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LIMIT SETS OF WEAKLY CONTRACTING RELATIONS
WITH EVENTUAL CONDENSATION

VASILE GLAVAN∗, VALERIU GUŢU∗∗

Abstract. Barnsley’s formula for the attractor of a hyperbolic IFS with
condensation is generalized for the omega-limit set of a weakly contracting
set-valued map with eventual condensation. The latter need not be a
contraction, as well as its omega-limit set need not be an attractor.
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1. Introduction

The well known fractal called Pythagoras tree represents the attractor of an
Iterated Function System, shortly IFS, with condensation [2] (see Figure 1).
This IFS consists of a constant set-valued mapping with the ”hypotenuse’s
square” as value (the ”condensation”) together with two similitudes, which
map this square onto the other two squares related to the given right triangle.

As a multi-function, or a relation, this IFS with condensation is contracting
with respect to the Hausdorff-Pompeiu metrics.

Weakly contracting relations have been considered in [3, 4], where existence
of the attractor, as well as some characteristics of the set-valued dynamics,
such as Shadowing Property, Asymptotic Phase Property, denseness of peri-
odic points on the attractor, have been proved.

Let (X, d) denote a complete metric space and let P(X) denote the set of
all nonempty subsets of X.

A relation on X is a subset f ⊂ X × X. Any relation can be regarded
as a multi-function (set-valued map) f : X → P(X), associating to each
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x ∈ X a subset f(x) of X. These two aspects of relations (set theoretical and
functional) allow one to apply set operations, such as union, intersection and
closure, on the one hand, and the functional operations, such as composition,
inverse and identity, on the other hand. We will make use of both these
meanings of relations.

Figure 1. The Pythagoras tree (left) and the attractor of the same
IFS with another condensation set (right)

We say that a compact-valued multi-function (relation) f : X → P(X) is
an eventual condensation if there exists a non-empty compact K ⊂ X and
a natural n0 such that for all n ≥ n0 the multi-function fn is constant with
value K.

M. Barnsley [2] has studied the structure of the attractor for a hyperbolic
IFS with condensation.

Here we give a two-fold generalization of Barnsley’s formula. Firstly, we
relax the hyperbolicity (contractivity) condition of the IFS up to a weak con-
tractivity assertion for a multi-function, and, secondly, we replace the condens-
ing component by eventually condensing one. It is worth noting that such a
multi-function need not be even eventually (weakly) contracting, and its limit
set need not be an attractor.

2. Weak contractions

In the sequel Pb,cl(X) and Pcp(X) will denote the spaces of nonempty
bounded and closed and, respectively, compact subsets of X, endowed with
the Hausdorff-Pompeiu metrics (see, e.g. [8]), defined for any A,B ∈ Pb,cl(X)
by

H(A,B) = max{%(A,B), %(B, A)},
where %(A,B) = sup

a∈A
inf
b∈B

d(a, b).

A function ϕ : R+ → R+ is called a comparison function [5, 8] if:
• ϕ is monotonically increasing, i.e. t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
• ϕn(t) → 0, as n → +∞, for all t ≥ 0.
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Following [5, 8], we call the multi-function f : X → Pb,cl(X) a weak con-
traction, if there exists a comparison function ϕ : R+ → R+ such that

H(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

In this case we will say also that f is a contraction with respect to ϕ, or that
f is a ϕ-contraction (see [8]). Notice that for ϕ(t) = λt with 0 ≤ λ < 1 the
multi-function f is contracting.

Given a multi-function f : X → P(X) one can construct the Nadler-
Hutchinson mapping f∗ : P(X) → P(X), defined for any A ∈ P(X) by
f∗(A) := f [A], where f [A] =

⋃
a∈A

f(a) and bar denotes the closure.

Theorem 1. [4] Let f : X → Pb,cl(X) be a weak contraction with respect
to a right continuous comparison function ϕ : R+ → R+. Then the Nadler-
Hutchinson mapping f∗ : Pb,cl(X) → Pb,cl(X), f∗(A) = f [A], is also a ϕ-
contraction, i.e. for any A, B ∈ Pb,cl(X) the following inequality holds

H(f∗(A), f∗(B)) ≤ ϕ(H(A, B)).

Corollary 2. Let f : X → Pb,cl(X) be a weak contraction with respect to a
right continuous comparison function ϕ : R+ → R+. Then for any A,B ∈
Pb,cl(X) one has:

H(fn
∗ (A), fn

∗ (B)) ≤ ϕn(H(A,B)) → 0, as n → +∞.

For compact-valued weakly contracting multi-functions the condition of
right continuity of the comparison function can be dropped.

Theorem 3. [4] Let f : X → Pcp(X) be a compact-valued weakly contracting
multi-function with respect to a comparison function ϕ : R+ → R+. Then the
Nadler-Hutchinson mapping f∗ : Pcp(X) → Pcp(X), f∗(A) = f [A], is also a
ϕ-contraction.

3. Attractors in weak contractions

There are various definitions of the attractor in dynamical systems. In
ordinary dynamics (e.g. iterations of mappings) one usually means by an
attractor an invariant set, which is dynamically indivisible and whose basin
– the set of attracted points – is a large set. The dynamical indivisibility
sometimes is understood as the existence of a dense orbit. As for the basin, it
must contain a neighborhood of the attractor, or at least the nonvoid interior,
sometimes positive Lebesgue measure is required.

In the case of multi-functions on compact spaces in [1] (see also [7]) the
following definition has been proposed: the closed subset A is an attractor, if it
is invariant and there exists a closed neighborhood V of A such that

⋂
n≥0

fn[V ]

is contained in A. For another definition of attractor see [6].
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Let X be a metric space and let f : X → P(X) be a closed relation. A
nonempty closed subset A ⊂ X is called an attractor for f , if:

• f [A] ⊃ A;
• there is a closed neighborhood V̄δ = {x ∈ X | %(x,A) < δ} of A such

that
⋂

n≥0
fn[V̄δ] ⊂ A.

Remark 1. Both of inclusions are, in fact, equalities [3].

Theorem 4. [4] For every weak contraction f : X → Pb,cl(X) with respect
to a right continuous comparison function there exists a unique bounded and
closed set A such that f [A] = A.

Theorem 5. [4] A compact nonempty subset A ⊂ X is an attractor for a
compact-valued weakly contracting multi-function f : X → Pcp(X) if and only
if A is invariant with respect to f .

Remark 2. The condition on the multi-function to take compact values is
necessary. As a counter-example one can choose a constant multi-function on
an infinite-dimensional Banach space with the unit closed ball as value.

Corollary 6. Every compact-valued weakly contracting multi-function has a
nonempty compact attractor and this attractor is unique.

A sequence {xn}n≥0 is called a chain of the multi-function f : X → P(X),
if xn+1 ∈ f(xn) for all n ≥ 0.

The following results describe the dynamics of weakly contracting multi-
functions near the attractor.

Theorem 7. [4] Let f : X → Pcp(X) be a compact-valued weakly contracting
multi-function with respect to a comparison function ϕ : R+ → R+. Then for
every chain {xn}n∈N in X and every y0 ∈ X there exists a chain {yn}n∈N in
X, starting at y0, such that

d(xn, yn) ≤ ϕn(d(x0, y0)) (n ≥ 0).

As a consequence we obtain the following result.

Theorem 8. [4] [Asymptotic phase theorem for weakly contracting multi-
functions] Let f : X → Pcp(X) be a compact-valued weakly contracting multi-
function and let A stand for its attractor. Then for every chain {xn}n∈N in
X and every a0 ∈ A there exists a chain {an}n∈N in A, starting at a0, such
that d(xn, an) → 0, as n → +∞.

In what follows we will call the big positive orbit of a point the subset of
all chains, which start at this point. It is worth noting that the big positive
orbit of a point differs from the image of this point under the orbit relation
(see below), just this point making the difference.
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Theorem 9. [4] The big positive orbit of every point from the attractor of a
weak contracting compact-valued multi-function represents a dense subset on
the attractor.

4. Limit sets and limit relations for weak contractions

In this section we will assume that X is a complete metric space with the
property that each bounded and closed subset is compact. Also, let f ⊂ X×X
be a closed relation which, treated as a multi-function, takes bounded and
closed (therefore, compact) values. Associated with f there are other relations
containing f . The first one is the orbit relationOf =

⋃
n≥1

fn. Generally, Of(x)

is not a closed set, nor Of is a closed relation. To close them we need the
following definition of the limit of a sequence of closed subsets {Cn}n≥1:

C := lim sup {Cn} =
⋂

n≥1

⋃

k≥n

Ck.

If X is compact, then limsup exists and is unique. In this case for a subset
C to be lim sup {Cn} means that for every ε > 0 there exists a natural N(ε)
such that for every n ≥ N(ε) the set Cn is contained in the ε-neighborhood
of C, and C is the smallest closed subset with this property (see, e.g. [1]). In
the noncompact case limsup may be empty.

Obviously, convergence in the Hausdorff-Pompeiu metrics implies conver-
gence in the above mentioned sense.

Given x ∈ X we define ω-limit relation ωf by ωf(x) = lim sup {fn(x)}.
Thus, the relation ωf ⊂ X × X is defined by its values as a set-valued

mapping. Generally, ωf is not a closed relation. Taking the closure of each
value, one obtains the recurrent relation

Rf(x) := Of(x) = Of(x) ∪ ωf(x).

The relationRf also need not be closed. We get a closed relation by defining
Ωf = lim sup {fn}.

Using Ωf instead of ωf , we obtain the closure of the orbit relation Of :

N f = Of ∪ Ωf = Of.

Thus, for every closed relation f we have a tower of limit relations:

f ⊂ Of ⊂ Rf ⊂ Nf.

In general, all these inclusions are strict. They are strict even for an even-
tually condensing relation. At the same time, for an actual condensation all
inclusions become equalities.

The following result shows that for a weakly contracting relation some of
these inclusions are equalities.
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Theorem 10. Let X be a complete metric space with the property that every
bounded and closed subset is compact. Let f : X → Pb,cl(X) be a weakly con-
tracting multi-function and let A stand for its attractor. Then the associated
limit relations satisfy the following equalities:

(1) ωf = Ωf = X ×A;
(2) Of = Rf = N f .

Proof. 1) It is known that convergence with respect to Hausdorff-Pompeiu
metrics implies convergence with respect to limsup. Using

H(fn(x), fn
∗ (A)) ≤ ϕn(H(x,A)) → 0, as n → +∞,

one has lim sup {fn(x)} = A, so ωf(x) = A for every x ∈ X.
The second equality Ωf = X × A follows from the previous one and from

the relations (see [1])
⋂

ε>0

Ωf(V̄ε(x)) = Ωf(x) =
⋂

ε>0

ωf(V̄ε(x)),

where V̄ε(x) denotes the closed ε-neighborhood of x.
2) To prove the second sentence one uses the result 1) and the definitions

of the limit relations:

Of = Rf = Of ∪ ωf = Of ∪ (X ×A) = Of ∪ Ωf = Nf.

¤

5. Eventually condensing multi-functions

We say that a compact-valued multi-function (relation) f : X → Pcp(X) is
an eventual condensation if there exists a non-empty compact K ⊂ X (called
the condensation set) and a natural n0 such that for all n ≥ n0 the multi-
function fn is constant with value K. The smallest natural n0 with this
property is called the time of condensation. For n0 = 1 the multi-function f
is a condensation. In contrast with a condensation, an eventual condensation
need not be contracting.
Remark 3. For an eventual condensation f : X → Pcp(X) with condensation
set K and condensation time n0 one has

Of = f ∪ f2 · · · ∪ fn0−1 ∪ (X ×K).

Theorem 11. Let X be a complete metric space with the property that every
bounded and closed subset is compact and let f be an eventual condensation
with the condensation set K. Then

(1) ωf = Ωf = X ×K;
(2) Of = Of = Rf = N f .
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Proof. 1) Let n0 be the condensation time for f . One has

Ωf = lim sup {fn} = lim sup {fn(fn0)} = X ×K.

Similarly, for every x ∈ X:

ωf(x) = lim sup {fn(x)} = lim sup {fn(fn0(x))} = K.

So, ωf = Ωf = X ×K.
2) Since f is an eventual condensation, the orbit relation takes the form

Of = f ∪ f2 · · · ∪ fn0−1 ∪ (X ×K).

Since f, . . . , fn0−1 are closed, we have Of = Of .
Other equalities follow from the respective definitions and the result 1). ¤

6. Limit sets and limit relations for weak contractions with
eventual condensation

M. Barnsley [2] has obtained a nice formula for the attractor of a hyperbolic
IFS with condensation. Namely, if {X; f1, . . . , fm} is a hyperbolic IFS with
the attractor A, and if f0(x) ≡ K for some compact set K ⊂ X and for all
x ∈ X, then the attractor A1 of the IFS with condensation {X; f0, f1, . . . , fm}
has the form

A1 = A ∪ ( ⋃

n≥0

fn
∗ (K)

)
, (1)

where f∗ is the respective Nadler-Hutchinson mapping for the hyperbolic IFS.
Both relations, the hyperbolic IFS and the condensation, are contractions,

as well as their union F := f ∪ f0 (relation generated by a contraction and a
condensation), or in other words, F (x) = f(x) ∪ f0(x).

An eventual condensation is an eventual contraction as well, i.e. some its
power is a contraction (moreover, a constant). At the same time the union of
a contraction and of an eventual condensation need not be even an eventual
contraction.
Example 1. Consider the functions f0, f1 : R→ R,

f0(x) =
{ 0, x ≤ 1,

−2x + 2, x > 1;
f1(x) =

{ −x/2 + 1, x ≤ 0,

1, x > 0.

The function f1 is a contraction. Moreover, it is an eventual condensation,
since f2

1 (x) ≡ 1. The function f0 is also an eventual condensation, since
f2
0 (x) ≡ 0, but it is not contracting. Their union F = f1∪f0 is not an eventual

contracting, since for every x ∈ R there exists a periodic or a preperiodic chain,
starting at x. For example, for x ∈ (−∞, 0] ∪ [1, +∞) one has

x
f07−→ (−2x + 2)

f17−→ x,
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while x ∈ (0, 1) yields

x
f07−→ 0

f17−→ 1
f07−→ 0.

In what follows we state the limit sets and the limit relations as asymptotic
characteristics of set-valued dynamics, generated by iterations of the relation
F = f ∪ f0, where f is a weak contraction and f0 is an eventual condensation.
In contrast with the previous results the limit relations ωF and ΩF need not
be constant. The relation F itself, generally, may admit many local attractors.

Lemma 12. Let f be a hyperbolic IFS with the attractor A. Then for every
nonempty compact B ⊂ X and for every m ≥ 0 one has

⋃

n≥m

fn(B) = A ∪ ( ⋃

n≥m

fn(B)
)
.

Proof. The sentence follows from the fact that for every nonempty compact
B ⊂ X the sequence {fn(B)}n≥0 converges to A, as n tends to +∞. ¤

Theorem 13. Let X be a complete metric space with the property that every
bounded and closed subset is compact. Let f be a weakly contracting relation
with the attractor A and let f0 denote an eventual condensation with the con-
densation time n0. Then for every x ∈ X the ω-limit set with respect to the
relation F := f ∪ f0 has the form

ωF (x) =
⋂

n≥1

⋃

m≥n

Bm(x), (2)

where the sequence of subsets {Bm(x)}m≥0 is defined as follows:

B0(x) =
⋃

n≥0

fn(x),

Bm(x) =
⋃

n≥0

fn
(
f0(Fm−1(x))

)
(m ≥ 1). (3)

Proof. By definition

ωF (x) = lim sup {Fn(x)} =
⋂

n≥1

⋃

k≥n

F k(x),

where F k means the union of all possible compositions of k relations, consisting
of f and f0.

For convenience we will use the notation f1 instead of f . Notice that

F k(x) =
⋃

ij∈{0, 1}
(fik ◦ fik−1

◦ · · · ◦ fi1)(x) = fik(fik−1
(. . . (fi1(x)) . . .)).

Denote the composition fik ◦ fik−1
◦ · · · ◦ fi1 by fi1i2...ik .
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Let W be the set of all finite words of two letters {0, 1}. Define an one-
to-one correspondence between W and the set of all compositions

⋃
k≥1

F k as

follows:
w = i1i2 . . . ik 7−→ fi1i2...ik .

Denote by Wm (m ≥ 1) the set of all words of length at least m, and such
that each of them contains at least one ”0” and the last ”0” in this word
appears at the position m. The set W0 consists of all words without ”0”.
These subsets make a partition of W , i.e. W =

⋃
m≥0

Wm and Wi ∩Wj = ∅ for

i 6= j.
Let prove (2), rewritten as follows:

⋂

n≥1

⋃

k≥n

F k(x) =
⋂

n≥1

⋃

m≥n

Bm(x). (4)

Since Bm(x) ⊂ ⋃
k≥m

F k(x), one has
⋃

m≥n
Bm(x) ⊂ ⋃

k≥n

F k(x) for every n ≥ 1.

Therefore, ⋂

n≥1

⋃

m≥n

Bm(x) ⊂
⋂

n≥1

⋃

k≥n

F k(x).

Conversely, assume that y ∈ ⋂
n≥1

⋃
k≥n

F k(x). So, given ε > 0 and n ≥ 1,

there exists k > n such that %(y, F k(x)) < ε/2, i.e. there exists a word
wk = i

(k)
1 . . . i

(k)
k ∈ W such that %(y, fi1...ik(x)) < ε/2 (for convenience we omit

here and below the superscript, which denotes the dependence on the word
wk).

There are two possibilities:

1) There exists a natural m such that for every k ≥ m one has wk ∈
m⋃

j=1
Wj ,

i.e. none of these words has the letter ”0” to the right of the position m.
Denote by C the compact C = Fm(x). Then for every k > m for the mentioned
words wk = i1 . . . ik one has im+1 = . . . = ik = 1 and

fi1...imim+1...ik(x) = fim+1...ik(fi1...im(x)) ⊂ fim+1...ik(Fm(x)) = fk−m
1 (C).

Using the properties of the distance % from one set to another (see, e.g. [1])
and the fact that A is the attractor for weakly contracting multi-function f1,
one has for k big enough:

%(y, A) ≤ %(y, fi1...ik(x)) + %(fi1...ik(x), A) ≤
%(y, fi1...ik(x)) + %(fk−m

1 (C), A) ≤ ε/2 + ε/2 = ε. (5)

Since ε is arbitrary, (5) implies that %(y,A) = 0, which, in turn, implies
y ∈ A ⊂ ⋃

n≥m
fn
1 (x) for every m ≥ 0.
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2) For every n ≥ 1 there exist naturals k > m > n such that the word
wk = i1 . . . ik belongs to Wm. In this case fi1...ik(x) ∈ Bm(x), which, in turn,
implies y ∈ ⋂

n≥1

⋃
m≥n

Bm(x).

Hence,
⋂

n≥1

⋃

k≥n

F k(x) ⊂
⋂

n≥1

⋃

m≥n

Bm(x).

This accomplishes the proof of (4). ¤

Theorem 14. If the sequence {Bm}m≥0 from Theorem 13 satisfies the equality
Bm0+1(x) = Bm0(x) for some m0 ≥ 0, then it stabilizes, i.e.

Bm+1(x) = Bm(x) (6)

for all m ≥ m0, and

ωF (x) = Bm0(x). (7)

Proof. Let Bm0+1(x) = Bm0(x). We will show by induction that (6) holds for
all m ≥ m0.

Firstly, notice that
⋃

n≥0
fn

(
Bm(x)

)
= Bm(x) for every m ≥ 0.

Assume that (6) occurs for some m ≥ m0, i.e.
⋃

n≥0

fn
(
f0(Fm(x))

)
=

⋃

k≥0

fk
(
f0(Fm−1(x))

)
. (8)

The latter implies the following inclusion:

f0(Fm(x)) ⊂
⋃

k≥0

fk
(
f0(Fm−1(x))

)
,

which, in turn, yields

f0(Fm+1(x)) = f0(Fm(F (x))) ⊂ ⋃
k≥0

fk
(
f0(Fm−1(F (x)))

)
=

⋃
k≥0

fk
(
f0(Fm(x))

)
= Bm+1(x).

As a consequence,

Bm+2(x) =
⋃

n≥0

fn
(
f0(Fm+1(x))

) ⊂
⋃

n≥0

fn(Bm+1(x)) = Bm+1(x).

Conversely, (8) implies

f0(Fm−1(x)) ⊂
⋃

n≥0

fn
(
f0(Fm(x))

)
,
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which, in turn, yields

f0(Fm(x)) = f0(Fm−1(F (x))) ⊂ ⋃
n≥0

fn
(
f0(Fm(F (x)))

)
=

⋃
n≥0

fn
(
f0(Fm+1(x))

)
= Bm+2(x),

and

Bm+1(x) =
⋃

k≥0

fk
(
f0(Fm(x))

) ⊂
⋃

k≥0

fk(Bm+2(x)) = Bm+2(x).

So, Bm+2(x) = Bm+1(x).
Therefore, (6) holds for all m ≥ m0.
In these conditions the equality (7) follows directly from (2). ¤

Remark 4. If f0 : X → Pcp(X) is a condensing multi-function with the
condensation set K, then (3) implies

Bm(x) = B1(x) =
⋃

n≥0

fn(K),

and, by Lemma 12,

ωF (x) = B1(x) =
⋃

n≥0

fn(K) = A ∪ ( ⋃

n≥0

fn(K)
)

= A1,

where A1 is the attractor of F = f ∪ f0. As a result, the formula (2) becomes
Barnsley’s formula (1).
Remark 5. Example 1 represents an IFS, consisting of two functions, each
one with a unique fixed point as (global) attractor. Every hyperbolic IFS,
consisting of two functions on R, possesses a unique attractor, located between
the fixed points of IFS and containing these fixed points. Thus, in our example,
there are two natural candidates for the attractor: the whole segment [0, 1], or
a subset containing the boundary {0, 1}. None of them satisfies the definition
of attractor, since every their neighborhood contains periodic chains beyond
the supposed attractor. This argument is valid for every segment [−2a + 2, a]
with |a| ≥ 1, which is invariant with respect to IFS.
Remark 6. A relation, consisting of a weak contraction and an eventual con-
densation may admit more than one local attractor, as the following example
shows.
Example 2. Consider the IFS with an eventual condensation F = {R2; f0, f1,
f2}, consisting of two contractions

f1(x, y) = (0.64x− 0.48y − 0.18, 0.48x + 0.64y + 1.24),
f2(x, y) = (0.36x + 0.48y + 0.32, −0.48x + 0.36y + 1.24),
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and of an eventually condensing multi-function f0 with condensation set K
and condensation time n0 = 2,

f0(x, y) =





K, if y < 4.3,

K ∪K1, if y = 4.3,

K1, if y > 4.3,

where K = [−0.5, 0.5]× [0, 1] and K1 = [3, 4]× [0, 1].
Figure 2 represents two local attractors of this IFS: the first attractor (left)

is the Pythagoras tree and the second one (right) is the union of the attractors
from the Figure 1.

Figure 2. Two local attractors of an IFS with eventual condensa-
tion: the first (left) and the second, including the first one (right)

Modifying the eventual condensation f0 (but keeping the same condensation
time n0 = 2), one can construct IFS’s with any finite or even infinite number
of distinct local attractors.

All numerical calculations and graphic objects have been done using the
Computer Algebra System Mathematica.
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