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Abstract

This paper is concerned with deriving a new system of orthogonal polynomials whose inflection points
coincide with their interior roots, primitives of Legendre polynomials,they appear as solutions of linear
differential equation. We study orthogonality, and extremal properties and minimization and Fourier de-
velopment involving of integral Legendre polynomials. There are some important properties and certain
identities and extremal properties involving both associated integral Legendre polynomials. We have used
mathematical induction to establish the relation between them. Also, we present some results for these or-
thogonal polynomials by using some properties of Jacobi polynomials. General expressions are found for the
kernels polynomials associated to integral Legendre polynomials. These kernel polynomials can be used to
describe the approximation of continuous functions by integral Legendre polynomials. They can be used for
the representation of the n-th partial sum of the Fourier series expansion of integral Legendre polynomials
in the form of an integral. We conclude the paper with some results on finite Fourier series expansion by
using polynomials integrals of the kernels polynomials.
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1. Mathematical basis

Associated orthogonal polynomials are a family of polynomials derived from a given set of orthogonal
Legendre polynomials by integrating polynomials or shifting the indices in the recurrence coefficients. Specif-
ically, these associated polynomials are also orthogonal, but with respect to a possibly different measure.
Orthogonal polynomials are of considerable importance properties in many branches of science and engi-
neering since they represent an indispensable analytical tool for solving various extremal and minimization
and approximation problems and Fourier developments [2, 3, 4, 5, 6, 7, 9, 12, 13].
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In this paper we study a system of orthogonal polynomials {Qn}n=2,3,···with respect to the measure

ρ (x) =
1

1− x2
, x ∈ [−1, 1], that we call integral of Legendre polynomials, with the first and last roots at

x = ±1, given by
Qn (x) =

(
1− x2

)
qn−2 (x) , n = 2, 3, · · · .

where qn (x) , n = 0, 1, 2, · · · is a polynomial of degree n.Using these orthogonal polynomials we study a
system of orthogonal polynomials {qn}n=0,1,2,··· with respect to the measure w (x) = 1 − x2, x ∈ [−1, 1]
associated to Legendre polynomials.The paper will be structured as follows : in section 1, we present some
useful terminology as well as some necessary definitions regarding integral Legendre polynomials. In section
2, we present some properties of orthogonal polynomials {qn(x)}n, second, we give some necessary definitions
and basic properties of two Fourier polynomials approximability for the polynomials {qn (x)}n=0,1,2,··· and
for {Qn}n=2,3,··· best solutions for two associated extremal problems in respect to orthogonal polynomials
{Qn}n=2,3,··· and {qn}n=0,1,2,···.

These orthogonal polynomials can be used to describe the approximation of continuous functions by
integral Legendre polynomials and orthogonal polynomials {qn}n=0,1,2,··· . by finite Fourier series and how
to compute efficiently such approximations. We show a connection between these orthogonal polynomials

and two special cases of Jacobi polynomials, we derive structures relations between Qn and P
(α,β)
n (x) , for

α = β = −1 we derive also some structures relations between qn and P
(α,β)
n (x) , for α = β = 1.All of them

may be transferred into formulas for integral Legendre polynomials, we give some necessary definitions and
basic extremal and approximations properties of the q-kernel orthogonal polynomials,where Kn(x, y) is the
Christoffel-Darboux formula for the polynomials {qn (x)} , n = 0, 1, 2, · · ·

Kn (x, y) =

n∑
k=0

qk(x)qk(y)

∥qk∥2w

{Kn (x, λ)}n=0,1,2,··· are orthogonal polynomials on the interval [−1, 1] , with respect to the weight function
x 7−→ (x− λ)w (x) ,where −1 ≤ λ ≤ 1.

We conclude the paper with some results concerning polynomials integrals of the q-kernels polynomials.
In addition, some comparisons with some other methods are made.

Let {Ln} , n = 0, 1, 2, · · · be the Legendre polynomials. They satisfies the orthogonality relation ,

1∫
−1

Ln (x)x
kdx = 0 , k = 0, 1, 2, · · · , n− 1,

and the differential equation ((
1− x2

)
L′
n (x)

)′
+ n (n+ 1)Ln (x) = 0 (1.1)

Explicit formula for Ln (x) is given as follows, [1, 8, 14, 16, 17]

Ln (x) =
1

(2n)!

[n2 ]∑
k=0

(−1)k (2n− 2k)!

k! (n− k)! (n− 2k)!
xn−2k , n ≥ 2, (1.2)

they are normalized so that Ln (1) = 1 for all n.
An immediate consequence of (1.1) is the following second expansion of Qn , we have

Qn (x) = −
1∫

x

Ln−1 (t) dt , n = 2, 3, · · · .
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We shall consider some and different class of Jacobi polynomials denoted by P
(α,β)
n (x) , orthogonal with

respect to the Jacobi weight function wα,β (x) = (1− x)α (1 + x)β over I = [−1, 1] [1, 5, 8, 11, 14, 16, 17],
namely

1∫
−1

P (α,β)
n (x)P (α,β)

m (x)wα,β (x) dx = δmn

∥∥∥P (α,β)
n (x)

∥∥∥2 , (1.3)

where δm,n is the Kronecker symbol, where∥∥∥P (α,β)
n (x)

∥∥∥2 = 2α+β+1

2n+ α+ β + 1

Γ (n+ α+ 1)Γ (n+ β + 1)

n!Γ (n+ α+ β + 1)
, (1.4)

P
(α,β)
n are normalized according to

P (α,β)
n (1) = Cn+α

n , n = 0, 1, 2, 3, · · · (1.5)

where Cn+α
n is a binomial coefficient. The weight function wα,β belongs to L1 ([−1, 1]) , if and only if

α, β > −1 (to be assumed throughout this section). i-e

1∫
−1

wα,β (x) dx < ∞

The coefficient of term xn in P
(α,β)
n (x) is given by, [16] :

kα,βn =
Γ (2n+ α+ β + 1)

2nn!Γ (n+ α+ β + 1)
(1.6)

We shall need the following important derivative relation of Jacobi polynomials, [16, 17] :

∂

∂x
P (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x) , (1.7)

and

(1 + x)
∂

∂x
P (α,β)
n (x) = (n+ β)P (α+1,β−1)

n (x)− βP (α,β)
n (x) .

Applying this formula recursively yields, for k = 0, 1, · · · , n.

∂k

∂xk
P (α,β)
n (x) =

1

2k
Γ (n+ k + α+ β + 1)

Γ (n+ α+ β + 1)
P

(α+k,β+k)
n−k (x) (1.8)

The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville operator, [8, 9, 14, 16, 17]
defined by ((

x2 − 1
) ∂2

∂x2
+ (α− β + (α+ β + 2)x)

∂

∂x

)
P (α,β)
n (x) = λ(α,β)

n P (α,β)
n (x) (1.9)

where
λ(α,β)
n = n (n+ α+ β + 1) (1.10)

If

Kn (x, y) =
n∑

k=0

P
(α,β)
k (x)P

(α,β)
k (y)∥∥∥P (α,β)

k

∥∥∥2 (1.11)
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The sequence (Kn (x, y))
∞
n=0 satisfies the Christoffel-Darboux formula, [5, 7, 9, 11, 14, 16, 17]

Kn (x, y) =
kα,βn

kα,βn+1

1∥∥∥P (α,β)
n

∥∥∥2
P

(α,β)
n+1 (x)P

(α,β)
n (y)− P

(α,β)
n+1 (y)P

(α,β)
n (x)

x− y
, x ̸= y

Moreover {Kn (x, λ)}n=0,1,2,··· are orthogonal with respect to (x− λ)wα,β (x), where −1 ≤ λ ≤ 1.
A remarkable property of {Kn (x, y)}n=0,1,2,··· is stated in the following property. Kn has the reproducing

kernel property [1, 5, 7, 9, 11, 14, 16, 17] :

f (x) =

1∫
−1

Kn (x, t) f (t)wα,β (t) dt

for any continuous function f on the interval [−1, 1].

1.1. Approximability of Jacobi polynomials

Theorem 1.1. Denote by Πn the set of all algebraic polynomials of degree ≤ n, and

L2
(
[−1, 1], wα,β

)
=

f :

1∫
−1

(f (x))2wα,β (x) dx < ∞


For any f ∈ L2

(
[−1, 1], wα,β

)
and n ∈ mathbbN , there exists a unique S∗

n ∈ Πn, such that

∥f − S∗
n∥

2 = Inf
{
∥f − Sn∥2 , Sn ∈ Πn

}
(1.12)

where

S∗
n (x) =

n∑
k=0

ckP
(α,β)
k (x) (1.13)

with

ck =

1∫
−1

f (t)P
(α,β)
k (t)wα,β (t) dt∥∥∥P (α,β)

k

∥∥∥2 (1.14)

Proof. In the Jacobi case,[1, 5, 9, 11, 14, 16, 17, 10]. In particular, we denote the best approximation
polynomial S∗

n by pr (f) , which is the L2
wα,β -orthogonal projection of f , and is characterized by the

projection theorem

∥f − S∗
n∥ = Inf

{
∥f − Sn∥2 , Sn ∈ Πn

}
(1.15)

Equivalently, the L2
wα,β -orthogonal projection can be defined by :

⟨f − S∗
n , φ⟩wα,β = 0 , ∀φ ∈ Πn

i.e.,
1∫

−1

(f (t)− S∗
n (t))φ (t)wα,β (t) dt = 0 , ∀φ ∈ Πn

So S∗
n is the first n+ 1-term truncation of the Fourier series:

f (x) =
∞∑
k=0

ckP
(α,β)
k (x)
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Theorem 1.2. [16]The Jacobi polynomial P
(α+1,β)
n is a linear combination of P

(α,β)
k , k = 0, 1, 2, · · · , n.

P (α+1,β)
n (x) =

Γ (n+ β + 1)

Γ (n+ α+ β + 2)

n∑
k=0

(2k + α+ β + 1)
Γ (k + α+ β + 1)

Γ (k + β + 1)
P

(α,β)
k (x) . (1.16)

Proof. In the Jacobi case, the kernel polynomial at x = 1, see (1.11), takes the form

Kn (x, 1) =

n∑
k=0

P
(α,β)
k (x)P

(α,β)
k (1)∥∥∥P (α,β)

k

∥∥∥2
The Christoffel-Darboux formula, (1.11)

Kn (x, 1) =
kα,βn

kα,βn+1

1∥∥∥P (α,β)
n

∥∥∥2
P

(α,β)
n+1 (x)P

(α,β)
n (1)− P

(α,β)
n+1 (1)P

(α,β)
n (x)

x− 1

By lemma [16, 17], {Kn (x, 1)}n are orthogonal with respect to wα+1,β (x). By the uniqueness of orthogonal

polynomials, [17] Kn (x, 1) must be proportional to P
(α+1,β)
n (x) i-e.

Kn (x, 1) =
n∑

k=0

P
(α,β)
k (x)P

(α,β)
k (1)∥∥∥P (α,β)

k

∥∥∥2 = aα,βn P (α+1,β)
n (x) (1.17)

The proportionality constant aα,βn is determined by comparing the leading coefficients of both sides of (1.17)
and working out the constants, namely,

kα,βn∥∥∥P (α,β)
n

∥∥∥2P (α,β)
n (1) = aα+1,β

n kα++1,β
n

we find that

aα+1,β
n =

kα,βn

kα++1,β
n

∥∥∥P (α,β)
n

∥∥∥−2
P (α,β)
n (1)

Using properties (1.4),(1.5) and(1.6), yields

aα,βn = 2−α−β−1 Γ (n+ α+ β + 1)

Γ (α+ 1)Γ (n+ β + 1)

Inserting this constant into (1.17),we obtain (1.16) directly from (1.5) and(1.4). This ends the proof.

Remark 1.3. Thanks to the property

P (α,β)
n (−x) = (−1)n P (α,β)

n (x)

it follows from (1.16) that

P (α,β+1)
n (x) =

Γ (n+ β + 1)

Γ (n+ α+ β + 2)

n∑
k=0

(−1)k (2k + α+ β + 1)
Γ (k + α+ β + 1)

Γ (k + α+ 1)
P

(α,β)
k (x) (1.18)

There are many important properties for Legendre and Jacobi polynomials,[1, 17]. All of them may be
transferred into formulas for Integral of Legendre polynomials.
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2. Some families of orthogonal polynomials associated with Legendre polynomials

The Legendre polynomial,Ln (x) satisfies,[1, 5, 7, 9, 11, 14, 16, 17] the orthogonality relation:

1∫
−1

Ln (x)x
kdx = 0, k = 0, 1, 2, · · · , n− 1.

and

∥Ln∥2 =
1∫

−1

L2
n (x) dx =

2

2n+ 1
, n = 0, 1, 2, · · · (2.1)

The Legendre polynomial Ln satisfies the differential equation,[1, 5, 7, 9, 11, 15, 14, 16, 17] :((
1− x2

)
L′
n (x)

)′
= −n (n+ 1)Ln (x) (2.2)

The three-term recurrence relation for the Legendre polynomials reads,[1, 5, 7, 11, 15, 14, 16, 17]

L0 (x) = 1 , L1 (x) = x,

and
(n+ 1)Ln+1 (x) = (2n+ 1)xLn (x)− nLn−1 (x) n = 1, 2, 3, · · ·

We also derive that [1, 17]
Ln (±1) = (±1)n (2.3)

in the same way :

L′
n (±1) =

1

2
(±1)n−1 n (n+ 1) (2.4)

2.1. Integral of Legendre polynomials

We restricted our attention to a polynomial Qn (x) with the first and last roots at x = ±1 ,given by

Qn (x) =
(
x2 − 1

)
qn−2 (x ) , n ≥ 2, (2.5)

and satisfies the differential equation:(
1− x2

)
Q′′

n (x) + n (n− 1)Qn (x) = 0

Straightforwardly,
Q′

n (x) = Ln−1 (x) and Q′′
n (x) = L′

n−1 (x) , n ≥ 2, (2.6)

and
Qn (±1) = 0 , n ≥ 2 (2.7)

also we have,
Q′

n (1) = 1 , and Q′
n (−1) = (−1)n−1 , n ≥ 2. (2.8)

Theorem 2.1. If

Qn (x) = −
1∫

x

Ln−1 (t) dt , −1 ≤ x ≤ 1 (2.9)

Integral Legendre polynomials are particular solutions of the differential equation(
1− x2

)
Q′′

n (x) + n (n− 1)Qn (x) = 0, n ≥ 2 (2.10)
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therefore,

Qn (x) =
2

n− 1
P (−1,−1)
n (x) , − 1 ≤ x ≤ 1 (2.11)

The functions Qn (x) and Qm (x) (n ̸= m) are orthogonal with respect to the weight function

ρ (x) =
1

1− x2
. Then

1∫
−1

Qn (x)Qm (x)

1− x2
dx = 0 , (n ̸= m), n,m = 1, 2, · · · (2.12)

and

∥Qn∥2ρ =

1∫
−1

Q2
n (x)

1− x2
dx =

2

n (n− 1) (2n− 1)
, n = 2, 3, · · · (2.13)

Since w(x) is not continuous on [−1, 1], but because Qn (−1) = 0 Qn (+1) = 0 , all integrals (2.12),(2.13)
are proper.

Proof. Thanks to,(2.9),(2.2)

(
1− x2

)
L′
n−1 (x) = −n (n− 1)

1∫
x

Ln−1 (x) dx (2.14)

Inserting (2.6) into (2.14) ,we obtain (2.10).Using explicit formula for Ln−1 (x) in (1.2) and (2.9) we obtain

(−1)
n−2
2 (n− 3)!!

n!!
= Qn (0) (2.15)

Hence, comparing this equality with (1.9) and (1.10) ,we have for α = β = −1,

(1− x2)y′′ + n (n− 1) y = 0

The bounded solution of this equation is the Jacobi polynomial P
(−1,−1)
n (x).hence, comparing this equal-

ity with (6) we have, P
(−1,−1)
n (x) = λnQn (x).The Rodrigues’ formula for the Jacobi polynomials is stated

below,[16], page 72 ,

(
1− x2

)α
P (α,α)
n (x) =

(−1)n

2nn!

[(
1− x2

)n+α
](n)

, n ≥ 1.

If α = β = −1, it becomes

(
1− x2

)−1
P (−1,−1)
n (x) =

(−1)n

2nn!

[(
1− x2

)n−1
](n)

Wishing to find P
(−1,−1)
n (0), we determine the coefficient of xn in the binomial

(
x2 − 1

)n−1
, then evaluate

P (−1,−1)
n (0) =

(−1)
n−2
2 (n− 1)!!

2n!!

The proportionality constant λn is determined by comparing the leading coefficients of both sides of Qn and

P
(−1,−1)
n working out the constants, namely,

P (−1,−1)
n (0) =

n− 1

2
Qn (0)
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Hence,

Qn (x) =
2

n− 1
P (−1,−1)
n (x)

This ends the proof of (2.11).The Jacobi polynomials
{
P

(−1,−1)
n

}
n
are orthogonal with respect to the

weight function w (x) =
1

1− x2
,and

∥∥∥P (−1,−1)
n (x)

∥∥∥2 = n− 1

2n (2n− 1)

Thus proprietes,(2.12),and (2.13) are established.Which confirms the desired result.

Using integral Legendre polynomials ,we study a system of orthogonal polynomials {qn}n=0,1,2,···with

respect to the measure w (x) = 1 − x2, x ∈ [−1, 1] associated to Legendre polynomials. We present some
useful terminology as well as some necessary definitions regarding these associated Legendre polynomials, we
give some necessary definitions and basic properties of Fourier polynomials approximability for the polyno-
mials {qn (x)}n=0,1,2,···. General expressions are found for the q-kernel orthogonal polynomials associated to
Legendre polynomials. These kernel polynomials can be used to describe the approximation of continuous
functions by {qn (x)}n=0,1,2,···. They can be used for the representation of the n-th partial sum of the Fourier
series expansion of integral Legendre polynomials in the form of integrals.

2.2. {qn}n=0,1,2,···orthogonal polynomial

In fact :
Qn+2 (x) =

(
1− x2

)
qn (x) , −1 ≤ x ≤ 1, n = 1, 2, · · ·

Using (2.10) we obtain,
Q′′

n (x) = −n (n− 1) qn−2 (x) (2.16)

Proposition 2.2. The polynomial qn (x) of degree n satisfies the differential equation(
1− x2

)
q′′n (x)− 4xq′n (x) + n (n+ 3) qn (x) = 0, n ≥ 0 (2.17)

therefore

qn (x) = − 1

2 (n+ 1)
P (1,1)
n (x) , n = 0, 1, 2, 3, · · · (2.18)

The functions qn (x) and qm (x) (n ̸= m) are orthogonal with respect to the weight function
w (x) = 1− x2. Then

1∫
−1

qn (x) qm (x)
(
1− x2

)
dx = 0 , (n ̸= m) n,m = 0, 1, 2, · · · (2.19)

and

∥qn (x)∥2w =

1∫
−1

q2n (x)
(
1− x2

)
dx =

2

(n+ 2) (n+ 1) (2n+ 3)
, n = 0, 1, 2, · · · (2.20)

Proof. Differentiating two times the resulting equality (2.5) we derive,

Q′′
n+2 (x) = 2qn (x ) + 4xq′n (x ) +

(
x2 − 1

)
q′′n (x )

If we substitute the formula (2.5) into the equation (2.10), we determine that the polynomial qn (x) of degree
n satisfies the linear differential equation :(

1− x2
)
q′′n (x)− 4xq′n (x) = −n (n+ 3) qn (x)
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Hence, comparing this q-linear differential equation with (1.9)and (1.10) , we have for α = β = 1,

(1− x2)y′′ − 4xy′ + n (n+ 3) y = 0

The bounded solution of this equation is the Jacobi polynomial P
(1,1)
n (x).hence, comparing this equality

with (2.17) we have, P
(1,1)
n (x) = µnQn (x).The proportionality constant µn is determined by comparing the

the two specials values P
(1,1)
n (1) and qn (1) .The normalization of Jacobi polynomials is(1.5) ,P

(1,1)
n (1) =

n+ 1. Since qn (1) = −1
2 , we have:

P (1,1)
n (x) = −2 (n+ 1) qn (x)

Naturally, the Jacobi polynomials
{
P

(1,1)
n

}
n
are orthogonal with respect to the weight function w (x) =

1− x2, over I = [−1, 1], according with (1.3),(1.4) we obtain,∥∥∥P (1,1)
n (x)

∥∥∥2
w
=

8 (n+ 1)

(2n+ 3) (n+ 2)

According with (2.18), we have

∥qn (x)∥2w =
1

4 (n+ 1)2

∥∥∥P (1,1)
n (x)

∥∥∥2
w
=

2

(n+ 1) (n+ 2) (2n+ 3)

Thus proprieties, (2.19),and (2.20) are established.which confirms the desired result.This ends the proof.

We state below two useful formulas , we can express P ∗
n in terms of p∗n ,the two Fourier polynomials bests

solutions of above extremal problems, are approximability of {qn}n.orthogonal polynomials,and integral
Legendre polynomials {Qn}n , where the expansion of Fourier coefficients are known as the connection
coefficients between them .

Theorem 2.3. Denote by Πn the set of all algebraic polynomials of degree ≤ n. For any f ∈ L2 ([−1, 1], w (x))
and f (1) = f (−1) = 0.Let σn, wn, γn, denote the extremal constants satisfies,

σn = ∥f − p∗n∥
2
w = Inf

{
∥f − pn∥2w , pn ∈ Πn

}
(2.21)

and
ωn = ∥f − P ∗

n∥
2
ρ = Inf

{
∥f − Pn∥2ρ , Pn ∈ Πn

}
(2.22)

and
γn =

∥∥f ′ − T ∗
n

∥∥2 = Inf
{∥∥f ′ − Tn

∥∥2 , Tn ∈ Πn

}
(2.23)

there exists a unique three approximatings Fourier polynomials p∗n, P
∗
n , T

∗
n (x) ∈ Πn, such that :

p∗n (x) =
n∑

k=0

ckqk(x) (2.24)

and

P ∗
n (x) =

n∑
k=2

CkQk(x) (2.25)

and

T ∗
n (x) =

n∑
k=2

AkLk(x) (2.26)
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We have,

ck =
(k + 1) (k + 2) (2k + 3)

2

1∫
−1

f (t)Qk+2 (t) dt, k = 0, 1, 2, · · · (2.27)

and

Ck =
k (k − 1) (2k − 1)

2

1∫
−1

f (t) qk−2 (t) dt k = 2, 3, 4, · · · (2.28)

therefore,

Ak =
k (k + 1) (2k + 1)

2

1∫
−1

f (t) qk−1 (t) dt k = 1, 2, 3, · · · (2.29)

and

σn = ∥f∥2w + 2
n∑

k=0

c2k
(k + 1) (k + 2) (2k + 3)

(2.30)

also

ωn = ∥f∥2ρ + 2

n∑
k=2

C2
k

k (k − 1) (2k − 1)
(2.31)

and

γn =
∥∥f ′∥∥2 + 2

n+1∑
k=2

C2
k

2k + 1
(2.32)

Proof. Since

ck =

1∫
−1

f (t) qk (t)w (t) dt

∥qk∥2

Then,

ck =
(k + 1) (k + 2) (2k + 3)

2

1∫
−1

f (t) qk (t)w (t) dt

Using (2.5), we obtain:

ck =
(k + 1) (k + 2) (2k + 3)

2

1∫
−1

f (t)Qk+2 (t) dt

Since

Ck =

1∫
−1

f (t)
Qk (t)

1− t2
dt

∥Qk∥2

which, together with (2.13), leads to

Ck =
k (k − 1) (2k − 1)

2

1∫
−1

f (t) qk−2 (t) dt
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Using (2.13),(2.22)and (2.20), (2.21), we obtain :

σn = ∥f∥2w + 2

n∑
k=0

c2k
(k + 1) (k + 2) (2k + 3)

On the other hand,

ωn = ∥f∥2ρ + 2
n∑

k=2

C2
k

k (k − 1) (2k − 1)

Since,

T ∗
n (x) =

n∑
k=2

AkLk(x)

we have

Ak =
2k + 1

2

1∫
−1

f ′ (t)Lk (t) dt

Then we integrate by parts this series termwise from x to 1 , we obtain ( use Lk (1) = 1 , k = 0, 1, 2...) ,

Ak =
2k + 1

2

f (1)Lk (1)−
1∫

−1

f (t)L′
k (t) dt


i-e,

Ak =
2k + 1

2

f (1)−
1∫

−1

f (t)Q′′
k+1 (t) dt


According to the property (2.6) (2.10), we obtain

Ak =
2k + 1

2

f (1)− k (k + 1)

1∫
−1

f (t)
Qk+1 (t)

1− t2
dt


Then

Ak =
k (k + 1) (2k + 1)

2

1∫
−1

f (t)
Qk+1 (t)

1− t2
dt = Ck+1

i-e,

Ak =
k (k + 1) (2k + 1)

2

1∫
−1

f (t) qk−1 (t) dt

Because

γn =
∥∥f ′∥∥2 + 2

n∑
k=1

A2
k

2k + 1

According to the property (2.1),(2.23), we obtain

γn =
∥∥f ′∥∥2 + 2

n+1∑
k=2

C2
k

2k + 1
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where : ∥∥f ′∥∥2 = 1∫
−1

(
f ′ (t)

)2
dt,

Which confirms the desired result.This ends the proof.

Corollary 2.4. Fourier polynomials p∗n, P
∗
n , T

∗
n (x) ,verifies the the following estimations

|p∗n (x)| ≤
n∑

k=0

(k + 1) (k + 2) (2k + 3)
(2k + 1)!!

(2k + 2)!!

1∫
−1

|f (t)| dt (2.33)

and

|P ∗
n (x)| ≤

n∑
k=2

k (k − 1) (2k − 1)
(2k − 3)!!

(2k)!!

1∫
−1

|f (t)| dt (2.34)

Also we have

|T ∗
n (x)| ≤ 1

4

n∑
k=2

k (k + 1) (2k + 1)

1∫
−1

|f (t)| dt (2.35)

However, if
1∫

−1

|f (t)| dt = 1 then we have

|p∗n (x)| ≤
n∑

k=0

(k + 1) (k + 2) (2k + 3)
(2k + 1)!!

(2k + 2)!!
(2.36)

and

|P ∗
n (x)| ≤

n∑
k=2

k (k − 1) (2k − 1)
(2k − 3)!!

(2k)!!
(2.37)

Also we have

|T ∗
n (x)| ≤ 1

4

n∑
k=2

k (k + 1) (2k + 1) (2.38)

In the same way

P ∗′
n (x) =

n−1∑
k=1

Ck+1Lk(x) (2.39)

and

P ∗′′
n (x) = −

n−2∑
k=0

(k + 1) (k + 2)Ck+2qk (x) (2.40)

Therefore ∥∥P ∗′
n (x)

∥∥2 = n−1∑
k=1

2C2
k+1

2k + 1
(2.41)

and ∥∥P ∗′′
n (x)

∥∥2
w
= 2

n−2∑
k=0

(k + 1) (k + 2)

2k + 3
C2
k+2 (2.42)
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Proof. Using the representation of the functions Qk, qk, Lk , we can show that for −1 ≤ x ≤ 1 the following
estimations hold:

|Qk (x)| ≤ 4
(2k − 3)!!

(2k)!!
, k = 2, 3, · · ·

and

|qk (x)| ≤
1

2
, k = 0, 1, 2, · · ·

and
|Lk (x)| ≤ 1, k = 0, 1, 2, · · · .

According to (2.27),(2.28),(2.29) we obtain the following estimations

|p∗n (x)| ≤
n∑

k=0

(k + 1) (k + 2) (2k + 3)
(2k + 1)!!

(2k + 2)!!

1∫
−1

|f (t)| dt

and

|P ∗
n (x)| ≤

n∑
k=2

k (k − 1) (2k − 1)
(2k − 3)!!

(2k)!!

1∫
−1

|f (t)| dt

and

|T ∗
n (x)| ≤ 1

4

n∑
k=2

k (k + 1) (2k + 1)

1∫
−1

|f (t)| dt

Let us differentiate the two sides of equation (2.25) , we get

P ∗′
n (x) =

n−1∑
k=1

Ck+1Lk(x)

and differentiating the two sides of (2.25) two times ,with according to (2.16) we get

P ∗′′
n (x) = −

n−2∑
k=0

(k + 1) (k + 2)Ck+2qk (x)

Which confirms the desired results.This ends the proof.

2.3. q-Kernel polynomials and extremum properties

The n-th q-kernel is given in [14, 16, 17, 10] by

Kn (x, y) =

n∑
k=0

qk(x)qk(y)

∥qk∥2w
(2.43)

The sequence (Kn (x, y))
∞
n=0 satisfies the Christoffel-Darboux formula [14, 16, 17, 10]

Kn (x, y) =
kn
kn+1

1

∥qn∥2w

qn+1(x)qn(y)− qn+1(y)qn(x)

x− y
, x ̸= y (2.44)

where kn is the coefficient of xn in qn(x). Since,

kn = − Γ (2n+ 3)

2n+1 (n+ 1)!Γ (n+ 3)
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Hence, we have
kn
kn+1

=
n+ 3

2n+ 3
(2.45)

For x = y one has

Kn (x, x) =
kn
kn+1

1

∥qn∥2w

(
q′n+1(x)qn(x)− qn+1(x)q

′
n(x)

)
.

The sequence of kernel polynomials (Kn (x, λ))
∞
n=0 , λ ∈ [−1, 1] is fixed real constant ( see in [14, 16, 17, 10]

), are orthogonal polynomials with respect to the measure (x− λ)w (x) , x ∈ [−1, 1].
If

Ln (x, y) =
n∑

k=2

Qk(x)Qk(t)

∥Qk∥2
, n = 1, 2, · · · ,

and

Mn (x, y) =

n∑
k=0

Lk(x)Lk(t)

∥Lk∥2
, n = 1, 2, · · · .

For the representation of the three approximatings Fourier polynomials p∗n, P
∗
n , T

∗
n (x) in the form of inte-

grals,because :

ck =
(k + 1) (k + 2) (2k + 3)

2

1∫
−1

f (t) qk (t)w (t) dt, k = 0, 1, 2, · · · ,

hence

p∗n (x) =

1∫
−1

f (t)
n∑

k=0

(k + 1) (k + 2) (2k + 3)

2
qk(x)qk (t)w (t) dt

i-e

p∗n (x) =

1∫
−1

f (t)Kn (x, t)w(t)dt

and

P ∗
n (x) =

1∫
−1

f (t)Ln (x, t)
dt

1− t2

also

T ∗
n (x) =

1∫
−1

f (t)Mn (x, t) dt.

Theorem 2.5. 1) {Kn (x, λ)}n=0,1,2,··· are orthogonal polynomials on the interval [−1, 1], with respect to the
weight function x 7−→ (x− λ)w (x), where −1 ≤ λ ≤ 1.

2) Denote by Πn the set of all algebraic polynomials of degree ≤ n. Let λ be an arbitrary rel constant,
G (x) is an arbitrary real polynomial Πn normalised by the condition

1∫
−1

(G (x))2w (x) dx = 1 (2.46)

The maximum of (G (λ))2is given by the kernel plynomials {Kn (x, λ)}n=1,2,··· as follows

G (x) = ε
Kn (x, λ)√
Kn (λ, λ)

, |ε| = 1, (2.47)

The maximum itself is Kn (λ, λ).
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Proof. Now we employ the Christoffel-Darboux formula( see in [17, 16, 10, 14]), then the polynomials
R0(x), R1(x), R3(x), · · · , Rn(x), · · · where

Rn (x) = Cn
qn+1(x)qn(λ)− qn+1(λ)qn(x)

x− λ
, x ̸= λ (n = 0, 1, 2, · · · )

are orthogonal on the same segment [−1, 1] in respect of the weight function x 7−→ (x− λ)w (x), because

Kn (x, y) =
kn
kn+1

1

∥qn∥2w

qn+1(x)qn(λ)− qn+1(λ)qn(x)

x− λ
, x ̸= λ

hence, Cn =
kn
kn+1

1

∥qn∥2w
. It follows that {Kn (x, λ)}n=0,1,2,··· are orthogonal polynomials on the interval

[−1, 1], with respect to the weight function x 7−→ (x− λ)w (x),where −1 ≤ λ ≤ 1.
If we write, G (x) = G0q0(x) +G1q1(x) + · · ·+Gnqn(x), condition (2.46) becomes

G2
0 +G2

1 + · · ·+G2
n = 1 (2.48)

By Cauchy’s inequality it follows that,

(G (λ))2 ≤
n∑

k=0

G2
k

n∑
k=0

q2k(λ) = Kn (λ, λ)

The later bound is attained for Gk = µqk(λ), k = 0, 1, 2, · · · , n. where µ is determined according to the
condition,(2.48)

µ2
n∑

k=0

q2k(λ) = 1

Thus we get

µ =
±1√

Kn (λ, λ)

Which confirms the desired results. This evidently completes the proof of Theorem.

Proposition 2.6. If (xν)ν=0,1,2,··· ,n denote the zeros of qn(x), then we have

1∫
−1

(qn(x))
2 w (x)

(x− xν)
2dx =

q′2n (xν)

Kn (xν , xν)

Proof. The sequence (Kn (x, y))
∞
n=0 satisfies the Christoffel-Darboux formula( see in [14, 16, 17, 10])

Kn (x, xν) = − kn
kn+1

1

∥qn∥2w

qn+1(xν)qn(x)

x− xν

Hence
qn(x)

q′n(xν) (x− xν)
= −

∥qn∥2w
q′n(xν)qn+1(xν)

kn+1

kn
Kn (x, xν)

it follows that,
1∫

−1

(
qn(x)

q′n(xν) (x− xν)

)2

w (x) dx
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=

(
∥qn∥2w

q′n(xν)qn+1(xν)

kn+1

kn

)2 1∫
−1

K2
n (x, xν)w (x) dx

A remarkable property of {Kn (x, y)}n is stated in the following property. Kn has the reproducing kernel
property ( see in [14, 16, 17, 10]) :

Kn (xν , xν) =

1∫
−1

Kn (x, xν)Kn (x, xν)w (x) dx

then
1∫

−1

(
qn(x)

q′n(xν) (x− xν)

)2

w (x) dx =

(
∥qn∥2w

q′n(xν)qn+1(xν)

kn+1

kn

)2

Kn (xν , xν) .

Since

Kn (xν , xν) = − kn
kn+1

1

∥qn∥2w
qn+1(xν)q

′
n(xν)

then

K−1
n (xν , xν) = −kn+1

kn

∥qn∥2w
qn+1(xν)q′n(xν)

it follows that, for ν = 1, 2, · · · , n

1∫
−1

(
qn(x)

q′n(xν) (x− xν)

)2

w (x) dx =
1

Kn (xν , xν)
.

Remark 2.7. Let us denote λν , ν = 1, 2, 3, · · · , n these constants are named Christoffel numbers. We can
construct the Lagrange interpolation polynomial L (x) od degree n − 1 which coincide with ρ (x) at the
points, λν , ν = 1, 2, · · · , n, that is

L (x) =

n∑
ν=1

ρ(xν)
qn(x)

q′n(xν) (x− xν)
.

Because
1∫

−1

ρ (x)w (x) dx = λ1ρ(x1) + λ2ρ(x2) + · · ·+ λnρ(xn),

whenever ρ (x) is Π2n−1,then

λν =

1∫
−1

qn(x)

q′n(xν) (x− xν)
w (x) dx, ν = 1, 2, 3...n.

The Christoffel numbers, are defined as follows

λν =

1∫
−1

(
qn(x)

q′n(xν) (x− xν)

)2

w (x) dx, ν = 1, 2, · · · , n.
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i-e

λν = −kn+1

kn

∥qn∥2w
qn+1(xν)q′n(xν)

= − kn
kn−1

∥qn∥2w
qn−1(xν)q′n(xν)

=
1

Kn (xν , xν)
, ν = 1, 2, · · · , n.

Consequently
1∫

−1

w (x) dx = λ1 + λ2 + · · ·+ λn

Finally, if (xν)ν=1,2,··· ,n denote the zeros of qn(x), then we have

1

Kn (x1, x1)
+

1

Kn (x2, x2)
+ · · ·+ 1

Kn (xn, xn)
=

1∫
−1

w (x) dx

Remark 2.8. The following decomposition into partial fraction decomposition holds

qn(x)

qn+1(x)
=

n∑
ν=0

aν,n
x− xν

where {xν}ν=0,1,2,··· ,ndenote the zeros of qn+1(x).
For we have

aν,n =
qn(xν)

q′n+1(xν)
, ν = 0, 1, 2, · · · , n.

Then

aν,n =
qn(xν)q

′
n+1(xν)− qn+1(xν)q

′
n(xν)[

q′n+1(xν)
]2 =

kn+1

kn
∥qn∥2w Kn (xν , xν) > 0

because
kn+1

kn
=

2n+ 3

n+ 3

and

∥qn∥2w =
2

(n+ 1) (n+ 2) (2n+ 3)

it follows that,

aν,n =
2

(n+ 1) (n+ 2) (n+ 3)
Kn (xν , xν)

becomes
qn(x)

qn+1(x)
=

2

(n+ 1) (n+ 2) (n+ 3)

n∑
ν=0

Kn (xν , xν)

x− xν

Differentiating the two sides

qn(x)

qn+1(x)

(
q′n(x)

qn(x)
−

q′n+1(x)

qn+1(x)

)
=

−2

(n+ 1) (n+ 2) (n+ 3)

n∑
ν=0

Kn (xν , xν)

(x− xν)
2

Thus we get
n∑

ν=0

Kn (xν , xν)

(x− xν)
2

n∑
ν=0

Kn (xν , xν)

x− xν

=
q′n+1(x)

qn+1(x)
− q′n(x)

qn(x)
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3. Conclusion

In this article,we demonstrate certain identities involving both the integral Legendre polynomials and
some associated Legendre polynomials. This study brings to light some significant results and defines the
relationship between these polynomials and Jacobi polynomials. We have used mathematical induction to
establish the relation between the integral Legendre polynomials,and two special cases of Jacobi polynomi-

als,we derive structures relations between Qn and P
(α,β)
n (x) for α = β = −1, we derive also some structures

relations between qn and P
(α,β)
n (x) for α = β = 1.

We also present some results for Christoffel-Darboux formula,particularly by using the Christoffel-
Darboux formula, we prove some results that connect the q-kernel polynomials. In addition, we look at
the practical application of q-kernel polynomials in approximation theory.

It is worth mentioning here that the above-achieved results and analysis are fruitful. Some of their
presumed uses are given below:

• The integral Legendre polynomials and their kernel polynomials are fruitful in approximation theory.

• These orthogonal polynomials are fruitful in applied to find the minimum value and the minimizing
function for various definite integrals and solving extremal problems.

• These results strengthen the knowledge of the kernel polynomials associated to the integral legendre
polynomials.

• They are also beneficial in studying problems connected to solve extremal problem and to describe
the approximation of continuous functions by kernel polynomials of integral legendre polynomials

• They help study finite linear combinations and finites summations sequences and calculating general
summations.

• These orthogonal polynomials are fruitful in applied to find the interpolation problem,we illustrates
that one can use Gaussian quadratures for various definite integrals and solving extremal problems.

• These polynomials can be used to solve differential equations, whether they are linear or non-linear
and to acquire numerical answers to differential equations,whether linear or nonlinear.

• The connections between the integral Legendre polynomials, and Jacobi polynomials are highly helpful
in obtaining the identities related to them.
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