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ALGEBRAIC PROPERTIES OF INTEGRAL FUNCTIONS

S.M.ALI KHAN∗

Abstract. For K a valued subfield of Cp with respect to the restriction
of the p-adic absolute value | | of Cp we consider the K-algebra IK[[X]] of
integral (entire) functions with coefficients in K. If K is a closed subfield
of Cp we extend some results which are known for subfields of C (see [3]
and [4]). We prove that IK[[X]] is a Bézout domain and we describe some
properties of maximal ideals of IK[[X]].
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1. Introduction

Consider K a valued subfield of Cp with respect to the restriction of
the p− adic absolute value of Cp. A formal series

f =
∞∑

i=0

aiX
i ∈ K[[X]] (1)

is called an integral (entire) function if for all x ∈ K, the sequence Sn(x) =∑n
i=0 aix

i is a Cauchy sequence. We denote by

IK[[X]] = {f ∈ K[[X]], f is an integral function} .

It is easy to prove that IK[[X]] is K-subalgebra of K[[X]] with ordinary ad-
dition and multiplication. We denote by K̃ the completion of K with respect
to | |. If f ∈ IK[[X]], then for every x ∈ K, Sn(x) is a convergent sequence
in K̃ which tends to an element denoted by f(x). We consider A(f) the set of
zeros of f in Cp counted with multiplicities.

Let K be a closed subfield of Cp with respect to the topology defined by
p−adic absolute value and GK = Gal(Cp/ K) the corresponding Galois group.
If A is a multisubset of Cp i.e. counting some of its elements several times,
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then A is called a GK- invariant subset if for every σ ∈ GK , σ(A) ⊂ A. By
definition we consider the empty set GK-invariant. The subset A is called
discrete if it has no finite accumulation points i.e. it is discrete as a subset of
Cp with respect to the topology defined by the absolute value.

If R is an integral domain and a, b ∈ R we denote by (a, b) the greatest
common divisor of a, b, if there exists this element. Using Kaplansky’s term
(see [5], p.32) an integral domain is a GCD-domain if any two elements in
R have a greatest common divisor. R is called Bézout domain if all finitely
generated ideals are principal.

2. Arithmetic properties of the ring of integral functions

We consider K a subfield of Cp. Then by Theorem of Section 6.2.3 of
[6] it follows that f ∈ IK[[X]] is a unit if and only if it is a nonzero constant
of K. Moreover A(f) is finite if and only if it is a polynomial.

The following two results give useful representations of GK-invariant dis-
crete infinite multisubsets of Cp by means of zeros of integral functions of
IK[[X]] which are not polynomials.

Proposition 1. Let K be a closed subfield of Cp. Then a infinite multisubset
A of Cp is a discrete GK-invariant subset if and only if there exists f ∈ IK[[X]]
such that A(f) = A.

Proof. If f =
∑∞

i=0 aiX
i ∈ IK[[X]] is not a polynomial and σ ∈ GK , it

follows that σ(ai) = ai. Let A(f) = {ξ1, ξ2, ξ3, .....} be the zero set of f. Then∑∞
i=0 aiξ

i
j = 0 and applying σ we obtain

∑∞
i=0 ai(σ(ξj))i = 0. Hence σ(ξj) is

a root of f having the same multiplicity and A(f) is GK-invariant. Moreover
A(f) is a discrete set because f is an integral function.

Conversely, by Theorem of Sec. 6.2.3 of [6], for an infinite discrete multi-
subset A ⊂ Cp we can construct a function f ∈ ICp[[X]] given by

f(x) = xm
∞∏

i=1

(
1− x

ξ i

)

such that A(f) = A, where the product is on the nonzero roots counting
multiplicities. We can write this function as f =

∑∞
i=m aiX

i, with ai ∈ Cp.
Now for each σ ∈ GK consider fσ =

∑∞
i=m σ(ai)Xi ∈ Cp[[X]]. Since |σ(ai)| =

|ai| it follows that lim
n→∞ |σ(an)| 1n = 0 and fσ is also an integral function. We

want to show that it has the same zero set. For this we remark that the values
of the partial sums sk(ξj) =

∑k
i=m aiξ

i
j tend to zero for every j. Then for the
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partial sum sσ
k of fσ we obtain

|sσ
k(ξj)| = |

k∑

i=m

σ(ai)ξj | = |
k∑

i=m

σ(ai)σ(σ−1(ξj))|

|σ(
k∑

i=m

anσ−1(ξj))| = |sk(σ−1(ξi)| → 0

because σ−1(ξj) ∈ A. Hence f and fσ have the same roots and this implies
f = fσ. Thus σ(ai) = ai and f(X) ∈ IK[[X]]. ¤

Proposition 2. Let K be a closed subfield of Cp, f ∈ IK[[X]] and a GK-
invariant subset A1 ⊂ A(f). Then there exists a divisor g ∈ IK[[X]] of f such
that A(g) = A1.

Proof. The statement is easy to prove when f is a polynomial. Thus
we consider f ∈ IK[[X]] which is not a polynomial. Then by Proposition
1, A(f) is GK-invariant discrete subset of Cp. Since A1 is GK-invariant, we
can construct a function g ∈ IK[[X]] such that A(g) = A1. Because A2 =
A(f) \ A(g) is also GK-invariant we can find a function h ∈ IK[[X]] such
that A2 = A(h). These A(g) and A(h) are disjoint subsets of A(f) so the
multiplication of these two functions have the zero set A(f). Hence g and h
are the divisors of f . ¤

Now we prove that IK[[X]] is a GCD and a Bézout domain.

Theorem 3. If K is a closed subfield of Cp, then any finite or infinite set of
functions from IK[[X]] has a greatest common divisor in IK[[X]].

Proof. Consider a set of functions {fi}i∈I from IK[[X]] and let {A(fi)}i∈I
be their zero sets respectively. By Proposition 1, these zero sets are GK-
invariant. Consider their intersection A =

⋂
i∈I Ai, which obviously is a dis-

crete GK-invariant set. Then we can find a function d ∈ IK[[X]] such that
A = A(d) and it is obviously their greatest common divisor. ¤

Corollary 4. If K is a closed subfield of Cp, then IK[[X]] is an integrally
closed domain.

Proof. Since every GCD-domain is integrally closed (see [5], Theorem 50,
p.33) it is enough to use Theorem 3. ¤

If K is a subfield of C, it is known (see [3], Theorem 9) that IK[[X]] is
a Bézout domain. The proof uses Mittag-Leffler Theorem for an unbounded
domain. Since in the case of Cp Mittag-Leffler Theorem is proved only for
particular bounded domains (see [6], Sec.6.4.5), so we’ll use an infinite inter-
polation theorem to extend Helmer’s result to a closed subfield of Cp.



On the Algebraic properties of integral functions 165

Theorem 5. Let K be a closed subfield of Cp. Then IK[[X]] is a Bézout
domain.

Proof. Since IK[[X]] is a GCD-domain it is enough to show that the
greatest common divisor of a finite number of integral functions from IK[[X]]
can be written as linear combination of the functions.

If d is the greatest common divisor of the integral functions f1, · · · , fn we
must find hi ∈ IK[[X]], i = 1, 2, ..., n such that h1f1 + · · · + hnfn = d. It
is easy to see that it is sufficient to prove the statement for n = 2. Without
loss of generality we can assume that d = 1 and we’ll prove that there exist
h1, h2 ∈ IK[[X]], such that f1h1 + f2h2 = 1. By [6], Sec. 6.2.3 we can write

f1(x) = xm
∞∏

i=1

(
1− x

αi

)
and f2(x) =

∞∏

i=1

(
1− x

βi

)

By [2], Theorem 2.2 there exists g ∈ IK[[X]] such that, for every i, g(βi) =
1

f1(βi)
. Hence all βi are the roots of gf1 − 1 and by [6], Theorem of Sec. 6.2.3

it follows that

g(x)f1(x)− 1 = C
∞∏

i=1

(
1− x

γi

)
= f2(x)C

∏

γi 6∈A(f2)

(
1− x

γi

)

Now by taking h1 = g, h2 = −C
∏

γi 6∈A(f2)

(
1− X

γi

)
, it follows the theorem. ¤

Definition 1. Let K be a closed subfield of Cp. An ideal I of IK[[X]] is
called fixed if

⋂
f∈I A(f) is non empty, otherwise it is called free. Thus I is a

fixed ideal if all integral functions in the ideal have common zeros, otherwise
it is a free ideal.

Now we can prove two corollaries of Theorem 5.

Corollary 6. Let K be a closed subfield of Cp. Every free ideal IK[[X]] is not
finitely generated.

Proof. Suppose contrary. If the ideal is finitely generated then it is a
principal ideal. Then it is a fixed ideal, a contradiction which implies the
corollary. ¤
Corollary 7. Let K be a closed subfield of Cp and I a free ideal of IK[[X]].
Then I does not contain any nonconstant polynomial.

Proof. If I contains a polynomial P ∈ K[X], then we can consider that it
has the smallest degree. By Division Theorem for integral functions it follows
that P divides each function of I. Hence it follows the statement. ¤
Theorem 8. Let K be a closed subfield of Cp and let {Aα}α∈J be a family of
GK-invariant subsets such that

i) The family {Aα}α∈J is closed under finite set intersection.
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ii)
⋂

α∈J Aα is empty.
If Fα = {f ∈ IK[[X]] : f(zα) = 0 ∀ zα ∈ Aα}, then I = {Fα}α∈J is a
free ideal. Conversely if I is a free ideal of IK[[X]] generated by the family
{fα} and Zα = {z ∈ K : fα(z) = 0}, then the family {Zα} will satisfy the
conditions i) and ii).

Proof. Suppose I = {Fα}α∈J . Consider f, g ∈ I such that f ∈ Fα and
g ∈ Fβ. By i) there exists Fγ = Fα

⋂
Fβ such that f and g both will vanish

on Fγ . This implies that f − g ∈ Fγ ⊂ I. Now take f ∈ IK[[X]] and g ∈ I.
Then fg belongs to the same family Fα. Hence I is an ideal and from ii) it
follows that I is a free ideal.

Conversely suppose that I =< {fα}α∈J > is a free ideal. Then by Theorem
5, i) holds and ii) follows from the definition of a free ideal. ¤

3. Maximal ideals of IK[[X]]

In this section we describe some properties of the maximal ideals of
IK[[X]].

Theorem 9. Let K = Cp. Then every maximal fixed ideal of IK[[X]] is of
the form I(z0) = {f ∈ IK[[X]] | f(z0) = 0} for some z0 ∈ K. Moreover the
field IK[[X]]/I(z0) is isomorphic to K.

Proof. Consider I(z0) = {f ∈ IK[[X]] | f(z0) = 0} and the mapping
Ψ : IK[[X]] −→ K defined as Ψ(f(z)) = f(z0) which is a homomorphism. The
kernel of this homomorphism is I(z0). It implies that I(z0) is a maximal fixed
ideal. Now suppose that I is a maximal fixed ideal but not of the above form
i.e. it has two fixed points z1, z2 ∈

⋂
f∈I A(f). Then I is contained properly in

I(z1) and I(z2), a contradiction which implies that I has above form. Finally,
by using the first isomorphism theorem we have IK[[X]]/I(z0) ' K. ¤

The free ideals are characterized in Theorem 8. Now we are interested in
extra conditions to characterize the maximal free ideals.

Theorem 10. A free ideal M of IK[[X]] is maximal if and only if A(M)
satisfies the following condition in addition to the conditions of Theorem 3

iii) If D = {zn}∞n=1 is any infinite discrete GK-invariant subset of K such
that D

⋂
A(f) is non-empty for every f ∈ M, then there exists f ∈ M such

that D = A(f).

Proof. Suppose M is free ideal and iii) holds. If M is not maximal, then
there is an ideal N properly containing M . Suppose g ∈ N and apply i) of
Theorem 8 to A(N). Then A(g)

⋂
A(f) is non-empty for every f ∈ N , and

hence for every f ∈ M . By iii), g ∈ M then it implies that M is maximal free
ideal.

Conversely, suppose M is maximal free ideal. If there was an infinite discrete
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GK-invariant subset D violating iii), then any g ∈ IK[[X]] such that A(g) = D
would generate together with M an ideal N properly containing M , which is
contradiction of maximality. ¤
Theorem 11. If M is a maximal free ideal, then IK[[X]]/M contains a sub-
field isomorphic to the field K(X) of all rational functions.

Proof. Since M is a free ideal, no polynomial belongs to it. If p1, p2 are
two distinct polynomials, then p1 6≡ p2(mod M). Hence IK[[X]]/M contains
as a subring all polynomials. So IK[[X]]/M contains K(X) as a subfield. ¤

If K = Cp and we don’t wish to fix the elements of Cp, then we will prove
that ICp[[X]]/M is isomorphic to Cp. For this we need two lemmas.

Lemma 12. The field ICp[[X]]/M is algebraically closed.

Proof. If f ∈ M , then M contains all functions h vanishing on the distinct
points of A(f), because f divides h. Since M is a maximal free ideal, by using
Theorem 10, M contains all functions with the simple zeros at the distinct
points of A(f). Now consider a nonconstant polynomial

Φ(X,Y ) = f0(X) + f1(X)Y + . . . + fn(X)Y n

with coefficients f0, f1, . . . , fn ∈ ICp[[X]], where fn is not in M . Choose any
sequence {xk} from A(M) =

⋃
f∈M A(f). Now for any fixed k, the Φ(xk, Y )

is a polynomial with coefficients in Cp and has n roots in Cp. If yk is one of
these roots, we can construct functions g ∈ ICp[[X]] such that g(xk) = yk for
k = 1, 2, . . .. Hence Φ(X, g(X)) ≡ 0(mod M) and this implies the lemma. ¤
Lemma 13. The field ICp[[X]]/M has the power c of the continuum.

Proof. Since ICp[[X]] contains a countable dense subset, its power is at
most c. Hence the power of ICp[[X]]/M is at most c. But all the elements
from Cp are incongruent (mod M), so the power of ICp[[X]]/M is equal to c.
¤
Theorem 14. If M is a maximal free ideal, then ICp[[X]]/M is isomorphic
to Cp.

Proof. By Lemmas 1 and 2, we obtain that ICp[[X]]/M is algebraically
closed and of transcendence degree c over Q. Using a theorem of Steinitz it
follows that it is isomorphic to C. Since C ' Cp (see [6], p.145), the theorem
holds. ¤
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