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ALGEBRAIC PROPERTIES OF INTEGRAL FUNCTIONS

S.M.ALI KHAN*

ABSTRACT. For K a valued subfield of C, with respect to the restriction
of the p-adic absolute value | | of C, we consider the K-algebra I K[[X]] of
integral (entire) functions with coefficients in K. If K is a closed subfield
of C, we extend some results which are known for subfields of C (see [3]
and [4]). We prove that I K[[X]] is a Bézout domain and we describe some
properties of maximal ideals of IK[[X]].
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1. INTRODUCTION

Consider K a valued subfield of C, with respect to the restriction of
the p — adic absolute value of C,,. A formal series

f=> aX' e K[[X]] (1)
i=0

is called an integral (entire) function if for all x € K, the sequence Sy (z) =
Yoo aix® is a Cauchy sequence. We denote by

IK[[X]] ={f € K[[X]], f is an integral function} .

It is easy to prove that I K[[X]] is K-subalgebra of K[[X]] with ordinary ad-
dition and multiplication. We denote by K the completion of K with respect
to | |. If f € IK[[X]], then for every x € K, S,(z) is a convergent sequence
in K which tends to an element denoted by f(z). We consider A(f) the set of
zeros of f in C, counted with multiplicities.

Let K be a closed subfield of C, with respect to the topology defined by
p—adic absolute value and G = Gal(C,/ K) the corresponding Galois group.
If A is a multisubset of C, i.e. counting some of its elements several times,
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then A is called a Gk - invariant subset if for every o € Gk, 0(A) C A. By
definition we consider the empty set G-invariant. The subset A is called
discrete if it has no finite accumulation points i.e. it is discrete as a subset of
C, with respect to the topology defined by the absolute value.

If R is an integral domain and a,b € R we denote by (a,b) the greatest
common divisor of a, b, if there exists this element. Using Kaplansky’s term
(see [5], p.32) an integral domain is a GCD-domain if any two elements in
R have a greatest common divisor. R is called Bézout domain if all finitely
generated ideals are principal.

2. ARITHMETIC PROPERTIES OF THE RING OF INTEGRAL FUNCTIONS

We consider K a subfield of C,. Then by Theorem of Section 6.2.3 of
[6] it follows that f € IK[[X]] is a unit if and only if it is a nonzero constant
of K. Moreover A(f) is finite if and only if it is a polynomial.
The following two results give useful representations of G g-invariant dis-
crete infinite multisubsets of C, by means of zeros of integral functions of
IK[[X]] which are not polynomials.

Proposition 1. Let K be a closed subfield of C,. Then a infinite multisubset
A of C,, is a discrete G i -invariant subset if and only if there exists f € TK[[X]]
such that A(f) = A.

Proof. If f =Y % a; X" € IK[[X]] is not a polynomial and o € G, it
follows that o(a;) = a;. Let A(f) = {&1,£2,&3, ...} be the zero set of f. Then
Yoo aifj» = 0 and applying o we obtain > oo a;(c(&;))" = 0. Hence o(¢;) is
a root of f having the same multiplicity and A(f) is Gx-invariant. Moreover
A(f) is a discrete set because f is an integral function.

Conversely, by Theorem of Sec. 6.2.3 of [6], for an infinite discrete multi-
subset A C C, we can construct a function f € IC,[[X]] given by

flw) = xmllj (1 - zz>

such that A(f) = A, where the product is on the nonzero roots counting
multiplicities. We can write this function as f = Y .o a; X ! with a; € Cp.
Now for each o € G consider f7 =3 o(a;)X* € Cp[[X]]. Since |o(a;)| =
la;| it follows that nh—>Holo ]a(an)]% =0 and f7 is also an integral function. We
want to show that it has the same zero set. For this we remark that the values
of the partial sums s;(&;) = Zk alfji- tend to zero for every j. Then for the

i=m
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partial sum sf, of f” we obtain

k

|s7.(&5)] Z az§J|—|Z o(a;)o 71 (&)l

i=m

Z ano (&) = |su(o™ (&) — 0

because 01(¢;) € A. Hence f and f° have the same roots and this implies
f=f° Thus o(a;) = a; and f(X) € IK[[X]]. O

Proposition 2. Let K be a closed subfield of Cp,, f € IK[[X]] and a Gk-
invariant subset Ay C A(f). Then there exists a divisor g € IK[[X]] of f such
that A(g) = A;.

Proof. The statement is easy to prove when f is a polynomial. Thus
we consider f € IK[[X]] which is not a polynomial. Then by Proposition
1, A(f) is Gk-invariant discrete subset of C,. Since A; is Gg-invariant, we
can construct a function g € IK[[X]] such that A(g) = A;. Because Ay =
A(f) \ A(g) is also Gg-invariant we can find a function h € TK[[X]] such
that Ao = A(h). These A(g) and A(h) are disjoint subsets of A(f) so the
multiplication of these two functions have the zero set A(f). Hence g and h
are the divisors of f. [J

Now we prove that IK[[X]] is a GCD and a Bézout domain.

Theorem 3. If K is a closed subfield of C,, then any finite or infinite set of
functions from IK|[[X]| has a greatest common divisor in I K[[X]].

Proof. Consider a set of functions { f;},.; from IK[[X]] and let {A(f;)},c;
be their zero sets respectively. By Proposition 1, these zero sets are G-
invariant. Consider their intersection A = (7),c; A;, which obviously is a dis-
crete G-invariant set. Then we can find a function d € IK[[X]] such that
A = A(d) and it is obviously their greatest common divisor. [J

Corollary 4. If K is a closed subfield of Cp, then IK[[X]] is an integrally
closed domain.

Proof. Since every GCD-domain is integrally closed (see [5], Theorem 50,
p.33) it is enough to use Theorem 3. [J

If K is a subfield of C, it is known (see [3], Theorem 9) that IK[[X]] is
a Bézout domain. The proof uses Mittag-Leffler Theorem for an unbounded
domain. Since in the case of C, Mittag-Leffler Theorem is proved only for
particular bounded domains (see [6], Sec.6.4.5), so we’ll use an infinite inter-
polation theorem to extend Helmer’s result to a closed subfield of C,,.
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Theorem 5. Let K be a closed subfield of C,. Then IK[[X]] is a Bézout
domain.

Proof. Since IK[[X]] is a GCD-domain it is enough to show that the
greatest common divisor of a finite number of integral functions from I K[[X]]
can be written as linear combination of the functions.

If d is the greatest common divisor of the integral functions fi,--- , f, we
must find h; € IK[[X]], i = 1,2,...,n such that hifi + -+ + hpfn, = d. It
is easy to see that it is sufficient to prove the statement for n = 2. Without
loss of generality we can assume that d = 1 and we’ll prove that there exist
hi,hy € IK[[X]], such that fih; + fahe = 1. By [6], Sec. 6.2.3 we can write

o [0.9]
x x
@ =T (1-2) gt =T (1-5)
i=1 & i=1 pi
By [2], Theorem 2.2 there exists g € IK|[[X]] such that, for every i, g(8;) =
%. Hence all 3; are the roots of gf; — 1 and by [6], Theorem of Sec. 6.2.3
it follows that

o) fula) 1= c]cj (1-2)=pee I1 (1-2)

i@ A(f2) i

Now by taking 7y = g, ho = —C ] (1 - %) it follows the theorem. [J
i €A(f2)
Definition 1. Let K be a closed subfield of C,. An ideal I of IK[[X]] is
called fized if el A(f) is non empty, otherwise it is called free. Thus I is a
fixed ideal if all integral functions in the ideal have common zeros, otherwise
it is a free ideal.
Now we can prove two corollaries of Theorem 5.

Corollary 6. Let K be a closed subfield of Cp,. Every free ideal I K[[X]] is not
finitely generated.

Proof. Suppose contrary. If the ideal is finitely generated then it is a
principal ideal. Then it is a fixed ideal, a contradiction which implies the
corollary. [J

Corollary 7. Let K be a closed subfield of C, and I a free ideal of IK[[X]].
Then I does not contain any nonconstant polynomial.

Proof. If I contains a polynomial P € K[X], then we can consider that it
has the smallest degree. By Division Theorem for integral functions it follows
that P divides each function of I. Hence it follows the statement. [

Theorem 8. Let K be a closed subfield of C, and let {Aq}acs be a family of
G i -invariant subsets such that
i) The family {Aq}acs is closed under finite set intersection.
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i) Naes Aa is empty.
If Fy = {f € IK[[X]] : f(2a) = 0V 2o € Ay}, then I = {Fotacs is a
free ideal. Conversely if I is a free ideal of IK[[X]] generated by the family
{fa} and Zo, = {z € K : fo(z) = 0}, then the family {Z,} will satisfy the
conditions i) and ).

Proof. Suppose I = {F,}aes. Consider f,g € I such that f € F, and
g € Fj3. By i) there exists ', = F, () Fjs such that f and g both will vanish
on F,. This implies that f —g € F, C I. Now take f € IK[[X]] and g € I.
Then fg belongs to the same family F,,. Hence I is an ideal and from ii) it
follows that I is a free ideal.

Conversely suppose that I =< {fs}acs > is a free ideal. Then by Theorem
5, i) holds and i) follows from the definition of a free ideal. [J

3. MAXIMAL IDEALS OF [K[[X]]

In this section we describe some properties of the maximal ideals of
IK[[X]].

Theorem 9. Let K = C,. Then every mazimal fized ideal of IK[[X]] is of
the form I1(z0) = {f € IK[[X]] | f(20) = 0} for some zy € K. Moreover the
field IK[[X]]/I(z0) is isomorphic to K.

Proof. Consider I(z9) = {f € IK[[X]] | f(20) = 0} and the mapping
U : IK[[X]] — K defined as ¥(f(2)) = f(z0) which is a homomorphism. The
kernel of this homomorphism is I(zg). It implies that I(zp) is a maximal fixed
ideal. Now suppose that I is a maximal fixed ideal but not of the above form
i.e. it has two fixed points z1, 29 € ﬂfel A(f). Then I is contained properly in
I(z1) and I(22), a contradiction which implies that I has above form. Finally,
by using the first isomorphism theorem we have IK[[X]]/I(z) ~ K. O

The free ideals are characterized in Theorem 8. Now we are interested in
extra conditions to characterize the maximal free ideals.

Theorem 10. A free ideal M of IK[[X]] is mazimal if and only if A(M)
satisfies the following condition in addition to the conditions of Theorem 3

iii) If D = {z,}0° is any infinite discrete G -invariant subset of K such
that D(A(f) is non-empty for every f € M, then there exists f € M such
that D = A(f).

Proof. Suppose M is free ideal and i) holds. If M is not maximal, then
there is an ideal N properly containing M. Suppose g € N and apply ) of
Theorem 8 to A(N). Then A(g)()A(f) is non-empty for every f € N, and
hence for every f € M. By i), g € M then it implies that M is maximal free
ideal.

Conversely, suppose M is maximal free ideal. If there was an infinite discrete
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G i-invariant subset D violating i), then any g € I K[[X]] such that A(g) = D
would generate together with M an ideal N properly containing M, which is
contradiction of maximality. [J

Theorem 11. If M is a mazimal free ideal, then IK[[X]]/M contains a sub-
field isomorphic to the field K(X) of all rational functions.

Proof. Since M is a free ideal, no polynomial belongs to it. If pi,py are
two distinct polynomials, then p; #Z pa(mod M). Hence I K[[X]]/M contains
as a subring all polynomials. So I K[[X]]/M contains K (X) as a subfield. [J

It K = C, and we don’t wish to fix the elements of C,, then we will prove
that JC,[[X]]/M is isomorphic to C,. For this we need two lemmas.

Lemma 12. The field IC,[[X]]/M is algebraically closed.

Proof. If f € M, then M contains all functions h vanishing on the distinct
points of A(f), because f divides h. Since M is a maximal free ideal, by using
Theorem 10, M contains all functions with the simple zeros at the distinct
points of A(f). Now consider a nonconstant polynomial

B(X,Y) = folX) + A(X)Y + ...+ fu(X)Y"

with coefficients fo, f1,..., fn € IC,[[X]], where f, is not in M. Choose any
sequence {zy} from A(M) = ;e A(f). Now for any fixed k, the ®(z,Y)
is a polynomial with coefficients in C, and has n roots in C,. If y;, is one of

these roots, we can construct functions g € IC,[[X]] such that g(xy) = y;, for
k=1,2,.... Hence ®(X,g(X)) = 0(mod M) and this implies the lemma. [J

Lemma 13. The field IC,[[X]]/M has the power c of the continuum.

Proof. Since IC,[[X]] contains a countable dense subset, its power is at
most c. Hence the power of IC,[[X]]/M is at most c¢. But all the elements
from C,, are incongruent (mod M), so the power of IC,[[X]]/M is equal to c.
O

Theorem 14. If M is a mazimal free ideal, then ICy[[X]]/M is isomorphic
to C,.

Proof. By Lemmas 1 and 2, we obtain that IC,[[X]]/M is algebraically
closed and of transcendence degree ¢ over Q. Using a theorem of Steinitz it
follows that it is isomorphic to C. Since C >~ C, (see [6], p.145), the theorem
holds. O
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