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Abstract

The aim of this work is to propose models based on stochastic differential equations with a good choice for
both diffusion and drift terms to solve an image restoration problem. These proposed models are based on
Barbu and Borkowski stochastic equations, where we exploit the Perona-Malik functions for the drift and
diffusion terms. First, we show the derived model’s well posedness; then we present the related numerical
results. These models give satisfactory experimental results in removing noise, improving and preserving
the image structure compare to other well known approaches, such as [1], [2] and [4].
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1. Introduction

Many techniques have been used for image processing, for example in a transform domain, we have
Fourier analysis [21], [23] and [24], and wavelets [10] and [11], where they contain numerous recent methods
such as block matching 3D (BM3D) [7] and [13]. In addition, several special domain methods among them
total variation [11], [16] and [17], partial differential equations(PDEs) [14],[15], [25], [27] and [26]. Most
of these methods have limitations such as ill-posedness [20] and [18], blurred image, or loss of important
features (edges, contours, .. etc); which make it harder to identify the image details [15]. In the 20th century,
PDEs were very successful in restoring images, especially the Perona-Malik (PM) [20] model, which does
not only remove the noise but also preserves the edges, though it is ill-posed [18]. Recently, a new research
in image processing based on stochastic differential equations (SDEs) [1], [2], [4], [5], [6], [8] and [9], has
been developed since there is a relationship between the SDEs and PDEs [22], leading to better results. The
relationship between SDEs and PDEs is the probabilistic approach of a PDE that allows expressing their
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solutions in the form of the expectation of a certain function of a stochastic process. Furthermore, according
to Itô and Kolmogorov formula [12] and [19], we can move from one to another.

In this work, we first highlight two types of SDEs to image enhancement, one was introduced by Barbu
et al [2], where the authors set the diffusion to 1 and the other by Borkowski et al [4] who neglected the drift
term. Based on these two SDEs, we propose a model, combining drift and diffusion terms from Barbu and
Borkowski SDEs together with PM functions [20]. We start by showing the well-posedness of the derived
models, then we proceed to their discretisations by finite difference schemes. A comparative study leads us
to show how the obtained numerical results are very satisfactory and encouraging, in denoising and contour
preserving.

The paper is structured as follows: Section 2 provides an overview of related work on stochastic dif-
ferential equations. In Section 3, we present the proposed models, exploring various configurations of the
drift and diffusion terms. Section 4 focusses on the description of numerical discretisation techniques and
discusssions of the obtained results. Finally, concluding remarks are presented in Section 5.

2. Recent related work on SDEs

In this section, we present briefly some related results.

2.1. Barbu’s model

Barbu et al in [2] have proposed the following stochastic model
dX(t) = µ(X(t))︸ ︷︷ ︸

drift

dt+ dW (t),

X(0, x, y) = X0(x, y) ∈ R2,

(2.1)

whereX(t) : R2 −→ R2 is the diffusion process, W (t) = λ {ω1(t), ω2(t)}, λ ∈ (0, 1), represents a 2D Brownian
motion in a probability space {Ω, F, P} with the natural filtration (Ft)t≥0. The drift term µ : R2 −→ R2 is
Lipschitzian defined by

µ(X(t)) = −
(
e−α1|X(t)|2 , e−α2|X(t)|2

)
, (2.2)

with α1, α2 ≥ 0, X(t) = {X1(t), X2(t)} represents a random variable, where: |X(t)|2 = X1(t)
2 +X2(t)

2 and
X0(x, y) ∈ R2 is the position of the pixel (x, y) in the initial image.

2.2. Borkowski’s model

Borkowski et al in [4] proposed the following SDE
dX(t) = σ(X(t))︸ ︷︷ ︸

diffusion

dW (t),

X(0, x, y) = X0(x, y) ∈ R2,

(2.3)

where σ(X(t)) is defined as

σ(X(t)) =

 − (Gγ ∗ u0)y(X(t))

|∇(Gγ ∗ u0)(X(t))|
0

(Gγ ∗ u0)x(X(t))

|∇(Gγ ∗ u0)(X(t))|
0

 , (2.4)

with (Gγ ∗ u0)y =
∂(Gγ∗u0)

∂y , (Gγ ∗ u0)x =
∂(Gγ∗u0)

∂x . Here Gγ denotes the Gaussian (smoothing) filter such

that Gγ(x, y) =
1

2πγ2 e
− (x2+y2)

2γ2
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3. Proposed Model 1

Here, we propose to combine Barbu’s drift (2.2) and Borkowski’s diffusion (2.4) to get
dX(t) = µ(X(t))︸ ︷︷ ︸

drift

dt+ σ(X(t))︸ ︷︷ ︸
diffusion

dWt,

X(0, x, y) = X0(x, y) ∈ R2,

(3.1)

where X(t) is the stochastic process and the associated solution is given by

X(t) = X0 +

∫ t

0
µ(X(s))ds+

∫ t

0
σ(X(s))dW (s). (3.2)

The restored image is defined by

u(x, y) = E[u0(XT )] =
1

M

M∑
i=1

u0(X
m
T (βi)), (3.3)

where Xm
T (βi) is the stochastic process’s trajectory approximation of X(t), with m, T and βi denote the

mth iteration, the final time and the random variable, respectively, whereas the number of Monte Carlo
iterations is represented by M and u0 : R2 → R, the noisy image.

3.1. Mathematical analysis

3.1.1. Existence and Uniqueness

In this section, we study the well-posedness of (3.1). We set the following results for the existence and
uniqueness of the associated solution.

Theorem 3.1. (B.Øksendal, [19]) Let t ∈ [0, T ], and {wt}t≥0 be a d-dimensional Brownian motion on
a probability space (Ω, F, P ) with natural filtration {Ft}t≥0. We have the SDE (3.1), where µ and σ are
measurable defined by

µ : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×d′ (where |σ|2 =
∑

|σi,j |2).

If µ and σ satisfy the Lipschitz and linear growth conditions, respectively i.e.

|µ(t,X)− µ(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ M1|X − Y |, (3.4)

t ∈ [0, T ],∀X,Y ∈ Rd

|µ(t,X)|+ |σ(t,X)| ≤ M2(1 + |X|), (3.5)

t ∈ [0, T ],∀X,Y ∈ Rd

for some constant M1 and M2. Let X0 = Y be a random variable independent of the σ−algebra F
(m)
∞ adapted

by {ws}s≤t and verify E
[
|Y |2

]
< ∞. Then (3.1) has a unique solution X(t), where

E

[∫ T

0
|X(t)|2 dt

]
< ∞

and X(t) adapted by the filtration F Y
t .

Note that

• F
(m)
∞ is the σ-algebra generated by the m-dimensional Brownian motion {ws}s≤t.
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• F Y
t is the filtration generated by the initial condition Y and the Brownian motion {ws}s≤t.

Let us adapt this result in the proposed model, i.e. (3.1) together with (2.2) and (2.4).

Theorem 3.2. If functions (2.2) and (2.4) verify (3.4) and (3.5), then there exists a unique solution to
(3.1).

To prove this theorem, we first prove the two following propositions.

Proposition 3.3. Let µ(., .) and σ(., .) defined by (2.2) and (2.4), respectively, be measurable functions on
[0, T ] ×R2, and |.| be an Euclidean norm. Then we have

|µ(t,X)|+ |σ(t,X)| ≤ M1(1 + |X|), (3.6)

with M1 > 0 is the linear growth constant.

Proof. If we use (2.2) and (2.4) for µ and σ , respectively, we get

|µ(t,X)|2 =
(
e−α1|X|2

)2
+
(
e−α2|X|2

)2
= e−2α1|X|2 + e−2α2|X|2 ,

≤ 2α1|X|2 + 2α2|X|2,
= 2(α1 + α2)|X|2,
≤ 4α|X|2, ∀α1, α2 > 0, X ∈ R2, t ∈ [0, T ],

with α = max(α1, α2). Hence

|µ(t,X)| ≤ 2
√
α|X|+ 2

√
α ≤ 2

√
α(1 + |X|). (3.7)

If we put (Gγ ∗ u0) (X) = F (X), we can write

|σ(t,X)|2 =

(
− Fy(X)

|∇F (X)|

)2

+

(
Fx(X)

|∇F (X)|

)2

=
(Fy(X))2

(Fx(X))2 + (Fy(X))2
+

(Fx(X))2

(Fx(X))2 + (Fy(X))2

=
(Fy(X))2 + (Fx(X))2

(Fx(X))2 + (Fy(X))2

= 1.

Hence
|σ(t,X)| ≤ 1 + |X|,∀X ∈ R2. (3.8)

From (3.7) and (3.8) we obtain

|µ(t,X)|+ |σ(t,X)| ≤ 2
√
α(1 + |X|) + (1 + |X|) (3.9)

= (2
√
α+ 1)(1 + |X|) (3.10)

≤ M1(1 + |X|), (3.11)

with M1 = 2
√
α+ 1.

This proves proposition 3.3.

Proposition 3.4. Let µ and σ be defined by (2.2) and (2.4), then

|µ(t,X)− µ(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ M2 |X − Y | , (3.12)

with M2 > 0 is the Lipschitz constant.
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Proof. In the same way we use (2.2) and (2.4) for µ and σ , respectively and get

|µ(t,X)− µ(t, Y )|2 =
(
e−α1|X|2 − e−α1|Y |2

)2
+
(
e−α2|X|2 − e−α2|Y |2

)2
≤ α1|X|2 − α1|Y |2 + α2|X|2 − α2|Y |2

= (α1 + α2)|X|2 − (α1 + α2)|Y |2

= (α1 + α2)(|X|2 − |Y |2)
≤ 4α (|X| − |Y |) (|X|+ |Y |)
≤ 4αK (|X − Y |) ,

with α = max(α1, α2) > 0, and K = |X|+ |Y |.
Hence

|µ(t,X)− µ(t, Y )| ≤ 2
√
αK|X − Y |. (3.13)

|σ(t,X)− σ(t, Y )|2 =

(
− Fy(X)

|∇F (X)|
+

Fy(Y )

|∇F (Y )|

)2

+

(
Fx(X)

|∇F (X)|
− Fx(Y )

|∇F (Y )|

)2

=

(
Fy(X)

|∇F (X)|

)2

+

(
Fy(Y )

|∇F (Y )|

)2

− 2
Fy(X)

|∇F (X)|
.
Fy(Y )

|∇F (Y )|

+

(
Fx(X)

|∇F (X)|

)2

+

(
Fx(Y )

|∇F (Y )|

)2

− 2
Fx(X)

|∇F (X)|
.
Fx(Y )

|∇F (Y )|
≤ (Fy(X))2 + (Fy(Y ))2 + (Fx(X))2 + (Fx(Y ))2

−2 (Fy(X)Fy(Y ))− 2 (Fx(X)Fx(Y ))

≤ (∇F (X))2 + (∇F (Y ))2 − 2 (∇F (X)∇F (Y ))

= (∇F (X)−∇F (Y ))2 . (3.14)

For a given differentiable function F (X) within a convex set, there exists a positive constant L such that
(3.14) can be formulated as

|σ(t,X)− σ(t, Y )| ≤ L|X − Y |, (3.15)

with L > 0 is the Lipschitz constant.
From (3.13) and (3.15) we obtain,

|µ(t,X)− µ(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ 2
√
αK|X − Y |+ L|X − Y |

≤ M2 |X − Y | , (3.16)

with M2 = 2
√
αK + L.

From the two propositions 3.3 and 3.4, we conclude that the proposed model has a unique solution.

3.2. Proposed Model 2

SDEs with Perona-Malik functions.
We choose drift and diffusion terms as follows:

1. We consider (3.1) with PM functions as drift terms, i.e.

µ1(X(t)) =

(
e
−(

|∇X(t)|2

k21
)
, e

−(
|∇X(t)|2

k22
)

)
or (3.17)

µ2(X(t)) =

 1

1 + |∇X(t)|2
k21

,
1

1 + |∇X(t)|2
k22

 , (3.18)

together with the Borkowski’s diffusion term (2.4).
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2. We consider (3.1) with Barbu’s drift (2.2) and PM-functions for diffusion, terms i.e.

σ1(X(t)) =

 −e
−(

|∇(Gγ∗I)y(X(t))|2

k21
)

0

e
−(

|∇(Gγ∗I)x(X(t))|2

k22
)

0

 or (3.19)

σ2(X(t)) =

 − 1

1+
|∇(Gγ∗I)y(X(t))|2

k21

0

1

1+
|∇(Gγ∗I)x(X(t))|2

k22

0

 , (3.20)

with k1, k2 ≻ 0 .
3. We consider (3.1) with (3.17) or (3.18) as drift term and σ = 1.
4. We consider (3.1) with µ = 0 and (3.19) or (3.20) for σ.

3.3. Mathematical analysis

3.3.1. Existence and Uniqueness

In this part, we investigate the well-posedness of the case 1 (i.e. a drift defined by (3.17) with Borkowski’s
diffusion (2.4)).

Theorem 3.5. Assume that all the conditions of Theorem 3.1 hold then (3.1) have a unique solution.

Proposition 3.6. Let µ1 and σ be defined by (3.17) and (2.4), respectively, then

|µ1(t,X)|+ |σ(t,X)| ≤ C1(1 + |X|), C1 > 0. (3.21)

Proof. We have µ and σ defined by (3.17) and (2.4), respectively

|µ1(t,X)|2 =

(
e
−(

|∇X|2

k21
)

)2

+

(
e
−(

|∇X|2

k22
)

)2

≤ 2.

From (3.8), we have |σ(t,X)| = 1.
Hence

|µ1(t,X)|+ |σ(t,X)| ≤
√
2 + 1.

This implies that there exists C1 > 0 which satisfies the following relation

|µ1(t,X)|+ |σ(t,X)| ≤ C1(1 + |X|), C1 > 0. (3.22)

So the condition (3.5) holds.

Proposition 3.7. Let µ1 and σ defined by (3.17) and (2.4), then we have

|µ1(t,X)− µ1(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ C2|X − Y |. (3.23)
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Proof. If µ1 and σ are given by (3.17) and (2.4), respectively, we write

|µ1(t,X)− µ1(t, Y )|2 =

(
e
−(

|∇X|2

k21
)
− e

−(
|∇Y |2

k21
)

)2

+

(
e
−(

|∇X|2

k22
)
− e

−(
|∇Y |2

k22
)

)2

≤

(
e
−(

|∇X|2

k21
)

)2

+

(
e
−(

|∇Y |2

k21
)

)2

+

(
e
−(

|∇X|2

k22
)

)2

+

(
e
−(

|∇Y |2

k22
)

)2

≤ 4,

i.e.
|µ1(t,X)− µ1(t, Y )| ≤ 2.

In the same way we prove that

|µ1(t,X)− µ1(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ C2|X − Y |. (3.24)

This yields that the proposed model (case 1) has a unique solution.

In the same way, we can demonstrate the existence and uniqueness of the solution for the other cases.

3.3.2. Numerical scheme

To discretize (3.1), we use Euler’s numerical scheme and obtain{
Xm

tn+1
(i, j) = Xm

tn(i, j) + ∆t
(
µ(Xm

tn(i, j)) + σ(Xm
tn(i, j))(w

n+1
i,j − wn

i,j)
)
,

Xm
0 (i, j) = X0(i, j), i = 1,M, j = 1, N,

(3.25)

where tn = n∆t, ∆t = T
k , k = 0, 1, ..,m with k the number of t−iterations, and

wn
i,j = w(n∆t, xi, yj),

with xi = i∆x and yj = j∆y.
The drift and diffusion terms are approximated by

µ(Xm
tn(i, j)) =


e
−
(

(Xm
n,i+1,j−Xm

n,i−1,j)
2+(Xm

n,i,j+1−Xm
n,i,j−1)

2

4k2

)

or
1

1+

(
(Xm

n,i+1,j
−Xm

n,i−1,j
)2+(Xm

n,i,j+1
−Xm

n,i,j−1
)2

4k2

)

 , (3.26)

and

σ(Xm
tn(i, j)) =


−

(uni,j+1 + uni,j−1) ∗ 0.5√(
un
i+1,j+un

i−1,j)

2

)2
+
(
un
i,j+1+un

i,j−1

2

)2 0

(uni+1,j + uni−1,j) ∗ 0.5√(
un
i+1,j+un

i−1,j)

2

)2
+
(
un
i,j+1+un

i,j−1

2

)2 0


, (3.27)

here, the space steps ∆x = ∆y = 1, with{
(Gγ ∗ u0)y = uy = (u(i, j + 1) + u(i, j − 1)) ∗ 0.5,
(Gγ ∗ u0)x = ux = (u(i+ 1, j) + u(i− 1, j)) ∗ 0.5.
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3.4. Stability analysis

In this subsection, we present a numerical stability analysis for the numerical scheme (3.25).

Definition 3.8. Scheme (3.25) said to be stable, if there exists a constant C such that

|Xm
tn+1

(i, j)−Xm
tn(i, j)| ≤ C∆t. (3.28)

Let us find the stability condition for (3.25), i.e. find C in (3.28) explicitly.

Proposition 3.9. If hypotheses (3.26) and (3.27) satisfy the properties of µ and σ, respectively, then

|Xm
tn+1

(i, j)−Xm
tn(i, j)| ≤ ∆t

(√
2 + εn(i, j)

)
, (3.29)

with εn(i, j) > 0.

Proof. To prove (3.28), we write

Xm
tn+1

(i, j)−Xm
tn(i, j) = ∆t

[
µ(Xm

tn(i, j)) + σ(Xm
tn(i, j)).(w

n+1
i,j − wn

i,j)
]
, (3.30)

we apply the Euclidean norm |.| on both sides of (3.30), to obtain

|Xm
tn+1

(i, j)−Xm
tn(i, j)| = |∆t

[
µ(Xm

tn(i, j)) + σ(Xm
tn(i, j))(w

n+1
i,j − wn

i,j)|
]

≤ |∆t|
[
|µ(Xm

tn(i, j))|+ |σ(Xm
tn(i, j))|

]
εn, (3.31)

where
εn = εn(i, j) = |(wn+1

i,j − wn
i,j)|.

If we replace µ and σ by (3.26) and (3.27), respectively, we get

|µ(Xm
tn(i, j))| ≤

√
2, (3.32)

and

|σ(Xm
tn(i, j))| = 1. (3.33)

By substituting (3.32) and (3.33) in (3.31), we obtain

|Xm
tn+1

(i, j)−Xm
tn(i, j)| ≤ ∆t

(√
2 + εn(i, j)

)
≤ C∆t ≤ 1, C > 0,∆t > 0,

leading to the following stability condition

∆t ≤ 1

C
, C =

√
2 + εn(i, j) > 0, (3.34)

for an appropriate choice of ∆t to solve (3.25).

The other cases are proved in the same way.
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4. Numerical Results and Comments

This section presents the numerical results and related comments. We consider a noisy image and apply
the SDE models described in the previous sections, using different values for the variance γ.
First experimentations: we explored the following cases for
γ = 0.01 and 0.1

1. PM-Borkowski: Borkowski’s diffusion with PM-functions as drift term.

2. Barbu-PM: PM-functions as diffusion term and Barbu’s drift term.

3. Barbu-Borkowski: Barbu’s drift term and Borkowski’s diffusion

Results are resumed in Table 1.
Second experimentations: we explored the following case for
γ = 0.01

• C1 (Case 1): Barbu’s drift with Borkowski’s diffusion in (3.1).

• C2 (Case 2): PM-functions as a diffusion term with Barbu’s drift.

• C3 (Case 3): Borkowski’s diffusion with PM-functions as a drift term.

• C4 (Case 4): PM-functions as a diffusion term and drift term = 0.

• C5 (Case 5): PM-functions as a drift term with diffusion = 1.

• Kolmogorov PDE: Barbu’s associated PDE [2] .

The obtained results are resumed in Table 2 & 3. and Figure 1 & 2.

Variance Model SSIM PSNR

0.1

Barbu 0.6257 23.6841
Borkowski 0.5302 22.9435

PM-Borkowski 0.7847 23.8949
Barbu-Borkowski 0.5754 23.0245

Barbu-PM 0.8014 24.5376

0.01

Barbu 0.8755 30.6092
Borkowski 0.8557 30.2688

PM-Borkowski 0.9780 35.7153
Barbu-Borkowski 0.9051 32.1237

Barbu-PM 0.9871 38.6142

Table 1: PSNR and SSIM values for different values of the variance with ∆t = 0.1, T = 1.

Models Barbu Borkowski C1 C2 (σ1) C2 (σ2) C3 (µ1)

PSNR 30.6123 30.2688 32.2114 38.6125 38.5412 35.7283

SSIM 0.8746 0.8625 0.9022 0.9875 0.9820 0.9686

Models C3 (µ2) C4 (σ1) C4 (σ2) C5 (µ1) C5 (µ2) PDE

PSNR 35.6909 29.2331 29.2691 29.8776 29.9572 23.0411

SSIM 0.9691 0.8488 0.8525 0.8688 0.8649 0.6511

Table 2: PSNR and SSIM values using different approaches for γ = 0.01, ∆t = 0.1, T = 1, M = 12.
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Models PM 1 PM 2 Barbu Borkowski C1 C2 (σ1) C2 (σ2)

PSNR 27.4508 27.6078 30.6202 30.1778 32.1417 38.5159 38.6181

SSIM 0.8580 0.8608 0.8743 0.8735 0.9854 0.9869 0.9779

Models C3 (µ1) C3 (µ2) C4 (σ1) C4 (σ2) C5 (µ1) C5 (µ2) PDE

PSNR 35.7369 35.7744 29.4182 29.2514 29.8761 29.7959 23.1026

SSIM 0.8685 0.8695 0.8520 0.8486 0.8675 0.8635 0.6562

Table 3: PSNR and SSIM values using different approaches for γ = 0.01, ∆t = 0.5, T = 10, M = 12

4.1. Comments

In this section, we compare the obtained numerical results. We applied the proposed model (3.1) with
different expressions for diffusion σ and drift µ terms. The discretisation parameters used for our numerical
implementations are, stopping time T = 1 & 10, step time ∆t = 0.1 & 0.5 , number of iterations M = 12,
α1 = 2, α2 = 4, k1 = 20 and k2 = 40.

As illustrated in Tables 1., 2. & 3., and Figure 1. & 2., we note that the proposed models ((3.1) together
with (3.17) or (3.18), (3.19) or (3.20)) exhibit strong performance in both noise removal and the preservation
of essential image features (such as edges, texture, curvature, etc..), compared to the combined Barbu-
Borkowski SDE (Borkowski’s diffusion and Barbu’s drift terms). The two cases are largely comparable;
however, the results obtained in the second case where Barbu’s drift and Perona-Malik functions are used
for the drift and diffusion terms, respectively offer a modest enhancement over those of the first case.
Table 1., 2 & 3. and Figure 1. & 2. give the numerical findings in terms of the Peak Signal to Noise Ratio
(PSNR) and Structure Similarity Index Measure (SSIM) on a greyscale picture that has been modified by
Gaussian white noise with a mean of zero and variance of γ = 0.1 & 0.01.

We have studied a comparison of the 5 cases for (3.1), and conclude that: - All SDEs cases give better
results compared to PDEs based models.

- Case 2 (σ1 & σ2) provides the best performance, demonstrating both strong numerical accuracy and
excellent structural preservation compared to the other models.

- Case 1 achieves competitive results, outperforming Barbu’s and Borkowski’s models, although its
performance remains below that of case 2.

- Case 3 (µ1 & µ2) yields improved results over Cases 1, 4, and 5, highlighting the suitability of the
chosen drift and diffusion terms.

- Cases 4 & 5, are explored in a such way that PM-functions are used either for the diffusion or drift terms
together with the Barbu’s drift (2.1) and Borkowski’s diffusion (2.3). In order to extract the inconveniences
of these models when neglecting one of the terms, we note that we get better values for PSNR and SSIM.

We have to point out that:

1- if we investigate numerically for larger time T , we obtain the same qualitative results but with more
t-iterations, see results in Table 2. & 3.

2- The number of Monte Carlo iterations is related to the trajectories computation not the solution.

3- Other numerical experimentations have been carried out on a medical image and results are shown in
Figure 2.

5. Conclusion

In this work, we proposed a model that uses stochastic processes to restore images. The use of both
terms (drift and diffusion) in SDE (3.1) aims to eliminate noise without sacrificing essential features or
introducing false ones. The diffusion and drift terms have been adapted to better reflect the complexity of
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Figure 1: Restored image results for the different cases with ∆t = 0.1, γ = 0.01, T = 1, M = 12.

the geometric structures. Based on the numerical results obtained, we conclude that, in comparison to the
combined Barbu-Borkowski SDE, our proposed models are generally more qualitatively efficient. This can
be observed both visually, as in Figure 1 and 2, and quantitatively through the PSNR and SSIM metrics, as
shown in Tables 1, 2 and 3. It is worth noting that the proposed models are also more intuitively realistic,
producing encouraging numerical results in terms of noise removal and feature preservation when compared
to PDE-based models. Furthermore, these models can be very promising for image inpainting [3] and [18].
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