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Abstract

This paper is concerned with deriving a new system of orthogonal polynomials whose inflection points
coincide with their interior roots, primitives of Legendre polynomials,they appear as solutions of linear
differential equation. We study orthogonality, and extremal properties and minimization and Fourier de-
velopment involving of integral Legendre polynomials. There are some important properties and certain
identities and extremal properties involving both associated integral Legendre polynomials. We have used
mathematical induction to establish the relation between them. Also, we present some results for these or-
thogonal polynomials by using some properties of Jacobi polynomials. General expressions are found for the
kernels polynomials associated to integral Legendre polynomials. These kernel polynomials can be used to
describe the approximation of continuous functions by integral Legendre polynomials. They can be used for
the representation of the n-th partial sum of the Fourier series expansion of integral Legendre polynomials
in the form of an integral. We conclude the paper with some results on finite Fourier series expansion by
using polynomials integrals of the kernels polynomials.
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1. Mathematical basis

Associated orthogonal polynomials are a family of polynomials derived from a given set of orthogonal
Legendre polynomials by integrating polynomials or shifting the indices in the recurrence coefficients. Specif-
ically, these associated polynomials are also orthogonal, but with respect to a possibly different measure.
Orthogonal polynomials are of considerable importance properties in many branches of science and engi-
neering since they represent an indispensable analytical tool for solving various extremal and minimization
and approximation problems and Fourier developments [2, 3 4], Bl 6, [7, 9], 12] 13].
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In this paper we study a system of orthogonal polynomials {Qn}n:2737._,with respect to the measure

p(z) = T2 € [—1,1], that we call integral of Legendre polynomials, with the first and last roots at
—x
x = +1, given by
Qn(l’):(l—ﬂf2)qn_2($) ) n:2737”"

where ¢, () , n = 0,1,2,--- is a polynomial of degree n.Using these orthogonal polynomials we study a
system of orthogonal polynomials {gn},_g ... With respect to the measure w(z) = 1 — 22,z € [-1,1]
associated to Legendre polynomials. The paper will be structured as follows : in section [1} we present some
useful terminology as well as some necessary definitions regarding integral Legendre polynomials. In section
we present some properties of orthogonal polynomials {¢,(z)},,, second, we give some necessary definitions
and basic properties of two Fourier polynomials approximability for the polynomials {gy (x)},,_y 1. and
for {Qn}n:2,3,-~ best solutions for two associated extremal problems in respect to orthogonal poiy}fomials
{Qn}n:2,37~-~ and {qn}n=0,1,2,----

These orthogonal polynomials can be used to describe the approximation of continuous functions by
integral Legendre polynomials and orthogonal polynomials {Qn}n:0,1,2,-... by finite Fourier series and how
to compute efficiently such approximations. We show a connection between these orthogonal polynomials
and two special cases of Jacobi polynomials, we derive structures relations between @,, and P,E“"B ) (x) , for
a = 8 = —1 we derive also some structures relations between ¢, and pieP) (), for a = 8 = 1.All of them
may be transferred into formulas for integral Legendre polynomials, we give some necessary definitions and
basic extremal and approximations properties of the g-kernel orthogonal polynomials,where K, (z,y) is the
Christoffel-Darboux formula for the polynomials {g, (z)}, n=0,1,2,---

K (2,y) = zn: k() qr(y)

2
pr [ o

{K,, (z,A) }n=0,1,2,... are orthogonal polynomials on the interval [—1,1] , with respect to the weight function
z+— (. — A w(x),where —1 < XA < 1.

We conclude the paper with some results concerning polynomials integrals of the g-kernels polynomials.
In addition, some comparisons with some other methods are made.

Let {L,},n=0,1,2,--- be the Legendre polynomials. They satisfies the orthogonality relation ,

1
/Ln(x)xkd:czo , k=0,1,2,--,n—1,
—1

and the differential equation
(1—22) L (@) +n(n+1)Ly(z) =0 (1.1)

Explicit formula for L, (x) is given as follows, [II, 8, 14}, [16], [17]

K k
1 1R (2n—2k)
Lu(@) = g ;0 k!((n ! k(:)! (n— 2)k)!”“" . n22 (12)

they are normalized so that L, (1) =1 for all n.
An immediate consequence of (|1.1)) is the following second expansion of @,, , we have

1
Qn($):—/Ln1(t)dt , n=23,---.
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We shall consider some and different class of Jacobi polynomials denoted by P,(la”B ) () , orthogonal with
respect to the Jacobi weight function w®” (z) = (1 — 2)* (1 + z)” over I = [—1,1] [1, 5, 8, 1T, 14} [16, [17],
namely

/1 P (2) P (@) w™ (@) da = bn [P @) (1.3)
21

where 0,5, is the Kronecker symbol, where

2 gatf+l T nr 1
[P @) = (nta+DT(n+p+1) (1.4)
2n+a+p8+1 nll'(n+a+pB+1)
Péa’ﬁ ) are normalized according to
P@A(1y=crte | n=0,1,2,3,- (1.5)

where C"*? is a binomial coefficient. The weight function w®? belongs to L' ([~1,1]) , if and only if
a, > —1 (to be assumed throughout this section). i-e

1
/wo"ﬁ (x)dx < 0o
“1

The coefficient of term 2" in P\ (x) is given by, [16] :

pos_ DCn+a+B+1) 1.6
"D (n+a+B+1) '

We shall need the following important derivative relation of Jacobi polynomials, [16] [17] :

0 1 o
SoP (@) = S (n+a+ B+ 1) R (@), (1.7)
and 5
(14 a) 5 PP (@) = (n+ B) PP () = BPI) (a).

Applying this formula recursively yields, for £k =0,1,--- ,n.

ok .
WP;L P () =

1T(n+k+a+p+ 1)P(a+k,,8+k)

2 T(n+a+pB+1) "k (z) (1.8)

The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville operator, [8, 9, 14 16, [17]
defined by

0? 0
<(x2 —1) 5z Hla=B+(a+B+2)2) 8:1:) PP (1) = N>B) plaB) () (1.9)
where
A —p(n4+a+pB+1) (1.10)
i (@,8) (,8)
PkOh (x)Pka’ (y)

K, (z,y) = Z

- (1.11)
=R

n
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The sequence (K, (z,y)),—, satisfies the Christoffel-Darboux formula, [5] 7, 9], 1T}, 14}, 16|, 17]

n=0

i1 PSR - P @) P @)

EP HRSC“’B’ H2 r—y

Kn(x7y): ) :L';éy

n+1

Moreover {K,, (z,A)}n=01.2... are orthogonal with respect to (x — A\) w®? (x), where —1 < A < 1.
A remarkable property of { K, (x,y)}n=0,1,2,... is stated in the following property. K, has the reproducing
kernel property [1I, 5, [7, 9] 111, 14, 16l 17] :

for any continuous function f on the interval [—1,1].

1.1. Approzimability of Jacobi polynomials
Theorem 1.1. Denote by I1,, the set of all algebraic polynomials of degree < n, and

1

L? ([—1,1},71)0"5) = f : /(f (2))? w? () da < o

-1

For any f € L? ([—1, 1], wa’ﬁ) and n € mathbbN, there exists a unique S, € Il,,, such that

I = Sl = Ing {11 = SulP , Sw € T} (1.12)
where .
Si(x) =Y P (@) (1.13)
k=0
with

fl £ @) PP () weB (1) dt

—1
(@8]
|72

Proof. In the Jacobi case,[T], 5, @, 11, 14, 16, 17, 10]. In particular, we denote the best approximation
polynomial S} by pr(f) , which is the Lfﬂaﬂ—orthogonal projection of f , and is characterized by the
projection theorem

r = (1.14)

1 = Sall = Inf {Ilf = SalP , Su €T} (1.15)
Equivalently, the Li}a, s-orthogonal projection can be defined by :
<f - S’Z ’ 90>w047ﬁ =0 ) VSO e ll,

.€., )
/ (F (1) = S5(0) o () w™ (tydt =0, Ve,
21

So S is the first n + 1-term truncation of the Fourier series:

o

f@) =Y aP™ (2)

k=0
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Theorem 1.2. [16]The Jacobi polynomial P,gaﬂ’ﬂ) is a linear combination of P]go"ﬁ), k=0,1,2,--- ,n.

POFLB) (1) = L(n+f+1) )i(2k+a+5+1)

F(k-{-a—l—ﬁ—l—l)P(aﬁ)
F'n+a+p8+2 —

L'(k+p+1) ~F

(z). (1.16)

Proof. In the Jacobi case, the kernel polynomial at = = 1, see ([1.11)), takes the form

" P ()PP (1)

Ky (2,1) =)

2
=R

The Christoffel-Darboux formula, (1.11)
g1 PP @P () - PP P (@)

Ky (z,1) = szl HP}lO"’B)HQ r—1

By lemma [16, 7], {K,, (z,1)}, are orthogonal with respect to w®*1# (x). By the uniqueness of orthogonal
polynomials, [I7] K, (x,1) must be proportional to PT(LO‘H’B) (x) i-e.

P @) B () s
Ky (z,1) =) —* (aﬂ’; " = a2P PP (2) (1.17)

n n

The proportionality constant a®” is determined by comparing the leading coefficients of both sides of (1.17)
and working out the constants, namely,

ka75
"6 2PT(Laﬂ)(1) _ ag+1,ﬁkg++l,ﬁ
2]
we find that
QOtLB ki pled)| ™ pls) ()
n - ka++175 n n
n

Using properties ([1.4)),(1.5) and(1.6]), yields

F'n+a+p8+1)
Fa+1)T(n+B+1)

Inserting this constant into ((1.17)),we obtain ([1.16|) directly from ([1.5)) and({1.4). This ends the proof.
Remark 1.3. Thanks to the property

a0 — gma=i-1

P (=a) = (-1)" P @)

it follows from ((1.16|) that

n

()@ +a+p84+1)
k=0

F'n+p+1)

F(k‘-l-a-l-ﬁ—l—l)P(awg)
F'n+a+p8+2)

L'(k+a+1) “F

PPt () = () (1.18)

O

There are many important properties for Legendre and Jacobi polynomials, [T, [I7]. All of them may be
transferred into formulas for Integral of Legendre polynomials.
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2. Some families of orthogonal polynomials associated with Legendre polynomials

The Legendre polynomial,L,, (z) satisfies, [l [5, [7, 9 111 [14] 16l [I7] the orthogonality relation:
1
/Ln(x):vkd:v:0, k=0,1,2,--- ,n— 1.
21

and
1

—1

The Legendre polynomial L,, satisfies the differential equation, |1} [5l [7, O, 11, 15l 14} 16, 17] :

(1—=2?) L, (z)) = —n(n+1) Ly (2) (2.2)

The three-term recurrence relation for the Legendre polynomials reads, [T} [5 [7, 1T} 15 14, 16, [17]
Loy(x)=1, Ly (z) ==,
and
(n+1)Lpt1 (x) = 2n+1)xL, (z) —nlp—1(x) n=12,3,---
We also derive that [1, 17
L (£1) = (£1)" (2.3)

in the same way :

L (£1) == ()" 'n(n+1) (2.4)

N | =

2.1. Integral of Legendre polynomials

We restricted our attention to a polynomial @, (z) with the first and last roots at = +1 ,given by

Qn(z)= (2 =1)gna(z), n>2 (2.5)

and satisfies the differential equation:

(17x2) ") +nn—1)Q,(x) =0

Straightforwardly,
Q;l ((IZ) = Lp— ((IZ) and QITIL (x> = ;171 ((13) ) n =2, (26)
and
Qn(x1)=0, n>2 (2.7)
also we have,
Q. (1)=1,and Q' (-1)= (1" | n>2. (2.8)
Theorem 2.1. If
1
Qn (x) = _/Lnl (t)dt , -1<z<1 (2.9)

T

Integral Legendre polynomials are particular solutions of the differential equation

(1-2*)Qn(z)+n(n—1)Q,(z) =0, n>2 (2.10)
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therefore,
Qn (z) = %P};lv—l) (z) , —-1<z<1 (2.11)
The functions Qyn () and Qun, (x) (n # m) are orthogonal with respect to the weight function
1
1
/de_o , (n#m), nm=12,-- (2.12)
Z1
and .
2
n = d = , = 27 PO 21
1@nlly /1—932 o n(n—1)12n—1) " 3 (2.13)
-1

Since w(x) is not continuous on [—1,1], but because @y (—1) =0 Qn (+1) =0 , all integrals (2.12)),(2.13)

are proper.

Proof. Thanks to,(2.9),(2.2)

1

(1- x2) L (@) =-n(n-1) /Lnl (z) dz (2.14)

T

Inserting (2.6)) into (2.14)) ,we obtain (2.10]).Using explicit formula for L,_; (z) in (1.2) and (2.9)) we obtain
n—2

—1)2 (n—3)!!

X0 (215)

nl!
Hence, comparing this equality with (1.9 and (1.10) ,we have for « = § = —1,
(1—=2*)y" +n(n-1)y=0

The bounded solution of this equation is the Jacobi polynomial P7(l_1’_1) (x).hence, comparing this equal-

ity with (6) we have, pitY () = M\@n (x).The Rodrigues’ formula for the Jacobi polynomials is stated
below, [16], page 72 ,

(1—2?)* Pl (z) = (

If « = 8 = —1, it becomes

(1- x2)*1 PELD () = (-1)" [(1 - $2)n71] (n)

2nn!

Wishing to find pihY (0), we determine the coefficient of z" in the binomial (z* — 1)”71, then evaluate
(=17 (n— 1)
(71771) _ - 2 n — ..
En (0)= 2n!!

The proportionality constant ), is determined by comparing the leading coeflicients of both sides of @,, and
Pé_l’_l) working out the constants, namely,

n—1
2

P (0) = Qn (0)
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Hence,
Qur) = 2P ()
This ends the proof of .The Jacobi polynomials {P}fl’fl)}n are orthogonal with respect to the
weight function w (z) = ﬁ,and
2 n—1
[P @ =5
Thus proprietes,,and are established.Which confirms the desired result. O

Using integral Legendre polynomials ,we study a system of orthogonal polynomials {qn}n:(),l’z’,_,with
respect to the measure w (z) = 1 — 2%, x € [~1,1] associated to Legendre polynomials. We present some
useful terminology as well as some necessary definitions regarding these associated Legendre polynomials, we
give some necessary definitions and basic properties of Fourier polynomials approximability for the polyno-
mials {gn (2)},,_¢1... General expressions are found for the g-kernel orthogonal polynomials associated to
Legendre polynorhials. These kernel polynomials can be used to describe the approximation of continuous
functions by {gn (%)},,_¢14..- They can be used for the representation of the n-th partial sum of the Fourier
series expansion of integ%éf Legendre polynomials in the form of integrals.

2.2. {an},—01,2,...orthogonal polynomial

In fact :
Qn+2(ac):(1—:v2)qn(:n), -1<z<1, n=1,2,---
Using ([2.10) we obtain,
Qp () = —n(n—1) g2 (2) (2.16)

Proposition 2.2. The polynomial gy, (z) of degree n satisfies the differential equation

(1- 1'2) qr (z) —4zq, (x) +n(n+3) g, (x) =0, n>0 (2.17)
therefore
1
- _ (1,1) — .
qn () S+ 1) PV (), n=0,1,2,3, (2.18)

The functions gy (x) and g () (n # m) are orthogonal with respect to the weight function
w(z) =1—2a22. Then

1
/qn(x)qm(m) (1-2%)dr=0 ,(n#m) n,m=0,1,2,--- (2.19)
“1
and
/ 2
2 _ _ —
Jan (DI, = / B t= e -0 (2.20)

Proof. Differentiating two times the resulting equality (2.5)) we derive,
Q2 (2) = 24 (¢ ) +4zqy (z ) + (¢* = 1) ¢ ()

If we substitute the formula (2.5)) into the equation (2.10]), we determine that the polynomial ¢, (x) of degree
n satisfies the linear differential equation :

(1 —27) g () — 4zq, (x) = —n (n + 3) gn (2)
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Hence, comparing this g-linear differential equation with (1.9)and (1.10f) , we have for « = 8 =1,
(1—2)y" —4zy' +n(n+3)y =0

The bounded solution of this equation is the Jacobi polynomial PT(LM) (x).hence, comparing this equality
with (2.17)) we have, pit (x) = pnQn (z).The proportionality constant p, is determined by comparing the
the two specials values p{tY (1) and gy, (1) .The normalization of Jacobi polynomials is(L.5]) ,PS’” (1) =
n+ 1. Since g, (1) = —% , we have:

P (2) = —2(n+ 1) g, (x)

Naturally, the Jacobi polynomials {R(ll’l)} are orthogonal with respect to the weight function w (z) =

7

1 — 22, over I = [~1,1], according with (T.3)),(T.4]) we obtain,

7 2 8(n+1)
Py (m)Hw " (2n+3)(n+2)

According with (2.18]), we have

4mLHﬂme= 2

llgn ()13, = n w (m+1)(n+2)(2n+3)

Thus proprieties, (2.19)),and (2.20)) are established.which confirms the desired result.This ends the proof.
O

We state below two useful formulas , we can express P} in terms of p}, ,the two Fourier polynomials bests
solutions of above extremal problems, are approximability of {g¢,}, orthogonal polynomials,and integral
Legendre polynomials {Q,} where the expansion of Fourier coefficients are known as the connection
coefficients between them .

n

Theorem 2.3. Denote by I1,, the set of all algebraic polynomials of degree < n. For any f € L* ([~1,1],w (z))
and f (1) = f(—=1) =0.Let op,wp,Vn, denote the extremal constants satisfies,

on = IIf = il = Inf LI = palll s oo € T} (2.21)
and
wn = |IF = Byl2 = Inf {If = P2, Po €T} (2.22)
and ) )
o= | =T = g { |1 = Tl T € 0 | (2.23)
there exists a unique three approrimatings Fourier polynomials pl, Pr, T (z) € I, such that :
n
Py (@) = crqr() (2.24)
k=0
and .
Py () =) CkQx(x) (2.25)
k=2
and

T (@) = 3 AyLi(a) (2.26)
k=2
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We have,
1
1 2)(2
. (k + )(kz ) (2k + 3) /f(t)Qm(t)dt’ k=012, (2.27)
-1
and 1
—1)(2k -1
Oy = k(k )2( K )/f(t)qk_z(t)dt k=234, (2.28)
-1
therefore,
1
1) (2 1
A, = k(k+ )2( k+ )/f(t)Qk—l ) dt k=1,2,3- (2.29)
-1
and n
2 k
- 5 2.30
o = Il + ];)(k+l)(k+2)(2k+3) (2:30)
also
o= 72423 (231)
n P ek (k= 1) (2k— 1) '
and 1
_ 1112 K CI?
=+ 23 ek 2
k=2
Proof. Since
1
J f @) aqr () w(t)dt
1
llawl
Then,
E+1)(k+2)(2k+3
o = BHDEL 2 )/f(t)qk(t)w(t)dt
~1
O

Using ([2.5)), we obtain:

(k+1)(E+2)(

Cl —

1
2k+3) / F () Qs (8) dt
21

2
Since .
0 Qk (tgdt
oo 1-t
1Qull®

which, together with (2.13)), leads to

1

/ F () quos (1) dt

-1

k(k— 1) (2k — 1)

Cl, = 5
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11

Using (2.13)),(2.22)and (2.20)), (2.21)), we obtain :

oy = ||f||w+2k§:% (k+1) (k+2) (2k + 3)

On the other hand,

Ve
Wy = Hpr+2Zk(k_1><2k—1>
k=2

Since,
Ty (x) =Y ApLy(x)
k=2
we have .
2% +1
A= 200 [ @ L

-1

Then we integrate by parts this series termwise from x to 1 , we obtain (use Ly (1) =1,k =0,1,2...) ,

1
=201 (f(l)Lku) - [rw i dt)

-1

i-e,

1
=201 (f(l) - [ 1@k dt)
1

According to the property (2.6) (2.10|), we obtain

2k +1 t
a2 =k o2
21
Then .
k(k+1)(2k+1 t
1
i-e,
1
k(k+1)(2k+1
A = ( )2( )/f(t) qr—1 (t) dt
~1
Because . )
2 Ak
S ) i =
k=1
According to the property (2.1),(2.23), we obtain
n+1
Ci

In = Hf’H2+2Z 2%k + 1
k=2
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where :
1
2 2
1717 = [ (¢ ©) e,
Z1
Which confirms the desired result.This ends the proof.
Corollary 2.4. Fourier polynomials p},, Pr, T (x) ,verifies the the following estimations
(2k + )N i
+
< (k+1)(k+2)(2k+3) —— t)| dt 2.33
1} (@) kZ 1) (k+2) (26 +3) Gy [ 170 (233)
= 21
and
. - (2k — 3)!
P @) < Yok (k=) 2k - 1) S / O]t (2.34)
k=2
Also we have .
* 1 .
75 @) < 1 >k 1 @+ 1) [ 17 O]de (23)
k=2 1
However, if f |f (t)|dt =1 then we have
- 2k + )N
* < kE+1)(k+2)(2k —_— 2.
P () £ 3 (4 1 (4 D) 2h+9) (g (236)
and
\ S (2k — 3)!
Py ()| Sgk(k—l) (2745—1)(27)” (2.37)
Also we have
I ( )|<lzn:k;(k;+1)(2k+1) (2.38)
n (@) <7 .
k=2
In the same way
n—1
Py (x) = Cry1Li(z) (2.39)
k=1
and
n—2
P (x) =~ ) (k+1)(k+2)Criagy (v) (2.40)
k=0
Therefore
n—1 2
2C
P (2)||" = bl 2.41
Iy @l = 3 5 240
and
. 2 — (k+1)(k+2
g ey DI AL (242)

2k +3
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Proof. Using the representation of the functions Qp, qr, L , we can show that for —1 < z < 1 the following
estimations hold:

Qk ()] §4W, k=23,
and 1
@) <5 k=012
and

|Li (x)| <1, k=0,1,2,---
According to (2.27),(2.28)),(2.29)) we obtain the following estimations

1

2k + 1)!
pE (x |<kZ:0 (k+1) (k+2)(2k+3)w_/l|f(t)]dt

and
- (2k
Pl < Y kk-nee- 1 CoE /|f )|t

and
1

75 @) < {3k D @+ 1) [ 17 Olde

k=2 -1

Let us differentiate the two sides of equation (2.25)) , we get

Py (x Z Cry1Lp(

and differentiating the two sides of (2.25) two times ,with according to (2.16)) we get

P (z Z (k+1) (k +2) Cryaqr (z)
k=0

Which confirms the desired results.This ends the proof. O

2.8. q-Kernel polynomials and extremum properties
The n-th g-kernel is given in [I4} [16], 17, 10] by

Z k(& (2.43)

=0 IquII

The sequence (K, (z,y)),—, satisfies the Christoffel-Darboux formula [14}, 16} 17, [10]

kn 1 qni1(@)an(y) — dns1(y)an(@) v Ay (2.44)

K T,Y) = )
n (@) Fnt1 [|gnl)?, Ty

where k,, is the coefficient of 2™ in ¢,(x). Since,

I'(2n+3)

ho = —
27+l (n+ 1) (n 4+ 3)
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Hence, we have
_ 2.45
kn+1 2n + 3 ( )

For x = y one has

1
ot gl
The sequence of kernel polynomials (K, (z,))),—, , A € [—1,1] is fixed real constant ( see in [14] 16, 17, 10]
), are orthogonal polynomials with respect to the measure (z — A w (z), z € [—1, 1].

If

K (2, 7) = (@n41(2)an (@) = gn1(2)q, () -

Ly (z,y) :iL@)Q’“(t) n=1,2,---

= llex® R
and .
Lp(x)Li(t
Mn(%y):ZﬁL)”Q()’ n=12,---
k

k=0
For the representation of the three approximatings Fourier polynomials p), Py, T (z) in the form of inte-

grals,because :
1

(k+1) (k +2) (2k + 3)

cp = f®) g t)w(t)dt, k=0,1,2,---,
s
hence L
po@) = [y EEEDEED ) ) 1) i
) k=0
i-e .
P (z) = / £ (8) Ko (2, 1) w(t)dt
41
and .
i@ = [ 10 La ) 15
1
also

7 (@) = [ £ M, (1) at
-1
Theorem 2.5. 1) {K,, (z,\)}n=012,.. are orthogonal polynomials on the interval [—1, 1], with respect to the
weight function © — (x — \)w (z), where —1 < X\ < 1.
2) Denote by I1,, the set of all algebraic polynomials of degree < m. Let X be an arbitrary rel constant,
G () is an arbitrary real polynomial 11, normalised by the condition

1
/ (G (x)*w (z)dz =1 (2.46)
-1

The mazimum of (G (X))?is given by the kernel plynomials {K, (z, M}n=1a... as follows
K, (z,\)

VE, (W)

G(x)=¢ le] =1, (2.47)

The mazimum itself is K, (A, A).
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Proof. Now we employ the Christoffel-Darboux formula( see in [17, [16, 10, 14]), then the polynomials
Ro(z), Ri(x), R3(x),- -+, Ry(x),- -+ where

_ v 1 (@) (A) = g1 (V) gn ()
R, (CC) =C, as T —\ + >

r#X (n=0,1,2,--+)

are orthogonal on the same segment [—1,1] in respect of the weight function  — (z — A\) w (), because

ko1 gni1(#)gn(N) = gni1(Ngn (@)

Ky (z, = ) A
LR o lgnlls, r=A v
kn 1
hence, C,, = TW It follows that {K,, (z,A)}n=0,1,2,.. are orthogonal polynomials on the interval
n+1 ||qn w

[—1, 1], with respect to the weight function  — (z — A) w (z),where —1 < XA < 1.
If we write, G () = Gogo(z) + G1q1(z) + - - - + Gnan(z), condition (2.46]) becomes

Go+Gi+-+Gr=1 (2.48)
By Cauchy’s inequality it follows that,
n n
(GAN*< DGR ai(N) = Kn (AN
k=0 k=0
The later bound is attained for Gy = pgqr(M\),k = 0,1,2,--- ;n. where u is determined according to the
condition, ([2.48])
n
P2y G =1
k=0
Thus we get
B +1
M R o
Which confirms the desired results. This evidently completes the proof of Theorem. O

Proposition 2.6. If (331/)1/:0,1,2,...,71 denote the zeros of qn(x), then we have

(iE — IL‘Z,)2 K, (1'1/, xl/)

/1 (Qn(x))Z v ($) dr = qg(l',,)
-1

Proof. The sequence (K, (x,y)),- satisfies the Christoffel-Darboux formula( see in [14} 16}, [I'7 10])

kn 1 Qn—l-l(xu)Qn(x)
Fnt s, =2

K, (v,z,) = —

Hence

2
k
qn(x) _ ||qTLHw n+1 Kn (.fL',fI,'l,)

@) (€ =) q()gnri () Fn

1
{(W)zwumx

it follows that,
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g2 k 2

qn |y 1 )

N (Q%(ﬂfu)qnﬂ(xy) kn, > /Kn (xa xu) w (.CU) dx
—1

A remarkable property of {K,, (z,y)}, is stated in the following property. K, has the reproducing kernel
property ( see in [14], 16, 17, [10]) :

1

K, (zy,x,) = /Kn (x,2,) Kp (x,2,) w (z) do
-1

then
/ @ ) gl Ear )’
gn (T dn n+1
——— | w(x)dr = v K, (z,,,) .
/I(CI%(%) (.%'—ZL‘V)> ( ) <Q;L($V)Qn+1(xu) kn, ) ( )
Since L )
Kn (20, 20) ::“z;li"“‘fTQn+l(xu)q;(xu)
nt1 || gn Iy,
then )
K,;l (xz/,xy) — _kn‘i’l ||anw

kn Qn+1(xV)Q4z($V)
it follows that, for v =1,2,--- ,n

1
/1 <%(%q)n(<; . m)Qw @dr =g

O

Remark 2.7. Let us denote A\,, v = 1,2,3,--- ,n these constants are named Christoffe]l numbers. We can
construct the Lagrange interpolation polynomial L (z) od degree n — 1 which coincide with p (x) at the
points, A,, v =1,2,--- ,n, that is

L) =Y pla)—2n2)
v=1

an(zy) (. —2)
Because

1
[ @) w(a)do=Niplan) + haplaz) + -+ + Muplan),
21

whenever p (z) is IIg,_1,then

1
qn ()
)\,,—/ - w(x)de, v=123.n.
x,) (r — 2,
J il ) ( )

The Christoffel numbers, are defined as follows

1

AV:/<M%>2w(x)dx, v=1,2 n.
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17

i-e

Y kn qni1 (-fu)q;l(l‘u) kn—1 anl(xu)q%(xu) K, (331/7 xu), T
Consequently

1

/w(x)d:z::)\1—|->\2~l—---+)\n

~1

Finally, if (2,),_; .., denote the zeros of g,(z), then we have
1
1 1 1
+ + = [ w(z)dx
Koo  KaGenan) Ko@) J{ )

Remark 2.8. The following decomposition into partial fraction decomposition holds

n

Qn(x) o Z Qyn
T — T,

qn+1() =0

where {wv}u=0,1,2,--- ndenote the zeros of gnt1(z).
For we have

R 17 B e S
qn+1(xu)
Then , ,
T Ty) — T T k
Ayn = qn( V)qn+1( ,V) q”+;( V)qn( V) = Z—H HQnHi;Kn (xllaxu) >0

[qn—i-l(xV)] n

because
kny1  2n+3

and

lgnl?, = .

Il =+ 1) (n +2) (2n + 3)

it follows that,
2

Gvn = (n+1)(n+2)(n+3)

K, (xuaxy)

becomes

qn(z) B 2 zn: Ky (zy,x))

tt1(z)  (n+1)(n+2)(n+3) = z-ax

Differentiating the two sides

qn () <Q;L(x) _ i1 (@)

_ —2 Ky (@, 1)
Int1(z) \an(x) Qn+1($)) Cn+1)(n+2)(n+3) VZ::O (x —,)?

n

Thus we get
- K (@0,0)
S -n)? _d) @)
i M dn+1(z)  qn(2)
v=0 T — 2Ty
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3. Conclusion

In this article,we demonstrate certain identities involving both the integral Legendre polynomials and
some associated Legendre polynomials. This study brings to light some significant results and defines the
relationship between these polynomials and Jacobi polynomials. We have used mathematical induction to
establish the relation between the integral Legendre polynomials,and two special cases of Jacobi polynomi-
als,we derive structures relations between @Q,, and P,(f"ﬁ ) (x) for « = B = —1, we derive also some structures

relations between ¢, and pieP) () for a = p = 1.

We also present some results for Christoffel-Darboux formula,particularly by using the Christoffel-
Darboux formula, we prove some results that connect the g-kernel polynomials. In addition, we look at
the practical application of g-kernel polynomials in approximation theory.

It is worth mentioning here that the above-achieved results and analysis are fruitful. Some of their
presumed uses are given below:

e The integral Legendre polynomials and their kernel polynomials are fruitful in approximation theory.

e These orthogonal polynomials are fruitful in applied to find the minimum value and the minimizing
function for various definite integrals and solving extremal problems.

e These results strengthen the knowledge of the kernel polynomials associated to the integral legendre
polynomials.

e They are also beneficial in studying problems connected to solve extremal problem and to describe
the approximation of continuous functions by kernel polynomials of integral legendre polynomials

e They help study finite linear combinations and finites summations sequences and calculating general
summations.

e These orthogonal polynomials are fruitful in applied to find the interpolation problem,we illustrates
that one can use Gaussian quadratures for various definite integrals and solving extremal problems.

e These polynomials can be used to solve differential equations, whether they are linear or non-linear
and to acquire numerical answers to differential equations,whether linear or nonlinear.

e The connections between the integral Legendre polynomials, and Jacobi polynomials are highly helpful
in obtaining the identities related to them.
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