ALGEBRAIC PROPERTIES OF INTEGRAL FUNCTIONS

$S.M.ALI KHAN^*$

ABSTRACT. For K a valued subfield of \mathbb{C}_p with respect to the restriction of the p-adic absolute value $|\ |$ of \mathbb{C}_p we consider the K-algebra IK[[X]] of integral (entire) functions with coefficients in K. If K is a closed subfield of \mathbb{C}_p we extend some results which are known for subfields of \mathbb{C} (see [3] and [4]). We prove that IK[[X]] is a Bézout domain and we describe some properties of maximal ideals of IK[[X]].

Key words : integral functions, Bézout domain. AMS SUBJECT:12J25, 13F05, 13J05.

1. Introduction

Consider K a valued subfield of \mathbb{C}_p with respect to the restriction of the p-adic absolute value of \mathbb{C}_p . A formal series

$$f = \sum_{i=0}^{\infty} a_i X^i \in K[[X]] \tag{1}$$

is called an *integral* (entire) function if for all $x \in K$, the sequence $S_n(x) = \sum_{i=0}^n a_i x^i$ is a Cauchy sequence. We denote by

$$IK[[X]] = \{ f \in K[[X]], f \text{ is an integral function} \}.$$

It is easy to prove that IK[[X]] is K-subalgebra of K[[X]] with ordinary addition and multiplication. We denote by \tilde{K} the completion of K with respect to $|\cdot|$. If $f \in IK[[X]]$, then for every $x \in K$, $S_n(x)$ is a convergent sequence in \tilde{K} which tends to an element denoted by f(x). We consider A(f) the set of zeros of f in \mathbb{C}_p counted with multiplicities.

Let K be a closed subfield of \mathbb{C}_p with respect to the topology defined by p-adic absolute value and $G_K = Gal(\mathbb{C}_p/K)$ the corresponding Galois group. If A is a multisubset of \mathbb{C}_p i.e. counting some of its elements several times,

^{*}Corresponding author. S.M.Ali Khan, Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. E-mail: ali.uno@gmail.com.

then A is called a G_K - invariant subset if for every $\sigma \in G_K$, $\sigma(A) \subset A$. By definition we consider the empty set G_K -invariant. The subset A is called discrete if it has no finite accumulation points i.e. it is discrete as a subset of \mathbb{C}_p with respect to the topology defined by the absolute value.

If R is an integral domain and $a, b \in R$ we denote by (a, b) the greatest common divisor of a, b, if there exists this element. Using Kaplansky's term (see [5], p.32) an integral domain is a GCD-domain if any two elements in R have a greatest common divisor. R is called $B\acute{e}zout\ domain$ if all finitely generated ideals are principal.

2. Arithmetic properties of the ring of integral functions

We consider K a subfield of \mathbb{C}_p . Then by Theorem of Section 6.2.3 of [6] it follows that $f \in IK[[X]]$ is a unit if and only if it is a nonzero constant of K. Moreover A(f) is finite if and only if it is a polynomial.

The following two results give useful representations of G_K -invariant discrete infinite multisubsets of \mathbb{C}_p by means of zeros of integral functions of IK[[X]] which are not polynomials.

Proposition 1. Let K be a closed subfield of \mathbb{C}_p . Then a infinite multisubset A of \mathbb{C}_p is a discrete G_K -invariant subset if and only if there exists $f \in IK[[X]]$ such that A(f) = A.

Proof. If $f = \sum_{i=0}^{\infty} a_i X^i \in IK[[X]]$ is not a polynomial and $\sigma \in G_K$, it follows that $\sigma(a_i) = a_i$. Let $A(f) = \{\xi_1, \xi_2, \xi_3,\}$ be the zero set of f. Then $\sum_{i=0}^{\infty} a_i \xi_j^i = 0$ and applying σ we obtain $\sum_{i=0}^{\infty} a_i (\sigma(\xi_j))^i = 0$. Hence $\sigma(\xi_j)$ is a root of f having the same multiplicity and A(f) is G_K -invariant. Moreover A(f) is a discrete set because f is an integral function.

Conversely, by Theorem of Sec. 6.2.3 of [6], for an infinite discrete multisubset $A \subset \mathbb{C}_p$ we can construct a function $f \in I\mathbb{C}_p[[X]]$ given by

$$f(x) = x^m \prod_{i=1}^{\infty} \left(1 - \frac{x}{\xi_i} \right)$$

such that A(f) = A, where the product is on the nonzero roots counting multiplicities. We can write this function as $f = \sum_{i=m}^{\infty} a_i X^i$, with $a_i \in \mathbb{C}_p$. Now for each $\sigma \in G_K$ consider $f^{\sigma} = \sum_{i=m}^{\infty} \sigma(a_i) X^i \in \mathbb{C}_p[[X]]$. Since $|\sigma(a_i)| = |a_i|$ it follows that $\lim_{n \to \infty} |\sigma(a_n)|^{\frac{1}{n}} = 0$ and f^{σ} is also an integral function. We want to show that it has the same zero set. For this we remark that the values of the partial sums $s_k(\xi_j) = \sum_{i=m}^k a_i \xi_j^i$ tend to zero for every j. Then for the

partial sum s_k^{σ} of f^{σ} we obtain

$$|s_k^{\sigma}(\xi_j)| = |\sum_{i=m}^k \sigma(a_i)\xi_j| = |\sum_{i=m}^k \sigma(a_i)\sigma(\sigma^{-1}(\xi_j))|$$
$$|\sigma(\sum_{i=m}^k a_n \sigma^{-1}(\xi_j))| = |s_k(\sigma^{-1}(\xi_i))| \to 0$$

because $\sigma^{-1}(\xi_j) \in A$. Hence f and f^{σ} have the same roots and this implies $f = f^{\sigma}$. Thus $\sigma(a_i) = a_i$ and $f(X) \in IK[[X]]$. \square

Proposition 2. Let K be a closed subfield of \mathbb{C}_p , $f \in IK[[X]]$ and a G_K -invariant subset $A_1 \subset A(f)$. Then there exists a divisor $g \in IK[[X]]$ of f such that $A(g) = A_1$.

Proof. The statement is easy to prove when f is a polynomial. Thus we consider $f \in IK[[X]]$ which is not a polynomial. Then by Proposition 1, A(f) is G_K -invariant discrete subset of \mathbb{C}_p . Since A_1 is G_K -invariant, we can construct a function $g \in IK[[X]]$ such that $A(g) = A_1$. Because $A_2 = A(f) \setminus A(g)$ is also G_K -invariant we can find a function $h \in IK[[X]]$ such that $A_2 = A(h)$. These A(g) and A(h) are disjoint subsets of A(f) so the multiplication of these two functions have the zero set A(f). Hence g and h are the divisors of f. \square

Now we prove that IK[[X]] is a GCD and a Bézout domain.

Theorem 3. If K is a closed subfield of \mathbb{C}_p , then any finite or infinite set of functions from IK[[X]] has a greatest common divisor in IK[[X]].

Proof. Consider a set of functions $\{f_i\}_{i\in I}$ from IK[[X]] and let $\{A(f_i)\}_{i\in I}$ be their zero sets respectively. By Proposition 1, these zero sets are G_K -invariant. Consider their intersection $A = \bigcap_{i\in I} A_i$, which obviously is a discrete G_K -invariant set. Then we can find a function $d \in IK[[X]]$ such that A = A(d) and it is obviously their greatest common divisor. \square

Corollary 4. If K is a closed subfield of \mathbb{C}_p , then IK[[X]] is an integrally closed domain.

Proof. Since every GCD-domain is integrally closed (see [5], Theorem 50, p.33) it is enough to use Theorem 3. \square

If K is a subfield of \mathbb{C} , it is known (see [3], Theorem 9) that IK[[X]] is a Bézout domain. The proof uses Mittag-Leffler Theorem for an unbounded domain. Since in the case of \mathbb{C}_p Mittag-Leffler Theorem is proved only for particular bounded domains (see [6], Sec.6.4.5), so we'll use an infinite interpolation theorem to extend Helmer's result to a closed subfield of \mathbb{C}_p .

Theorem 5. Let K be a closed subfield of \mathbb{C}_p . Then IK[[X]] is a Bézout domain.

Proof. Since IK[[X]] is a GCD-domain it is enough to show that the greatest common divisor of a finite number of integral functions from IK[[X]] can be written as linear combination of the functions.

If d is the greatest common divisor of the integral functions f_1, \dots, f_n we must find $h_i \in IK[[X]]$, i = 1, 2, ..., n such that $h_1 f_1 + \cdots + h_n f_n = d$. It is easy to see that it is sufficient to prove the statement for n = 2. Without loss of generality we can assume that d = 1 and we'll prove that there exist $h_1, h_2 \in IK[[X]]$, such that $f_1 h_1 + f_2 h_2 = 1$. By [6], Sec. 6.2.3 we can write

$$f_1(x) = x^m \prod_{i=1}^{\infty} \left(1 - \frac{x}{\alpha_i}\right)$$
 and $f_2(x) = \prod_{i=1}^{\infty} \left(1 - \frac{x}{\beta_i}\right)$

By [2], Theorem 2.2 there exists $g \in IK[[X]]$ such that, for every i, $g(\beta_i) = \frac{1}{f_1(\beta_i)}$. Hence all β_i are the roots of $gf_1 - 1$ and by [6], Theorem of Sec. 6.2.3 it follows that

$$g(x)f_1(x) - 1 = C \prod_{i=1}^{\infty} \left(1 - \frac{x}{\gamma_i} \right) = f_2(x)C \prod_{\gamma_i \notin A(f_2)} \left(1 - \frac{x}{\gamma_i} \right)$$

Now by taking $h_1=g,\ h_2=-C\prod_{\gamma_i\not\in A(f_2)}\Big(1-\frac{X}{\gamma_i}\Big),$ it follows the theorem. \square

Definition 1. Let K be a closed subfield of \mathbb{C}_p . An *ideal* I of IK[[X]] is called *fixed* if $\bigcap_{f \in I} A(f)$ is non empty, otherwise it is called *free*. Thus I is a fixed ideal if all integral functions in the ideal have common zeros, otherwise it is a free ideal.

Now we can prove two corollaries of Theorem 5.

Corollary 6. Let K be a closed subfield of \mathbb{C}_p . Every free ideal IK[[X]] is not finitely generated.

Proof. Suppose contrary. If the ideal is finitely generated then it is a principal ideal. Then it is a fixed ideal, a contradiction which implies the corollary. \Box

Corollary 7. Let K be a closed subfield of \mathbb{C}_p and I a free ideal of IK[[X]]. Then I does not contain any nonconstant polynomial.

Proof. If I contains a polynomial $P \in K[X]$, then we can consider that it has the smallest degree. By Division Theorem for integral functions it follows that P divides each function of I. Hence it follows the statement. \square

Theorem 8. Let K be a closed subfield of \mathbb{C}_p and let $\{A_\alpha\}_{\alpha\in J}$ be a family of G_K -invariant subsets such that

i) The family $\{A_{\alpha}\}_{{\alpha}\in J}$ is closed under finite set intersection.

ii) $\bigcap_{\alpha \in J} A_{\alpha}$ is empty. If $F_{\alpha} = \{ f \in IK[[X]] : f(z_{\alpha}) = 0 \ \forall \ z_{\alpha} \in A_{\alpha} \}$, then $I = \{ F_{\alpha} \}_{\alpha \in J}$ is a free ideal. Conversely if I is a free ideal of IK[[X]] generated by the family $\{ f_{\alpha} \}$ and $Z_{\alpha} = \{ z \in K : f_{\alpha}(z) = 0 \}$, then the family $\{ Z_{\alpha} \}$ will satisfy the conditions i) and ii).

Proof. Suppose $I = \{F_{\alpha}\}_{{\alpha} \in J}$. Consider $f, g \in I$ such that $f \in F_{\alpha}$ and $g \in F_{\beta}$. By i) there exists $F_{\gamma} = F_{\alpha} \cap F_{\beta}$ such that f and g both will vanish on F_{γ} . This implies that $f - g \in F_{\gamma} \subset I$. Now take $f \in IK[[X]]$ and $g \in I$. Then fg belongs to the same family F_{α} . Hence I is an ideal and from ii) it follows that I is a free ideal.

Conversely suppose that $I = \langle \{f_{\alpha}\}_{{\alpha} \in J} \rangle$ is a free ideal. Then by Theorem 5, i) holds and ii) follows from the definition of a free ideal. \square

3. Maximal ideals of IK[[X]]

In this section we describe some properties of the maximal ideals of IK[[X]].

Theorem 9. Let $K = \mathbb{C}_p$. Then every maximal fixed ideal of IK[[X]] is of the form $I(z_0) = \{f \in IK[[X]] \mid f(z_0) = 0\}$ for some $z_0 \in K$. Moreover the field $IK[[X]]/I(z_0)$ is isomorphic to K.

Proof. Consider $I(z_0) = \{f \in IK[[X]] \mid f(z_0) = 0\}$ and the mapping $\Psi: IK[[X]] \longrightarrow K$ defined as $\Psi(f(z)) = f(z_0)$ which is a homomorphism. The kernel of this homomorphism is $I(z_0)$. It implies that $I(z_0)$ is a maximal fixed ideal. Now suppose that I is a maximal fixed ideal but not of the above form i.e. it has two fixed points $z_1, z_2 \in \bigcap_{f \in I} A(f)$. Then I is contained properly in $I(z_1)$ and $I(z_2)$, a contradiction which implies that I has above form. Finally, by using the first isomorphism theorem we have $IK[[X]]/I(z_0) \simeq K$. \square

The free ideals are characterized in Theorem 8. Now we are interested in extra conditions to characterize the maximal free ideals.

Theorem 10. A free ideal M of IK[[X]] is maximal if and only if A(M) satisfies the following condition in addition to the conditions of Theorem 3 iii) If $D = \{z_n\}_{n=1}^{\infty}$ is any infinite discrete G_K -invariant subset of K such that $D \cap A(f)$ is non-empty for every $f \in M$, then there exists $f \in M$ such that D = A(f).

Proof. Suppose M is free ideal and iii) holds. If M is not maximal, then there is an ideal N properly containing M. Suppose $g \in N$ and apply i) of Theorem 8 to A(N). Then $A(g) \cap A(f)$ is non-empty for every $f \in N$, and hence for every $f \in M$. By iii, $g \in M$ then it implies that M is maximal free ideal

Conversely, suppose M is maximal free ideal. If there was an infinite discrete

 G_K -invariant subset D violating iii), then any $g \in IK[[X]]$ such that A(g) = D would generate together with M an ideal N properly containing M, which is contradiction of maximality. \square

Theorem 11. If M is a maximal free ideal, then IK[[X]]/M contains a subfield isomorphic to the field K(X) of all rational functions.

Proof. Since M is a free ideal, no polynomial belongs to it. If p_1, p_2 are two distinct polynomials, then $p_1 \not\equiv p_2 \pmod{M}$. Hence IK[[X]]/M contains as a subring all polynomials. So IK[[X]]/M contains K(X) as a subfield. \square If $K = \mathbb{C}_p$ and we don't wish to fix the elements of \mathbb{C}_p , then we will prove

that $I\mathbb{C}_p[[X]]/M$ is isomorphic to \mathbb{C}_p . For this we need two lemmas.

Lemma 12. The field $I\mathbb{C}_p[[X]]/M$ is algebraically closed.

Proof. If $f \in M$, then M contains all functions h vanishing on the distinct points of A(f), because f divides h. Since M is a maximal free ideal, by using Theorem 10, M contains all functions with the simple zeros at the distinct points of A(f). Now consider a nonconstant polynomial

$$\Phi(X,Y) = f_0(X) + f_1(X)Y + \dots + f_n(X)Y^n$$

with coefficients $f_0, f_1, \ldots, f_n \in I\mathbb{C}_p[[X]]$, where f_n is not in M. Choose any sequence $\{x_k\}$ from $A(M) = \bigcup_{f \in M} A(f)$. Now for any fixed k, the $\Phi(x_k, Y)$ is a polynomial with coefficients in \mathbb{C}_p and has n roots in \mathbb{C}_p . If y_k is one of these roots, we can construct functions $g \in I\mathbb{C}_p[[X]]$ such that $g(x_k) = y_k$ for $k = 1, 2, \ldots$ Hence $\Phi(X, g(X)) \equiv 0 \pmod{M}$ and this implies the lemma. \square

Lemma 13. The field $I\mathbb{C}_p[[X]]/M$ has the power c of the continuum.

Proof. Since $I\mathbb{C}_p[[X]]$ contains a countable dense subset, its power is at most c. Hence the power of $I\mathbb{C}_p[[X]]/M$ is at most c. But all the elements from \mathbb{C}_p are incongruent (mod M), so the power of $I\mathbb{C}_p[[X]]/M$ is equal to c.

Theorem 14. If M is a maximal free ideal, then $I\mathbb{C}_p[[X]]/M$ is isomorphic to \mathbb{C}_p .

Proof. By Lemmas 1 and 2, we obtain that $I\mathbb{C}_p[[X]]/M$ is algebraically closed and of transcendence degree c over \mathbb{Q} . Using a theorem of Steinitz it follows that it is isomorphic to \mathbb{C} . Since $\mathbb{C} \simeq \mathbb{C}_p$ (see [6], p.145), the theorem holds. \square

Acknowledgment. The results of this paper were obtained during my Ph.D. studies at Abdus Salam School of Mathematical Sciences and are also contained in my thesis. I would like to express deep gratitude to Dr. Nicolae Popescu and to my supervisor Dr. Ghiocel Groza whose guidance and support was crucial for the successful completion of this project.

REFERENCES

- [1] Y. Amice, Les nombres p-adiques, Presses Universitaires de France, 1975.
- [2] G. Groza, Construction of integral functions in valued fields, Math. Rep., No. 5-6, 50 (1998), 349-367.
- [3] O. Helmer, Divisibility properties of integral functions, Duke Math. J., No.1, $\bf 6$ (1940), 345-356.
- [4] M. Henriksen, On the ideal structure or the ring of entire functions, Pacific J. Math., 2 (1952), 179-184.
- [5] I. Kaplansky, Commutative Rings, Allyn. Bacon, Boston, 1970.
- [6] A. Robert, A course in p-adic analysis, Springer-Verlag, New York, 2000.