
Available online at http://jprm.sms.edu.pk/
Journal of Prime Research in Mathematics, 22(1) (2026), 76–84

Nontrivial Deformation of Vec(R)-Modules of
Symbols

Khaled Basdouria,∗

aUniversity of Sfax, Faculty of Sciences of Sfax, 3000 Sfax , Tunisie.

Abstract

In this paper, we introduce a new notion on deformation: nontrivial deformation. The action of the Lie
algebra of vector fields Vec(R) on the space of symbols S is given by the Lie derivative. If we restrict
ourselves to the Lie subalgebra a(1), we get a family of infinite dimensional a(1)-modules, we compute
the a(1)-nonrelative space H1

a(1)(Vec(R),Dλ,ν). We study nontrivial deformations of this action. We give
concrete examples of nontrivial deformations. This work is the nontrivial case of a results by D. B. Fuchs
and Imed Basdouri et al. [D. B. Fuchs, Coho. of infinite-dim. Lie algebras, Con. Bu., New York, 1987
and Imed Basdouri et al., Deformation of VectP(R)-Modules of Symbols. J. Geom. Phys. 60 (2010), no. 3,
531-542.]
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1. Introduction

The Lie algebra, Vec(R), of vector fields on R naturally acts, by the Lie derivative, on the space

Fλ =
{
hdxλ : h ∈ C∞(R)

}
,

of weighted densities of degree λ. The action Lλ
Y on the space Fλ by the vector field Y d

dx is given by

Lλ
Y = Y ∂ + λY ′. (1.1)

We define a 2-parameter family of Vec(R)-modules on the space Dλ,ν of linear differential operators :
A : Fλ → Fν . The Lie algebra Vec(R) acts on Dλ,ν by:

Lλ,ν
Y (A) = −A ◦ Lλ

Y + Lν
Y ◦A. (1.2)
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For arbitrary ℓ ∈ N and γ ∈ R, we note the space of symbols by:

Sℓ
γ =

ℓ⊕
j=0

Fγ−j

and we note the space Dℓ
γ of differential operators on Sℓ

γ . That is,

Dℓ
γ =

⊕
γ−ℓ≤λ,ν≤γ

Dλ,ν ,

where γ − λ and γ − ν are integers. The Lie derivative by the vector field Y d
dx on Dℓ

γ , which will be simply

denoted by LY , is defined on each component Dλ,ν by LY = Lλ,ν
Y .

In [5] I. Basdouri et al. study the deformations of the structure of VectP(R)-module Sn
δ (see also

[6, 8, 12, 18, 9, 16] and [1, 13, 14]).
In this work, we compute the a(1)−nonrelative space H1

a(1)(Vec(R),Dλ,µ). We study the a(1)-nontrivial

deformations of the Vec(R)-modules Sγ . We show that any a(1)-nontrivial formal deformation is equivalent
to its infinitesimal part and we give an examples of a(1)-nontrivial deformation. Nontrivial deformation is
a very important problemma in Physics and Science and Engineering [? 20].

2. Cohomology

Let g be a Lie algebra, h be a subalgebra of g and N be a g-module. The space of h-relative q-cochains
of g with values in N

Cq(g, h;N ) := Homh(∧q(g);N ).

The coboundary operator δn : Cq(g, h;N ) → Cq+1(g, h;N ) is a g-map verifying δ2 = 0.
The kernel of δq, denoted Zq(g, h;N ), is the space of h-relative q-cocycles, among them, the elemmaents

in the range of δq−1 are called h-relative q-coboundaries. We denote Bq(g, h;N ) the space of q-coboundaries.
The qth h-relative cohomolgy space is the quotient space

Hq(g, h;N ) = Zq(g, h;N )/Bq(g, h;N ).

We will only need the formula for δq for degrees 0, 1 and 2: for ϑ ∈ C0(g, h;N ) = N h, δϑ(g) := gϑ, and
b ∈ C1(g, h;N ),

δb(g1, g2) := g1b(g2)− g2b(g1)− b([g1, g2])

and for Ω ∈ C2(g; h,N ),

δΩ(g1, g2, g3) := g1Ω(g2, g3)− Ω([g1, g2], g3)+ ⟲ (g1, g2, g3), (2.1)

where ⟲: the cyclic permutation of the symbols g1, g2, g3. The first h−nonrelative cohomology space
H1

h(g; End(N )) =: H1(g; End(N ))/H1(g, h;End(N )) classifies infinitesimal h−nontrivial deformations up
to equivalence.

In this work, we are interested in the differential a(1)-nonrelative cohomology spaces

H1
a(1)(Vect(R),Dλ,µ) and H2

a(1)(Vec(R),Dλ,λ+k).

and we study the a(1)-nontrivial deformations of the Vec(R)-modules Sγ .
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2.1. The Space H1
a(1)(Vec(R),Dλ,µ)

The space H1(Vec(R),Dλ,ν) was calculated by Feigin et al. in [17] and cohomology space H1(Vec(R), a(1); Dλ,ν)
was calculated by the author et al. [11]. So we get a(1)−nonrelative space H1

a(1)(Vec(R),Dλ,ν), the result is
given by

Theorem 2.1. The space H1
a(1)(Vec(R),Dλ,ν) has the following structure:

H1
a(1)(Vec(R),Dλ,ν) ≃


R if ν = λ, for all λ,

R if λ = 0 and ν = 1,

0 otherwise.

(2.2)

These spaces are span by the classes of 1-cocycles., Λλ,λ+k : Vec(R) → Dλ,λ+k, ∀ Y d
dx ∈ Vec(R) and

hdxλ ∈ Fλ, we write

Λλ,λ+k(Y
d
dx)(hdx

λ) = Λλ,λ+k(Y )(h)dxλ+k

and we give by Λλ,λ+k(Y )(h):

Λλ,λ(Y )(h) = X ′h,

Λ0,1(Y )(f) = X ′h′.

We need the following lemma

Lemma 2.2. Any 1-cocycle Λ ∈ Z1
a(1)(Vec(R),Dλ,µ) a(1)−noninvariant is nonvanishing on a(1) .

Proof. The 1-cocycle equation for Λ is written as follows:

Lλ,µ
XF

Λ(XG)− Lλ,µ
XG

Λ(XF )− Λ([XF , XG]) = 0, (2.3)

for XF , XG ∈ Vec(R). If Λ is a(1)−noninvariance for all XF ∈ a(1), thus, the equation a(1)− invariance
becomes

Lλ,µ
XF

Λ(XG)− Λ([XF , XG]) ̸= 0 (2.4)

The difference between the two equations gives:

(2.3)− (2.4) = Λ(XF ) ̸= 0

Proof. By lemma (2.2), we have that all a(1)−nonrelative cocycles are a(1)−noninvariant bilinear bidiffer-
ential operators. Moreover, Feigin et al. [17] calculated H1

diff(Vec(R); Dλ,µ):

H1(Vec(R); Dλ,ν) ≃



R if ν − λ ∈ {0, 2, 3, 4} for all λ,

R2 if (λ, ν) = (0, 1)

R if λ ∈ {0,−4} and ν = λ+ 5,

R if λ = −5±
√
19

2 and ν = λ+ 6,

0 otherwise.

(2.5)

Moreover, Khaled Basdouri et al. [11] calculated H1(Vec(R), a(1); Dλ,µ). The result is as follows

H1(Vec(R), a(1); Dλ,ν) ≃


R if


ν − λ ∈ {2, 3, 4} for all λ,

(λ, ν) = (0, 1),

λ ∈ {0,−4} and ν = λ+ 5,

λ = −5±
√
19

2 and ν = λ+ 6,
0 otherwise.

(2.6)
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Using the cohomology (2.6), the cohomology (2.5) and the equation

H1
a(1)(Vec(R); Dλ,ν) =: H1(Vec(R); Dλ,ν)/H

1(Vec(R), a(1); Dλ,ν). (2.7)

Hence, the spaces H1
a(1)(Vec(R); Dλ,ν) vanish for ν − λ ̸= 0, 1. By lemma (2.2), so we only have to

study dim(H1
a(1)(Vec(R); Dλ,ν)) = 1 if ν − λ = 0, 1. More precisely, these cohomology spaces are spanned

by the a(1)−nonrelative cohomology classes of the 1-cocycles, Λλ,λ and Λ0,1. A straightforward but long
computation leads to the result.

3. The General Framework: nontrivial deformations

In this section, we define nontrivial deformations of Lie algebra homomorphisms and introduce the
concept of miniversal deformations on commutative algebras.

3.1. The Second hrelative Cohomology Space

Let g a Lie algebra, h a Lie subalgebra and N a g-module, the cup-product defined, for two linear maps
Λ1, Λ2 : g → End(N ), is defined by:

Λ1 ∨ Λ2 : g
⊗2 → End(N )

Λ1 ∨ Λ2(x1, x2) = [Λ1(x1),Λ2(x2)] + [Λ2(x1),Λ1(x2)].
(3.1)

Therefore, we naturally deduce that the operation (3.1) defines a bilinear map:

H1
h(g,End(N ))⊗H1

h(g,End(N )) → H2
h(g,End(N )). (3.2)

3.2. h−nontrivial Infinitesimal deformations

Let σ0 : g → End(N ) be an action of a Lie algebra g on a vector space N , and let h be a subalgebra of g.
When studying non-trivial deformations of the action σ0 of g, one typically begins by considering nontrivial
infinitesimal deformations with respect to h:

σ = σ0 + tΛ,

verifying
[σ(x1), σ(x2)] = σ([x1, x2]),

where t is a formal parameter, x1, x2 ∈ g, is satisfied in order 1 in t if and only if Λ is a 1-cocycle
h−nontrivial.

In the case where this h−nonrelative cohomology space is multidimensional, it is natural to consider
h−nontrivial with multiple parameters. If dimH1

h(g; End(N )) = n, next, choose the 1-cocycles Λ1, . . . ,Λn

that represent a basis of H1
h(g; End(N )) and consider the h−nontrivial infinitesimal deformation

σ = σ0 +

n∑
ℓ=1

tℓ Λℓ, (3.3)

with independent parameters t1, . . . , tn.
The concept of equivalence of deformations in commutative and associative algebras has been studied

in publications [3, 4, 10, 14, 18], and the notion of a miniversal deformation is considered fundamental in
these works [14, 18].
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3.3. Integrability conditions of h−nontrivial formal deformations

Let’s consider the problemma of integrability of nontrivial infinitesimal deformations. The problemma
of nontrival deformation is very important in physics and energy sciences and image processing....[? 20].
Starting from the h−nontrivial infinitesimal deformation with respect to h ( 3.3), we seek a formal power
series:

σ = σ0 +
n∑

ℓ=1

tℓ Λℓ +
∑
ℓ,j

tℓtj σ
(2)
ℓj + · · · , (3.4)

whith the higher-order terms, namely σ
(2)
ℓj , σ

(3)
ℓjk, . . . , are linear mappings from g to End(N ) such that

σ : g → End(N )⊗ C[[t1, . . . , tn]] (3.5)

satisfies Λ is a 1-cocycle. The first h−nonrelative cohomology space

H1
h(g; End(N )) =: H1(g; End(N ))/H1(g, h;End(N ))

classifies h−nontrivial infinitesimal deformations up to equivalence.
However, this problemma often has no solution. Following the approaches in [18] and [14], we will impose

additional algebraic relations on the parameters t1, . . . , tn. Let I be an ideal of C[[t1, . . . , tn]] spanned by a
set of relations; consider the quotient

B = C[[t1, . . . , tn]]/I (3.6)

is a commutative and associative algebra with a neutral elemmaent, and it is possible to study its deforma-
tions with respect to the basis B; for more details, see [18]. The map (3.5) sends g to End(N ) ⊗ B. The
notion of miniversal deformation is fundamental [14, 18].

3.4. Computing the second-order Maurer-Cartan equation

In our study, a nontrivial infinitesimal deformation of the action of Vec(R) on Dn
δ , related to the Lie

algebra a(1), takes the following form:

LY + L(1)
Y , (3.7)

where LY denotes the Lie derivative of Dn
δ along the vector field Y d

dx given by (1.2), and

L(1)
Y =

{ ∑
λ tλ,λ Λλ,λ(Y ) if γ /∈ (N+ 1)

t0,1Λ0,1(Y ) +
∑

λ tλ,λ Λλ,λ(Y ) if γ ∈ (N+ 1),

and where tλ,λ and t0,1 are independent parameters, γ − λ ∈ N, γ − n ≤ λ ≤ γ and the 1-cocycles Λλ,λ

and Λ0,1 are given in theorem (2.1).

Theorem 3.1. The following conditions are necessary and sufficient for integrability of the a(1)−nontrivial
infinitesimal deformation (3.7):

t1,1t0,1 = 0 . (3.8)

Moreover, any a(1)−nontrivial formal deformation is equivalent to its infinitesimal part.

Proof. If γ /∈ (N + 1), then the parameters tk can be considered as zero, and in this case, there are no
integrability conditions.

Let’s assume that the a(1)-nontrivial infinitesimal deformation (3.7) can be integrated to form a formal
deformation

LY = LY + L(1)
Y + L(2)

Y + L(3)
Y + · · · (3.9)
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where L(1)
Y is defined by equation (3.4) and L(2)

Y is a second-degree polynomial in t whose coefficients
belong to Dn

δ . We determine the conditions related to the second-order terms L(2). Let us consider the
quadratic terms in the homomorphism condition.

L[Y,X] = [LY ,LX ]. (3.10)

The homomorphism condition (3.10) gives for the second-order terms the following (Maurer-Cartan) equa-
tion

−1

2
(L(1) ∨ L(1)) = δ(L(2)), (3.11)

This ensures that the right-hand side of equation (3.11) is automatically a 2-cocycle. In our case, we have:

δ(L(2))(Y,X) = −1

2
(
∑
λ

tλ,λ Λλ,λ + t0,1Λ0,1) ∨ (
∑
λ

tλ,λ Λλ,λ + t0,1Λ0,1)(Y,X) (3.12)

Consider the following 2-cocycles:

Ωλ,ν(Y,X) = −(
∑
λ

tλ,λ Λλ,λ + t0,1Λ0,1) ∨ (
∑
λ

tλ,λ Λλ,λ + t0,1Λ0,1)(Y,X) : Fλ → Fν .

(In general, Ωλ,ν(Y,X)h = δbλ,ν(Y,X)h+Q(t1, ..., tn)ω(Y,X)h, Q(x1, ..., xn) ∈ R[x] must be equal to 0,
ω ∈ H2

a(1)(Vec(R),Dλ,ν), Q is the conditions for the integrability and b is the second-order solution.)

The necessary conditions for the a(1)nontrivial infinitesimal deformation of (3.4) to be integrable are
that every 2-cocycle Ωλ,ν , with k ∈ {0, 1}, is a coboundary.

That means
δbλ,ν(Y,X)f = Ωλ,ν(Y,X)f, (3.13)

where
δbλ,ν(Y,X)f = bλ,ν([Y,X)f − Lλ,µ

Y (bλ,ν(X))f + Lλ,ν
Y (bλ,ν(Y ))f, (3.14)

and, for any Y d
dx ∈ Vec(R), the linear map bλ,ν(Y ) : Fλ → Fν is given:

bλ,ν(Y )(hdx)λ =

ν−λ+1∑
ℓ=0

aℓλ,νY
(ℓ)h(k+1−ℓ)(dx)ν .

We compute successively the 2-cocycles Ωλ,ν(Y,X):

1) Ωλ,λ(Y,X) = 0.

Ωλ,λ+1(Y,X)(h) =

{
t1,1t0,1ω0,1(Y,X)h if λ = 0,

0, if λ ̸= 0.

We will now prove the following lemma, and then we will conclude based on the Theorem 3.1.

In the sequel, we consider some 2-cocycles ωλ,ν : Vec(R)⊗2 → Dλ,ν . For Y d
dx , X

d
dx ∈ Vec(R) and

hdxλ ∈ Fλ, we find

ωλ,ν(Y
d
dx , X

d
dx)(hdx

λ) = ωλ,ν(Y,X)(h)dxν ,

but, owing to the simplicity, we give only the expressions of ωλ,ν(Y,X)(h).
We need the following lemma
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Lemma 3.2. Let b ∈ C1(Vec(R),D0,1) defined as follows: for Y d
dx ∈ Vec(R) and hdxλ ∈ Fλ

b(Y )(h) =

2∑
ℓ=0

aℓh
(2−ℓ)Y (ℓ) (3.15)

where the coefficients aj ∈ R. So the map δb : Vec(R)⊗2 → D0,1 is given by

δb(Y,X)(f) = −a0(XY ′′ −X ′′Y )h′ − a0(XY ′ −X ′Y )h′′ (3.16)

Proof. A straightforward computation. □

.

Lemma 3.3. The a(1)−nonrelative cohomology spaces H2
a(1)

(Vec(R),D0,1), is generated by the a(1)−nonrelative
cohomology classes of the nontrivial 2-cocycle ω0,1 defined by

Ω0,1(Y,X)(h) = (X ′Y ′′ −X ′′Y ′)h,

Proof. The function Ω0,1 is the cup-product (” ∨ ”) of the 1-cocycles Λ0,1 and Λ1,1. Therefore, Ω0,1 is a
2-cocycle, and it will suffice to show that it is nontrivial, since the space H2

a(1)(Vec(R),D0,1) is one dimension.
By lemma 3.16, therefore

Ω0,1(Y,X)f ̸= δb(Y,X)f.

Thus Ω0,1 is H2
a(1)

(Vec(R),D0,1). To complete the proof of lemma 3.3, using the equation 2.7, we must prove

that dim(H2
a(1)

(Vec(R),D0,1)) equal 1.

The solution L(2) of equation (3.12) can be chosen to be zero. We will now demonstrate that these
conditions are sufficient. By setting the higher-order terms L(n) (with n ≥ 3) to zero as well, we obtain
a deformation (of first order in tk). Any a(1)−nontrivial formal deformation of type a(1) is equivalent
to its infinitesimal part, since different choices of solutions to the Maurer-Cartan equation correspond to
equivalent deformations.

4. Examples of a(1)−nontrivial deformations

In this section, we present examples of symbol spaces Dn
δ : we study the nontrivial formal deformations

of these spaces with respect to the Lie algebra a(1).

Example 4.1. Consider D2
2. The a(1)−nontrivial infinitesimal deformation of the action of Vec(R) on D2

2

is of the form LY + L(1)
Y , where L(1)

Y given by

L(1)
Y =

2∑
λ=1

tλ,λ+j Λλ,λ+j(Y ) = (t0,0Λ0,0 + t1,1Λ1,1 + t0,1Λ0,1 + t2,2Λ2,2)(Y ). (4.1)

We obtain the 1 equation:
t1,1t0,1 = 0. (4.2)

as necessary and sufficient integrability condition of this a(1)−nontrivial infinitesimal deformation.

Proposition 4.2. There are two a(1)−nontrivial deformations of the action of Vec(R) on D2
2, characterized

by three independent parameters:

LY = LY + t0Λ0,0(Y ) + t1Λ1,1(Y ) + t2Λ2,2(Y ), (4.3)

or

LY = LY + t0Λ0,0(Y ) + tΛ0,1(Y ) + t2Λ2,2(Y ). (4.4)



Khaled Basdouri, Journal of Prime Research in Mathematics, 22(1) (2026), 76–84 83

Proof. We have the a(1)−nontrivial deformation (see equation 4.1), and we then study the solutions of
equation (4.2).

1- The first case is : t0,1 = 0, we put t1 = t1,1, t2 = t2,2, t0 = t0,0 and then we have (4.3).
2- The second case is : t1,1 = 0, we put t0 = t0,0, t2 = t2,2 and t0,1 = t and then we have the second

a(1)−nontrivial deformation. The solution L(2) of (3.11) can be chosen to be equal to zero. By choosing the
higher-order terms L(m) with m ≥ 3 and setting them all equal to zero, we obviously obtain a non-trivial
deformation of the algebra a(1) (of first order in t).

Example 4.3. Consider D3
4. We obtain in this case

L(1)
Y = t1Λ1,1(Y ) + t2Λ2,2(Y )

+t3Λ3,3(Y ) + t4Λ4,4(Y ).
(4.5)

In this case, there is no integrability equation for the a(1)-nontrivial infinitesimal deformation of LY +L(1)
X .

So D3
4 admits a single a(1)−nontrivial deformation with four independent parameters.

Example 4.4. Consider D3
3.

L(1)
Y = t0,0Λ0,0(Y ) + t0,1Λ0,1(Y )+

+t1,1Λ1,1(Y ) + t2,2Λ2,2(Y ) + t3,3Λ3,3(Y ).
(4.6)

We have the unique equation:

t1,1t0,1 = 0. (4.7)

In this case, any nontrivial formal deformation ofD3
3 with respect to a(1) is equivalent to a a(1)−nontrivial

infinitesimal deformation that satisfies this condition (4.7).
We can construct a large number of examples of nontrivial deformations of D3

3 with respect to the Lie
algebra a(1), using 2 (or fewer) independent parameters.

However, the nontrivial deformation

LY = LY + L(1)
Y

is the nontrivial deformation miniversal of D3
3 with respect to a(1), where base B = C[t0,0, t0,1, . . . ]/I and

I is the ideal generated by t1,1t0,1 = 0.

5. Problem

The cohomology H1
sl(2) (Vec(R); Dλ,µ) determines and classifies sl(2) nontrivial infinitesimal deformations

up to equivalence.
Conjecture: Any formal sl(2)-nontrivial deformation is no equivalent to its infinitesimal part.
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