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ALGEBRAIC PROPERTIES OF SPECIAL RINGS OF
FORMAL SERIES

AZEEM HAIDER

Abstract. The K-algebra KS [[X]] of Newton interpolating series is con-
structed by means of Newton interpolating polynomials with coefficients
in an arbitrary field K (see Section 1) and a sequence S of elements K. In
this paper we prove that this algebra is an integral domain if and only if S
is a constant sequence. If K is a non-archimedean valued field we obtain
that a K-subalgebra of convergent series of KS [[X]] is isomorphic to Tate
algebra (see Theorem 3) in one variable and by using this representation
we obtain a general proof of a theorem of Strassman (see Corollary 1). In
the case of many variables other results can be found in [2].
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46J05.
Key words: formal power series, Tate algebras.

1. Formal Newton interpolating series

Let K be a field and S = {αn}n≥1 a fixed sequence of elements of K.
We consider the polynomials

u0 = 1, ui =
i∏

j=1

(X − αj) , i ≥ 1 (1)

and the set of formal series

KS [[X]] = {f =
∞∑

i=0

aiui | ai ∈ K}, (2)
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Algebraic properties of special rings of formal series 179

two such expressions being regarded as equal if and only if they have the
same coefficients. We call an element f from KS [[X]] a (formal) Newton
interpolating series with coefficients in K defined by the sequence S. It is easy
to see that every polynomial P ∈ K[X] can be written uniquely in the form

P =
p∑

i=0
aiui with ai ∈ K, where p is the degree of P and every ui is defined

by (1). Thus we can consider K[X] a K−subalgebra of KS [[X]]. If ui, uj are
given by (1), we obtain that for every k, max {i, j} ≤ k ≤ i + j there exist the
elements dk(i, j) in K uniquely defined such that

uiuj =
i+j∑

k=max {i,j}
dk(i, j)uk, (3)

where the coefficients satisfy the following properties

dk(i, j) = dk(j, i), di+j(i, j) = 1. (4)

KS [[X]] becomes a commutative K-algebra which contains K[X] under the ad-

dition and multiplication of two elements f =
∞∑
i=0

aiui, g =
∞∑
i=0

biui ∈ KS [[X]]

defined by

f + g =
∞∑

i=0

(ai + bi)ui (5)

and

fg =
∞∑

k=0

ckuk (6)

with
ck =

∑

(α,β)∈I(k)

dk(α, β)aαbβ, (7)

where
I(k) = {(α, β) ∈ N× N | max {α, β} ≤ k, α + β ≥ k} (8)

and dk(α, β) are given in (3).

If f =
∞∑
i=0

aiui ∈ KS [[X]], the smallest index i for which the coefficient ai is

different from zero will be called the order of f and will be denoted by o(f).
We agree to attach the order +∞ to the element 0 from KS [[X]]. If we fix
a positive real number δ < 1 and define the norm ‖f‖o of an element f of
KS [[X]] by the formula

‖f‖o = δo(f), (9)
KS [[X]] becomes a K−ultrametric normed vector space, where the norm on
K is trivial. Moreover for f, g ∈ KS [[X]]

‖fg‖o ≤ min{‖f‖o, ‖g‖o} (10)
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holds and KS [[X]] becomes a topological K-algebra. It follows easily that
KS [[X]] is a complete K−ultrametric normed vector space and

f = lim
n→∞

n∑

i=0

aiui. (11)

This implies as in the classical case (see for example [4], Ch.VII, §1) that
distributive law holds also for infinite sums and in particular we obtain that

uj

∞∑

i=0

aiui =
∞∑

i=0

aiuiuj . (12)

For a fix f ∈ KS [[X]] we denote Lf : KS [[X]] → KS [[X]] the K-linear
application defined by

Lf (g) = fg. (13)

Then, by (3) and (12)

Lf (ui) = fui =
∞∑

j=i

fj,iuj , (14)

where fj,i ∈ K are uniquely determined by f. Since

Lf (ui+1) =
∞∑

j=i+1

fj,i+1uj = fui(X − αi+1) =
∞∑

j=i

fj,iuj(X − αi+1)

=
∞∑

j=i

fj,i(uj+1 + (αj+1 − αi+1)uj) =
∞∑

j=i+1

(fj−1,i + (αj+1 − αi+1)fj,i)uj ,

we get

fj,i+1 = fj−1,i + (αj+1 − αi+1)fj,i, for j = i + 1, i + 2, ... . (15)

Now we consider g =
∞∑

j=0
bjuj . Then by (12) and (14)

fg =
∞∑

j=0

bj(fuj) =
∞∑

j=0

bj(
∞∑

i=j

fi,jui) =
∞∑

j=0

(
j∑

i=0

bifj,i)uj . (16)

If f =
∞∑

j=0
ajuj and we take i = 0 in (14) we get for every j

fj,0 = aj . (17)

Now for a fix j, by (15) we obtain that

fj,j = fj−1,j−1 + (αj+1 − αj)fj,j−1
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and by recurrence for all k, 1 ≤ k ≤ j we will get

fj,j =
k∑

r=0

fj−r,j−k

k−r∏

s=1

(αj+1 − αj−k+s), (18)

where
0∏

s=1
(αj+1 − αj+1−s) = 1.

Similarly for i, j such that 1 ≤ k ≤ i < j,

fj,i = fj−1,i−1 + (αj+1 − αi)fj,i−1

and generally

fj,i =
k∑

r=0

fj−r,i−kPj−r,i−k(αj+2−k, ..., αj+1, αi−k+1, ..., αi), (19)

where Pj−r,j−k are polynomials with integer coefficients and

Pj,i−k = (αj+1 − αi)(αj+1 − αi−1)...(αj+1 − αi−k+1). (20)

Now by putting j = n = k in (18) we obtain

fn,n =
n∑

r=0

fn−r,0

n−r∏

s=1

(αn+1 − αs) =
n∑

r=0

an−r

n−r∏

s=1

(αn+1 − αs). (21)

In order to study the K− algebra KS [[X]] we need the following lemma which
is an easy consequence of (21).

Lemma 1. If αn+1 = αi for i < n then fn,n = fi−1,i−1.

Now we describe when KS [[X]] is an integral domain.

Theorem 1. KS [[X]] is an integral domain if and only if S is a constant
sequence.

Proof. If S is a constant sequence then KS [[X]] is an integral domain
because it is isomorphic to the K−algebra K[[X]] of formal power series over
K.

Conversely, we suppose that KS [[X]] is an integral domain and now we
have to show that S is a constant sequence. Suppose contrary that S is not

a constant sequence. By (16) it follows that a nonzero element f =
∞∑
i=0

aiui is

a zero divisor in KS [[X]] if and only if for every nonnegative integer i there
exists bi in K, not all equal to zero, such that

j∑

i=0

bifj,i = 0. (22)

Assume first α2 6= α1 and we have to construct the elements ai and bi such
that they satisfy (22).
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We take f0,0 = a0 = 1, b0 = 0 then (22) holds for j = 0. Now by (21) we
obtain

f1,1 = a0 + (α2 − α1)a1. (23)

Hence, if we take a1 = −a0
α2−α1

and b1 = 1 we get f1,1 = 0 and (22) also holds
for j = 1. If j = 2, (22) becomes

b0a2 + b1f2,1 + b2f2,2 = 0. (24)

Since by (15) and (17) f2,1 = f1,0 + (α3 − α1)f2,0 = a1 + (α3 − α1)a2 and
f2,2 = (α3 − α2)a1 + (α3 − α2)(α3 − α1)a2, we can choose either a2 = − a1

α2−α1

and b2 = 1, if α3 = α2 or b2 = −f2,1, a2 = 1 which implies f2,2 = 1, if α3 = α1.
If α3 is different from α1 and α2 we can choose a2 such that f2,2 6= 0 and b2

follows from (24).
Now, we suppose that for n ≥ 3 we found aj and bj not all equal to zero

such that (22) holds for j < n, j > 1 and if αj+1 6= α2, then fj,j 6= 0. We
construct an and bn such that (22) is verified for j = n and if αn+1 6= α2,
fn,n 6= 0. There are four possibilities for αn+1. First if αn+1 6= αi, for all
i < n+1, then by (21) the coefficient of an in fn,n is different from zero. Thus
we can choose an such that fn,n is different from zero and hence we can take
bn such that (22) holds for j = n in this case. Second if αn+1 = α1, then
by Lemma 1 fn,n = a0 6= 0 and by taking an = 1 we can find bn such that
(22) holds. Third if αn+1 = α2, then by Lemma 1 fn,n = f1,1 = 0. Hence by
(19) and (20) with j = n and k = i we find that fn,i, i = 2, ..., n− 1 does not
contain an and fn,1 = an−1 + (α2 − α1)an. Since b1 = 1 we can choose bn = 1
and by (22) with j = n we can find an such that (22) holds when j = n. Last
if αn+1 is different from α1 and α2 but αn+1 = αi for some 2 < i < n + 1 we
suppose that u is the least such i. Thus αn+1 = αu for some 3 ≤ u < n + 1
and by Lemma 1, fn,n = fu−1,u−1 6= 0, because αu 6= α2. Then we take an = 1,

bn = − b1fn,1+...+bn−1fn,n−1

fn,n
and (22) holds for j = n. Hence KS [[X]] is not an

integral domain, a contradiction and the theorem is true if α2 6= α1.
Now suppose α1 = α2 = ... = αi0−1 6= αi0 and we can take a0 = a1 = ... =

ai0−3 = 0 and ai0−2 = 1 such that

f = (X − α1)i0−2 + ai0−1(X − α1)i0−1 + ai0(X − α1)i0−1(X − αi0) + ...

= (X − α1)i0−2h, (25)

where h = 1 + ai0−1(X − α1) + ai0(X − α1)(X − αi0) + ... ∈ KS′f
[[X]] and

the sequence S′f = {α′1 = α1, α
′
2 = αi0 , α

′
3 = αi0+1, ...}. Thus in S′f α′1 6= α′2

and by the previous case we can find a nonzero element g ∈ KS′f
[[X]] such

that hg = 0. We define the K-linear embedding Tf : KS′f
[[X]] → KS [[X]]

such that Tf (g) = (X − α1)i0−2g. Hence (X − α1)i0−2Tf (gh) = Tf (g)Tf (h)
and g1 = (X − α1)i0−2g = Tf (g) is a nonzero element of KS [[X]] such that
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g1f = 0, a contradiction which implies the theorem. ¤

2. Convergent Newton interpolating series

Let K be a field. We call (K, | |) a valued field, if | | is a non-trivial
non-archimedean absolute valuation on K (see [3], Ch. 2). We consider S =
{αn}n≥1 a fixed sequence of elements of the valuation ring A(K) of K and we
denote

HKS [[X]] =

{
f =

∞∑

i=0

aiui ∈ KS [[X]] : lim
i→∞

|ai| = 0

}
. (26)

If f =
∞∑
i=0

aiui ∈ HKS [[X]], then we can define

|f | = sup
i
|ai|. (27)

Theorem 2. If K is a valued field and S = {αn}n≥1 is a fixed sequence of
elements of A(K), then HKS [[X]] is a K−subalgebra of KS [[X]] and | | defined
by (27) is a non-archimedean absolute value on HKS [[X]]. Moreover if K is
a complete valued field, then HKS [[X]] becomes a K−Banach algebra.

Proof. Let f, g =
∞∑
i=0

biui be elements of HKS [[X]]. Then, by (5) and

(27) we obtain |f ± g| = sup
i
{|ai ± bi|} ≤ max {|f |, |g|}. Similarly, since ui ∈

A(K)[X], by (3), (6) and (7), it follows that dk(i, j) ∈ A(K) and |fg| =
sup

k
|ck| ≤ |f ||g|. Moreover if we choose i(f) the greatest index i such that

|ai| = |f |, then by (4) and (7)
∣∣ci(f)+i(g)

∣∣ =
∣∣ai(f)

∣∣ ∣∣bi(g)

∣∣ = |f ||g| and |fg| =
|f ||g|. Hence HKS [[X]] is a K−subalgebra of KS [[X]] and | | defined by (27)
is a non-archimedean absolute value on HKS [[X]].

Now we prove that HKS [[X]] is complete, when K is complete. We take

f [t] =
∞∑
i=0

ai,tui, t ≥ 1, a Cauchy sequence of elements from HKS [[X]]. Since

|ai,t+1 − ai,t| ≤
∣∣∣f [t+1] − f [t]

∣∣∣ , (28)

for a fixed i, each sequence ai,t, t = 1, 2, ... is a Cauchy sequence in K. For

i ∈ N, let ai ∈ K be the limit of this sequence. Set f =
∞∑
i=0

aiui ∈ KS [[X]]

We have to prove that f is an element of HKS [[X]] and lim
t→∞

∣∣f − f [t]
∣∣ = 0.

We may assume
∣∣f [s] − f [t]

∣∣ ≤ 1
t for all s ≥ t, t = 1, 2, ... . By (28) we

obtain |ai,s − ai,t| ≤ 1
t , s = t, t + 1, ... . Now the continuity of | | implies that

|ai − ai,t| ≤ 1
t , for all i ∈ N, t ∈ N∗ . Since, for each t, f [t] ∈ HKS [[X]], then for
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i big enough we have |ai,t| ≤ 1
t . Hence, if ε > 0, we can choose t and i0 such that

1
t < ε and for every i ≥ i0 |ai| < ε, it follows that f ∈ HKS [[X]]. Furthermore,
we have

∣∣f − f [t]
∣∣ = sup

i
|ai − ai,t| ≤ 1

t and this implies lim
t→∞

∣∣f − f [t]
∣∣ = 0. ¤

Theorem 3. If K is a complete valued field and S = {αn}n≥1 is a fixed
sequence of elements of A(K), then the K−Banach algebra HKS [[X]] is iso-
metric isomorphic to Tate algebra K < X >.

Proof. Consider P =
n∑

i=0
biX

i ∈ K[X] written also in the form P =
n∑

i=0
aiui ∈ KS [[X]]. Then

bi = ai +
n∑

j=i+1

ajQi,j(α1, ..., αj), (29)

where Qi,j are homogeneous polynomials with integral coefficients. Suppose
|P |HKS [[X]] = |ai0 |, where i0 is the greatest index with this property. Since
|Qi,j(α1, ..., αj)| ≤ 1, it follows that |bi0 | = |ai0 | and |bi| ≤ max

j≥i
{|aj |}. Hence

|P |K<X> = |P |HKS [[X]].
Now, by means of (29) we define φ : HKS [[X]] → K < X > such that

φ

( ∞∑

i=0

aiui

)
=

∞∑

i=0

biX
i, (30)

where

bi = ai +
∞∑

j=i+1

ajQi,j(α1, ..., αj). (31)

Similarly we can define (see [3], p. 354) ψ : K < X >→ HKS [[X]] such that

ψ

( ∞∑

i=0

biX
i

)
=

∞∑

i=0

aiui, (32)

where

ai = bi +
∞∑

j=i+1

bjSi,j(α1, ..., αj). (33)

Then the maps φ and ψ are well defined and continuous with respect to the
corresponding norms. The relations (30) and (32) imply that the restricted
mappings φ and ψ are inverse to each other on K[X]. Since K[X] is dense
in HKS [[X]] and K < X > we obtain that φ and ψ are inverse to each other
and hence φ is bijective map. In fact φ is the identity map on K[X] so φ is
also a K−algebra morphism. So we obtain that HKS [[X]] and K < X > are
isomorphic K−algebras. ¤
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By using Theorem 3 we obtain a simple proof of Strassman’s Theorem in
general case (see [3], Sec. 6.2.1).

Corollary 1. Let K be a complete valued field. Then a nonzero power series
f from K < X > has finitely many zeros in A(K).

Proof. Suppose contrary. If {αk}k≥1 are infinitely many distinct zeros of
f in A(K), we consider S = {αn}n≥1. Since HKS [[X]] and K < X > are

isometric isomorphic K-algebras we can write f =
∞∑
i=0

aiui, where lim
i→∞

ai = 0.

Hence f converges for every x ∈ A(K) and f(αk) = 0, for every k. This implies
successively a0 = 0, a1 = 0 and generally ai = 0 for every i, a contradiction
which implies the theorem. ¤
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