations to rock cutting*. Journal of Petroleum Science and Engineering Volume 177, June 2019, Pages 508-517.