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Abstract

This paper investigates the concept of ideal convergence of sequences of sets through neighborhoods in
topological context. The operators ∆−

x and ∆+
x are employed as fundamental tools for the establishment of

nI-limit inferior and nI-limit superior. For sequence of sets, ‘sandwich’ theorem like description is presented
under nI-convergence. Several inclusion properties of nI − lim inf , nI − lim sup and related notions are
derived. It has been shown that in an I compact space, sequence of closed sets having I-intersection property
always possess nI − lim inf . The scope and limitations of the theory are further tracked down through
counterexamples.
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1. Introduction

The concept of convergence has always been in the center of interest for analysis and topology. Although
classical convergence is a powerful tool, it frequently proves its restrictiveness in situations where exceptional
indices are permitted for small deviations from a limit should be ignored. In order to fix this, the set theoretic
concept of ideal provides a natural framework for the generalization of classical convergence. Formally, a
family I ⊆ P(X) is called an ideal on an non empty set X if

(i) If Y ∈ I and Z ⊆ Y , then Z ∈ I (hereditary property).
(ii) If Y,Z ∈ I, then Y ∪ Z ∈ I (closed under finite unions).
Unsurprisingly, I represents the collection of insignificant or negligible sets. This makes it a suitable

tool for the analysis of non converging sequences and non-covering topological properties [1, 15]. Some very
common ideals of the set of natural numbers found in literature are

(i) Ifin = {A ⊆ N : A is finite },
(ii) Iδ = {A ⊆ N : δ(A) = limn→∞

1
n |{k ≤ n : k ∈ A}| = 0}, δ(A) being the natural density (also known

as asymptotic density [7, 8]) of A ⊆ N.
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(iii)I2N = {A : A ⊆ 2N} etc.
Kostyrko et. al. [10] introduced the notion of ideal convergence, marking the opening of a new line

of generalizations of convergence. They defined a sequence {xn : n ∈ N} in a topological space X to be
I-convergent to a point x ∈ X if for every neighborhood U of x, the set {n ∈ N : xn ̸∈ U} ∈ I.

This definition generalizes ordinary convergence and statistical convergence, i.e., ideal convergence stands
for ordinary convergence if I = Ifin and statistical convergence if I = Iδ[5, 13]. The main strength of ideal
convergence is its flexibility. Different choices of ideals lead to different convergence behaviors, providing a
unique setting for convergence notions.

As documented by Zoretti [18] the concept of the limit of sequences of sets was originally introduced
by Painlevé in 1902. Through the influential work of Kuratowski [11], particularly in his seminal book
Topologie, this notion gained wider recognition which led to its frequent reference as the Kuratowski limit.
Wijsman [16, 17] made separate approaches to study convergence of sequences of convex sets known as
Wijsman convergence. As per the definition of Kuratowski, any decreasing sequence of subsets {Yn : n ∈ N}
has a limit, which is the intersection of their closures. If Yn ⊆ Ym, when n ≥ m, then limYk =

⋂
k≥1 Yk. So

in the real line space with the usual topology, the limit of the sequence {Yk = {yk} : k ∈ N} of singletons
will always be empty until it’s a constant sequence. As per the definition of Wijsman, in a metric space
(X, ρ), for non-empty closed subsets Y , Yk ⊆ X, we say that the sequence {Yk : k ∈ N} is convergent to Y
if limk→∞ dk(x) = d(x) for each x ∈ X, where d, dk : X → R+are defined as d(x) = d(x, Y ) = infy∈Y ρ(x, y)
and dk(x) = d(x, Yk) = infy∈Y ρ(x, y).

Despite having an early origin, set convergence has emerged as a powerful analytical tool, particularly
in the context of approximations pertaining optimization, systems of equations, and other mathematical
structures in last few years. With the introduction of generalized convergence (statistical convergence and
ideal convergence), works of Kuratowski and Wijsman achieved new heights and also the limitations of these
convergence criterion are revealed. Kuratowski convergence is applicable only for the decreasing sequences
of sets and Wijsman convergence is applicable on sequences of closed sets. In 2012, Nuray et. al.[14], started
the investigation on statistical convergence of sequence of sets but that too is restricted up to the sequence
of closed sets. In 2015, Inan et. al. [9] made an outstanding approach towards ideal convergence of sequence
of sets. They defined two operators N−

x (Yk) and N+
x (Yk) on the sequence of subsets {Yk : k ∈ N} in a

topological space (X, τ) as

N−
x (Yk) = {k ∈ N : x ̸∈ Yk} and N+

x (Yk) = {k ∈ N : x ∈ Yk}.

They defined ideal limit inferior and ideal limit supremum as

I−lim inf

k → ∞ Yk = {x ∈ X : N−
x (Yk) ∈ I} and

I−lim sup

k → ∞ Yk = {x ∈ X : N+
x (Yk) ̸∈ I}.

If
I−lim inf

k → ∞ Yk =
I−lim sup

k → ∞ Yk, then the common set is defined as the ideal limit of the sequence {Yk : n ∈ N}.
Although all efforts has been given so as to define a convergence criteria applicable to the sequence of sets
irrespective of the nature of the sets, the approach totally misses the importance of the neighborhoods of the
limit which again makes it applicable only for sequence of closed sets. In this paper, we propose a general
form of ideal convergence for sequence of sets applicable to all sequences of sets irrespective of the nature
of the sets.

2. Preliminaries

The operators ∆−
a and ∆+

a , their properties and some other associated notions that are necessary for
this study are stated in this section.

Definition 2.1. [9] Let {An}n∈N be a sequence of sets. The limit inferior and limit superior of the sequence
of sets is

lim sup
n→∞

An =

∞⋂
n=1

⋃
k≥n

Ak and lim inf
n→∞

An =

∞⋃
n=1

⋂
k≥n

Ak
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respectively. If lim infn→∞An = lim supn→∞An = A, then {An}n∈N is called convergent to the common
set A in ordinary sense and denoted by limn→∞An = A.

The operators N−
x and N+

x has been modified to ∆−
x and ∆+

x respectively by Bal et. al. [2] to have more
general and more analylical flexibility.

Definition 2.2. [2] Let {Ak : k ∈ N} be a sequence of subsets of X in a topological space (X, τ). Then,

∆−
a (Ak) = {k ∈ N : U ∩Ak = ∅ for atleast one neighborhood U of a}

and ∆+
a (Ak) = {k ∈ N : U ∩Ak ̸= ∅ for every neighborhood U of a}.

The use of neighborhoods of the limiting elements makes these operators more useful for the study of
convergence criteria of sequence of sets. The properties of these operators are extensively studied by Bal et.
al. [2]. Some of these properties that are used in our study are stated below.

Proposition 2.3. [2] Let {Ak : k ∈ N} be a sequence of subsets of X in a topological space (X, τ). Then,

(1) ∆−
a (Ak) ∩∆+

a (Ak) = ∅ for each a ∈ X.

(2) ∆−
a (Ak) ∪∆+

a (Ak) = N for each a ∈ X.

Proposition 2.4. [2] Let {Ak : k ∈ N} and {Bk : k ∈ N} be two sequences of subsets of X in a topological
space (X, τ). Then,

(1) ∆−
a (Ak ∩Bk) ⊇ ∆−

a (Ak) ∪∆−
a (Bk)

(2) ∆+
a (Ak ∩Bk) ⊆ ∆+

a (Ak) ∩∆+
a (Bk)

(3) ∆−
a (Ak ∪Bk) = ∆−

a (Ak) ∩∆−
a (Bk)

(4) ∆+
a (Ak ∪Bk) = ∆+

a (Ak) ∪∆+
a (Bk)

Proposition 2.5. [2] Let us consider {A(i)
n : n ∈ N}pi=1 be sequences of subsets of X in a topological space

(X, τ). Then,

(1) ∆−
a (

p∏
i=1

A
(i)
n ) =

p⋃
i=1

∆−
ai(A

(i)
n ), where a = (a1, a2, a3, . . . , ap).

(2) ∆+
a (

p∏
i=1

A
(i)
n ) =

p⋂
i=1

∆+
ai(A

(i)
n ), where a = (a1, a2, a3, . . . , ap).

Definition 2.6. [12] A family F ⊆ P(X) is called a filter on a non empty set X if following properties hold
(i) If Y ∈ F and Z ⊇ Y , then Z ∈ F .
(ii) If Y,Z ∈ F , then Y ∩ Z ∈ F .

If I is an ideal on X then the family {X \ I : I ∈ I} of subsets of X forms a filter on X denoted by F(I).

Definition 2.7. [3] Consider an ideal I on the set N of natural numbers. A space X is called an I-compact
space if for every countable open cover U = {An : n ∈ N} of X, there exists a sub-cover V = {Ank

: k ∈ N}
such that {nk : Ank

∈ V} ∈ I.

Definition 2.8. [3] Let I be an ideal on N. A familyA = {Ωn : n ∈ N} is categorized to posses I-intersection
property if A ≠ ∅ and

⋂
n∈S Ωn ̸= ∅ for all S ∈ I.

Theorem 2.9. [3] In an I-compact space, every family of closed sets having I-intersection property have
nonempty intersection.

Through out the paper a space X means a topological space X with the associate topology τ . I stands
for any arbitrary ideal I defined on the set N of natural numbers. I is not restricted up to admissible ideal
and no separation axioms has been assumed in this paper otherwise stated. For general symbols and notions
we follow [6].
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3. Main Results

In this section, the concept of neighborhood induced ideal limit has been established. Its relation with
the associated concepts of convergence are investigated and their set theoretic properties are revealed.

Definition 3.1. A set Yinf is the neighborhood induced ideal limit inferior (in short nI − lim inf) of a
sequence {Yn : n ∈ N} of subsets in a space X if

Yinf =
nI−lim inf
n → ∞ Yn = {x ∈ X : ∆−

x (Yn) ∈ I}.

Similarly, a set Y sup is the neighborhood induced ideal limit superior (in short nI − lim sup) of a sequence
{Yn : n ∈ N} of subsets in a space X if

Y sup =
nI−lim sup
n → ∞ Yn = {x ∈ X : ∆+

x (Yn) ∈ F(I) ∪ (P(N) \ I)}.

If
nI−lim inf
n → ∞ Yn =

nI−lim sup
n → ∞ Yn = Y , then the common set Y is called the neighborhood induced ideal limit

(in short nI − lim) of the sequence {Yn : n ∈ N}. We express it as

nI−lim
n → ∞ Yn = Y.

If
nI−lim inf
n → ∞ Yn ̸=

nI−lim sup
n → ∞ Yn or

nI−lim inf
n → ∞ Yn =

nI−lim sup
n → ∞ Yn = ∅, then we say that

nI−lim
n → ∞ Yn does not

exists. It is evident to explain that there might be an I ⊆ N that belongs to both I and F(I). We want to
consider that I for both cases i.e., while computing the Yinf as well as while computing Ysup. So we have
taken ∆+

x (Yn) ∈ F(I)∪ (P(N) \ I) rather than taking ∆+
x (Yn) ∈ F(I) or ∆+

x (Yn) ̸∈ I. More over if we take
only ∆+

x (Yn) ∈ F(I), the concepts of Yinf and Ysup does not make any difference.

Example 3.2. Consider the sequence,

Yn =

{
[0, 1

n) if n = k2 for some k ∈ N,
(1− 1

n , 1] otherwise.

Here, ∆−
0 (Yn) = {2, 3, 5, . . . } ̸∈ Iδ; ∆−

1 (Yn) = {4, 9, 16, . . . } ∈ Iδ. For every, a ∈ (−∞, 0) ∪ (1,∞),
∆−

a (Yn) = N ̸∈ Iδ. For every, a ∈ (0, 1), ∆−
a (Yn) = N \A(where A is a finite set) ̸∈ Iδ.

Therefore,
nIδ−lim inf
n → ∞ Yn = {1}.

On the other side, ∆+
0 (Yn) = {1, 4, 9, 16, . . . } ̸∈ (P(N)\Iδ)∪F(Iδ); ∆+

1 (Yn) = {1, 2, 3, 5, 6, 7, 8, 10, . . . } ∈
(P(N)\Iδ)∪F(Iδ). For every, a ∈ (−∞, 0)∪(1,∞), ∆+

a (Yn) = ∅ ̸∈ (P(N)\Iδ)∪F(Iδ). For every, a ∈ (0, 1),
∆+

a (Yn) = A (where A is a finite set) ̸∈ (P(N) \ Iδ) ∪ F(Iδ).

Therefore,
nIδ−lim sup
n → ∞ Yn = {1}.

Thus,
nIδ−lim
n → ∞ Yn = {1}.

Lemma 3.3. If I ∈ (P(N) \ I) ∪ F(I), for some ideal I and J ⊇ I, then J ∈ (P(N) \ I) ∪ F(I).

Proof. If I ∈ F(I), then J ∈ F(I), by virtue of filter. Let, I ∈ P(N) \ I and J ̸∈ P(N) \ I. So I ̸∈ I and
J ∈ I, which is a contradiction. So, J ∈ P(N) \ I.

Proposition 3.4. For every sequence {Yn : n ∈ N} of subsets in a space X,

nI−lim inf
n → ∞ Yn ⊆

nI−lim sup
n → ∞ Yn.
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Proof. Let y ∈
nI−lim inf
n → ∞ Yn = {x ∈ X : ∆−

x (Yn) ∈ I}. Therefore, ∆−
y (Yn) ∈ I, i.e., {n ∈ N : U ∩ Yn =

∅ for at least one neighborhood U of y} ∈ I. So, {n ∈ N : U ∩ Yn ̸= ∅ for every neighborhood U of y} ∈
F(I), i.e., ∆+

y (Yn) ∈ F(I). Thus, y ∈
nI−lim sup
n → ∞ Yn. Hence,

nI−lim inf
n → ∞ Yn ⊆

nI−lim sup
n → ∞ Yn.

Example 3.5. Let us consider the ideal I = P(N\2N) defined on N, then F(I) = {(2N∪M) : M ⊆ N\2N}.
Consider the space R with usual topology and the sequence {Yn : n ∈ N} such that

Yn =


(−1,−1 + 1

n) ∪ (1− 1
n , 1) if n is an odd prime,

(− 1
n ,

1
n) if n is even,

{0} otherwise.

Here, ∆−
−1(Yn) = {n ∈ N : U ∩ Yn = ∅ for at least one neighborhood U of −1} = 2N ∪ {1, 9, 15, 21, ...} ̸∈ I;

∆−
1 (Yn) = 2N ∪ {1, 9, 15, 21, ...} ̸∈ I; ∆−

0 (Yn) = 2N ∪ {3, 5, 7, 11, ...} ∈ I.
For a ∈ (−∞,−1)∪ (1,∞), ∆−

a (Yn) = N ̸∈ I. For a ∈ (−1, 0)∪ (0, 1), ∆−
a (Yn) contains infinitely many even

numbers. So, ∆−
a (Yn) ̸∈ I.

Therefore,
nI−lim inf
n → ∞ Yn = {0}.

On the other side, ∆+
−1(Yn) = {3, 5, 7, 11, 13, . . . } ̸∈ F(I)∪ (P(N) \ I); ∆+

1 (Yn) ̸∈ F(I)∪ (P(N) \ I) and
∆+

0 (Yn) = 2N ∪ {1, 9, 15, 21, . . . } ∈ F(I) ∪ (P(N) \ I).
For a ∈ (−∞,−1) ∪ (1,∞) ∪ (−2

3 ,−
1
2) ∪ (12 ,

2
3), ∆

+
a (Yn) = ∅ ̸∈ F(I) ∪ (P(N) \ I). For a ∈ (−1,−2

3 ] ∪ [23 , 1),
∆+

a (Yn) = {3, 5, 7, 11, . . . } ̸∈ F(I)∪ (P(N) \ I). For a ∈ [−1
2 , 0)∪ (0, 12 ], ∆

+
a (Yn) ⊆ 2N ∈ F(I)∪ (P(N) \ I).

Therefore,
nI−lim sup
n → ∞ Yn =

[
− 1

2
,
1

2

]
.

Hence,
nI−lim inf
n → ∞ Yn ⊆

nI−lim sup
n → ∞ Yn.

Proposition 3.6. For every sequence {Yn : n ∈ N}, in a topological space (X, τ),

(i)
lim inf
n → ∞ Yn ⊆

nIfin−lim inf
n → ∞ Yn.

(ii)
lim sup
n → ∞ Yn ⊆

nIfin−lim sup
n → ∞ Yn.

Proof.

(i) Let y ∈
lim inf
n → ∞ Yn =

∞⋃
n=1

⋂
k≥n

Yk.

So, y ∈
⋂

k≥n0
Yk for at least one n0 ∈ N, i.e., y ∈ Yk for all k ≥ n0, for at least one n0 ∈ N. Therefore,

{n ∈ N : y ̸∈ Yn} ⊆ {1, 2, 3, . . . , n0}, i.e., {n ∈ N : y ̸∈ Yn} ∈ Ifin. Now U ∩ Yn = ∅ for at least
one neighborhood U of y implies that y ̸∈ Yn. So, ∆−

y (Yn) = {n ∈ N : U ∩ Yn = ∅ for at least one

neighborhood U of y} ⊆ {n ∈ N : y ̸∈ Yn}. Therefore, ∆−
y (Yn) ∈ Ifin. Thus y ∈

nIfin−lim inf
n → ∞ Yn. Hence,

lim inf
n → ∞ Yn ⊆

nIfin−lim inf
n → ∞ Yn.

(ii) Let y ∈
lim sup
n → ∞ Yn =

∞⋂
n=1

⋃
k≥n

Yk.

Thus, for all n ∈ N, y ∈
⋃

k≥n Yk. However large n is there is a k ≥ n such that y ∈ Yk. So y ∈ Yk for
infinitely many n ∈ N. Thus, {n ∈ N : y ∈ Yn} ∈ (P(N) \ Ifin) ∪ F(Ifin). If y ∈ Yn then U ∩ Yn ̸= ∅ for
every neighborhood U of y. Thus, {n ∈ N : y ∈ Yn} ⊆ {n ∈ N : U ∩ Yn ̸= ∅ for every neighborhood U of

y} ∈ (P(N) \ Ifin) ∪F(Ifin), i.e., ∆+
y (Yn) ∈ (P(N) \ Ifin) ∪F(Ifin). Therefore, y ∈

nIfin−lim sup
n → ∞ Yn. Hence,

lim sup
n → ∞ Yn ⊆

nIfin−lim sup
n → ∞ Yn.
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Corollary 3.7. For every sequence {Yn : n ∈ N} of closed sets, in a topological space (X, τ),

(i)
lim inf
n → ∞ Yn =

nIfin−lim inf
n → ∞ Yn =

nIfin−lim sup
n → ∞ Yn =

lim sup
n → ∞ Yn.

Example 3.8. There exists a sequence of subsets which is nI-convergent but not convergent at all.
Let X = N, τ = {∅, {2}} ∪ {{1, 2, 3, . . . n : n ∈ N}} and I2N = P(2N). Then (X, τ) is a topological space
and I2N is an ideal on the set of natural numbers. Consider the sequence

Yn =

{
{1}, if n is an even number,

{2}, otherwise.

Now ∆−
1 (Yn) = {1, 3, 5, . . . } ̸∈ I2N; ∆−

2 (Yn) = {2, 4, 6, . . . } ∈ I2N and for other a ∈ N, ∆−
a (Yn) = ∅ ∈ I2N.

Therefore,
nI2N−lim inf
n → ∞ Yn = N \ {1}.

Also, ∆+
1 (Yn) = {2, 4, 6, . . . } ̸∈ (P(N) \ I2N) ∪ F(I2N); ∆+

2 (Yn) = {1, 3, 5, . . . } ∈ (P(N) \ I2N) ∪ F(I2N) and
for other a ∈ N, ∆+

a (Yn) = N ∈ (P(N) \ I2N) ∪ F(I2N). Therefore,
nI2N−lim sup
n → ∞ Yn = N \ {1}.

Thus,
nI2N−lim
n → ∞ Yn = N \ {1}

On the other side,
∞⋂
n=1

⋃
k≥n

Yn = {1, 2} and
∞⋃
n=1

⋂
k≥n

Yn = ∅.

Thus
lim

n → ∞ Yn does not exists.

Sandwich theorem is a very important concept in analysis to verify the stability of any convergence
criteria. So we try to give a sandwich theorem like characterization for the nI convergence for the sequence
of sets.

Theorem 3.9. In a space X, {Φn : n ∈ N}, let {Ψn : n ∈ N} and {Ωn : n ∈ N} be three sequence of subsets

such that
nI−lim
n → ∞ Φn =

nI−lim
n → ∞ Ωn = Γ. If Φn ⊆ Ψn ⊆ Ωn for each n ∈ N, then

nI−lim
n → ∞ Ψn = Γ.

Proof. Let η ∈ Γ be arbitrary. Now,
nI−lim inf
n → ∞ Φn = Γ as

nI−lim
n → ∞ Φn = Γ. So, ∆−

η (Φn) ∈ I.
Since Φn ⊆ Ψn for each n ∈ N, {n ∈ N : U ∩ Ψn = ∅ for at least one neighborhood U of η } ⊆ {n ∈ N :
U ∩ Φn = ∅ for at least one neighborhood U of η }. i.e., ∆−

η (Ψn) ⊆ ∆−
η (Φn) ∈ I. Therefore, ∆−

η (Ψn) ∈ I.

So, η ∈
nI−lim inf
n → ∞ Ψn.

Thus, Γ ⊆
nI−lim inf
n → ∞ Ψn. (3.1)

Again let ξ ∈
nI−lim inf
n → ∞ Ψn. So, ∆

−
ξ (Ψn) ∈ I.

Since Ψn ⊆ Ωn for each n ∈ N, {n ∈ N : U ∩ Ωn = ∅ for at least one neighborhood U of ξ } ⊆ {n ∈
N : U ∩ Ψn = ∅ for at least one neighborhood U of ξ }. i.e., ∆−

ξ (Ωn) ⊆ ∆−
ξ (Ψn) ∈ I. This implies that

∆−
ξ (Ωn) ∈ I. So, ξ ∈

nI−lim inf
n → ∞ Ωn. But

nI−lim
n → ∞ Ωn = Γ. i.e.,

nI−lim inf
n → ∞ Ωn =

nI−lim sup
n → ∞ Ωn = Γ. So. ξ ∈ Γ.

Thus,
nI−lim inf
n → ∞ Ψn ⊆ Γ. (3.2)

So, from equation 3.1 and equation 3.2,
nI−lim inf
n → ∞ Ψn = Γ. (3.3)

Suppose, γ ∈ Γ be arbitrary.
nI−lim sup
n → ∞ Φn = Γ as

nI−lim
n → ∞ Φn = Γ. So, ∆+

γ (Φn) ∈ (P(N) \ I) ∪ F(I).
Since, Φn ⊆ Ψn for each n ∈ N,
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{n ∈ N : U∩Φn ̸= ∅ for every neighborhood U of γ} ⊆ {n ∈ N : U∩Ψn ̸= ∅ for every neighborhood U of γ}.
i.e., ∆+

γ (Φn) ⊆ ∆+
γ (Ψn). Therefore, ∆

+
γ (Ψn) ∈ (P(N) \ I) ∪ F(I) (By Lemma 3.3) . So, γ ∈

nI−lim sup
n → ∞ Ψn.

Thus, Γ ⊆
nI−lim sup
n → ∞ Ψn. (3.4)

Now let ζ ∈
nI−lim sup
n → ∞ Ψn. So, ∆

+
ζ (Ψn) ∈ (P(N) \ I) ∪ F(I).

Since, Ψn ⊆ Γn, for each n ∈ N,
{n ∈ N : U∩Ψn ̸= ∅ for every neighborhood U of ζ} ⊆ {n ∈ N : U∩Ωn ̸= ∅ for every neighborhood U of ζ}.
i.e., ∆+

ζ (Ψn) ⊆ ∆+
ζ (Ωn). Therefore, ∆+

ζ (Ωn) ∈ (P(N) \ I) ∪ F(I) (By Lemma 3.3) . So, ζ ∈
nI−lim sup
n → ∞ Ωn.

But,
nI−lim
n → ∞ Ωn = Γ. So, ζ ∈ Γ.

Thus,
nI−lim sup
n → ∞ Ψn ⊆ Γ. (3.5)

So, from equation 3.4 and equation 3.5,
nI−lim sup
n → ∞ Ψn = Γ. (3.6)

Thus, from equation 3.3 and equation 3.6,

nI−lim
n → ∞ Ψn = Γ.

Proposition 3.10. Let {Φn : n ∈ N} and {Ψn : n ∈ N} be two sequences of subsets. Then

(i)
nI−lim inf
n → ∞ Φn ∪

nI−lim inf
n → ∞ Ψn ⊆

nI−lim inf
n → ∞ (Φn ∪Ψn).

(ii)
nI−lim sup
n → ∞ Φn ∪

nI−lim sup
n → ∞ Ψn ⊆

nI−lim sup
n → ∞ (Φn ∪Ψn).

Proof. (i) Let β ∈
nI−lim inf
n → ∞ Φn ∪

nI−lim inf
n → ∞ Ψn. So, β ∈

nI−lim inf
n → ∞ Φn or β ∈

nI−lim inf
n → ∞ Ψn. Therefore,

∆−
β (Φn) ∈ I or ∆−

β (Ψn) ∈ I. i.e., ∆−
β (Φn) ∩∆−

β (Ψn) ∈ I. So, ∆−
β (Φn ∪Ψn) ∈ I (By Property 2.4). Thus,

β ∈
nI−lim inf
n → ∞ (Φn ∪Ψn). Hence,

nI−lim inf
n → ∞ Φn ∪

nI−lim inf
n → ∞ Ψn ⊆

nI−lim inf
n → ∞ (Φn ∪Ψn).

(ii) Let β ∈
nI−lim sup
n → ∞ Φn ∪

nI−lim sup
n → ∞ Ψn. So, β ∈

nI−lim sup
n → ∞ Φn or β ∈

nI−lim sup
n → ∞ Ψn. Therefore, ∆

+
β (Φn) ∈

(P(N) \ I)∪F(I) or ∆+
β (Ψn) ∈ (P(N) \ I)∪F(I). i.e., ∆+

β (Φn)∪∆+
β (Ψn) ∈ (P(N) \ I)∪F(I) (By Lemma

3.3). So, ∆+
β (Φn ∪ Ψn) ∈ (P(N) \ I) ∪ F(I) (By Proposition 2.4). Thus, β ∈

nI−lim sup
n → ∞ (Φn ∪ Ψn). Hence,

nI−lim sup
n → ∞ Φn ∪

nI−lim sup
n → ∞ Ψn ⊆

nI−lim sup
n → ∞ (Φn ∪Ψn).

Corollary 3.11. Let {Φn : n ∈ N} and {Ψn : n ∈ N} be two sequences of subsets. If
nI−lim
n → ∞ Φn,

nI−lim
n → ∞ Ψn

and
nI−lim
n → ∞ (Φn ∪Ψn) exists then

nI−lim
n → ∞ Φn ∪

nI−lim
n → ∞ Ψn ⊆

nI−lim
n → ∞ (Φn ∪Ψn).

Example 3.12. Consider the set X = (−1, 1) and the topology τ induced by the usual topology. Consider
the sequences {Φn : n ∈ N} and {Ψn : n ∈ N}, where

Φn =

{
(−1, 0], if n ∈ 2N,
[0, 1), otherwise.

Ψn =

{
[0, 1), if n ∈ 2N,
(−1, 0], otherwise.

Now, ∆−
0 (Φn) = ∅ ∈ Iδ; for every a ∈ (−1, 0), ∆−

a (Φn) = {1, 3, 5, . . . } ̸∈ Iδ and for every a ∈ (0, 1),

∆−
a (Φn) = {2, 4, 6, . . . } ̸∈ Iδ. Therefore,

nIδ−lim inf
n → ∞ Φn = {0}.
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Also, ∆−
0 (Ψn) = ∅ ∈ Iδ; for every a ∈ (−1, 0), ∆−

a (Ψn) = {2, 4, 6, . . . } ̸∈ Iδ and for every a ∈ (0, 1),

∆−
a (Ψn) = {1, 3, 5, . . . } ̸∈ Iδ. Therefore,

nIδ−lim inf
n → ∞ Ψn = {0}.

So,
nIδ−lim inf
n → ∞ Φn ∪

nIδ−lim inf
n → ∞ Ψn = {0}.

On the other side, Φn ∪Ψn = X, for every n ∈ N and for every x ∈ X, ∆−
x (Φn ∪Ψn) = ∅ ∈ Iδ. Therefore,

nIδ−lim inf
n → ∞ (Φn ∪Ψn) = X.

Thus,
nIδ−lim inf
n → ∞ Φn ∪

nIδ−lim inf
n → ∞ Ψn ⊆

nIδ−lim inf
n → ∞ (Φn ∪Ψn).

Example 3.13. Consider the set X = (−1, 1) and the topology τ induced by the usual topology. Consider
the sequences {Φn : n ∈ N} and {Ψn : n ∈ N}, where

Φn =

{
(− 1

n , 0], if n = k2, k ∈ N,
[0, 1

n), otherwise.
Ψn =

{
(−1, 1

n ] ∪ (0, 1), if n = k2, k ∈ N,
(−1, 0) ∪ [ 1n , 1), otherwise.

Now, ∆+
0 (Φn) = N ∈ (P(N) \ Iδ) ∪ F(Iδ). For every a ∈ (−1, 0), ∆+

a (Φn) = F , where F ⊆ {1, 4, 9, 16, . . . }
is finite. So, ∆+

a (Φn) ̸∈ (P(N) \ Iδ) ∪ F(Iδ). For every a ∈ (0, 1), ∆+
a (Φn) = E, where E ⊆ {2, 3, 5, 6, . . . }

is finite. So, ∆+
a (Φn) ̸∈ (P(N) \ Iδ) ∪ F(Iδ). Therefore,

nIδ−lim sup
n → ∞ Φn = {0}.

Also, ∆+
0 (Ψn) = N ∈ (P(N) \ Iδ) ∪ F(Iδ); for every a ∈ (−1, 0), ∆+

a (Ψn) = {2, 3, 5, 6, . . . } ∪ G where
G ⊆ {1, 4, 9, 16, . . . } is finite. So, ∆+

a (Ψn) ∈ (P(N) \ Iδ) ∪ F(Iδ). For every a ∈ (0, 1), ∆+
a (Ψn) =

{1, 4, 9, 16, . . . } ∪ H where H ⊆ {2, 3, 5, 6, . . . }} is finite. So, ∆+
a (Ψn) ̸∈ (P(N) \ Iδ) ∪ F(Iδ). Therefore,

nIδ−lim sup
n → ∞ Ψn = (−1, 0].

So,
nIδ−lim sup
n → ∞ Φn ∪

nIδ−lim sup
n → ∞ Ψn = (−1, 0].

On the other side, Φn∪Ψn = X, for every n ∈ N and for every x ∈ X, ∆+
x (Φn∪Ψn) = N ∈ (P(N)\Iδ)∪F(Iδ).

Therefore,
nIδ−lim sup
n → ∞ (Φn ∪Ψn) = X.

Thus,
nIδ−lim sup
n → ∞ Φn ∪

nIδ−lim sup
n → ∞ Ψn ⊆

nIδ−lim sup
n → ∞ (Φn ∪Ψn).

Proposition 3.14. For any sequence {Yn : n ∈ N},

(i)
(nI−lim inf
n → ∞ Yn

)
∩
( ⋃
n∈∆−

a (Yn)

Yn
)
= ∅ for all a ∈

nI−lim inf
n → ∞ Yn.

(ii)
nI−lim sup
n → ∞ Yn ⊆

⋂
n∈∆+

a (Yn)

Yn for all a ∈
nI−lim sup
n → ∞ Yn.

Proof. (i) Let a ∈
nI−lim inf
n → ∞ Yn be arbitrary. So, ∆−

a (Yn) ∈ I. Thus, for all n ∈ ∆−
a (Yn), we can find a

neighborhood U of a such that U ∩ Yn = ∅. So a can not be a limit point of Yn if n ∈ ∆−
a (Yn). Therefore,

a ̸∈ Yn for all n ∈ ∆−
a (Yn).

So, a ∈
⋂

n∈∆−
a (Yn)

X \ Yn, Therefore, a ∈ X \
( ⋃

n∈∆−
a (Yn)

Yn

)
.

Therefore,
nI−lim inf
n → ∞ Yn ⊆ X \

( ⋃
n∈∆−

a (Yn)

Yn

)
for all a ∈

nI−lim inf
n → ∞ Yn.

Hence,
nI−lim inf
n → ∞ Yn ∩

( ⋃
n∈∆−

a (Yn)

Yn

)
= ∅ for all a ∈

nI−lim inf
n → ∞ Yn.
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(ii) Let a ∈
nI−lim sup
n → ∞ Yn be arbitrary. So, ∆+

a (Yn) ∈ (P(N) \ I) ∪ F(I). Thus, for all n ∈ ∆+
a (Yn),

every neighborhood U of a is such that U ∩ Yn ̸= ∅. So a is a limit point of Yn if n ∈ ∆+
a (Yn). Therefore,

a ∈ Yn for all n ∈ ∆+
a (Yn).

So, a ∈
⋂

n∈∆+
a (Yn)

Yn.

Hence,
nI−lim sup
n → ∞ Yn ⊆

⋂
n∈∆+

a (Yn)

Yn for all a ∈
nI−lim sup
n → ∞ Yn.

Proposition 3.15. In a topological space X, if {Ω(i)
n : n ∈ N}pi=1 are sequences of subsets of X, then

(i)
nI−lim inf
n → ∞

( p∏
i=1

Ω(i)
n

)
=

p∏
i=1

nI−lim inf
n → ∞ Ω(i)

n .

(ii)
nI−lim sup
n → ∞

( p∏
i=1

Ω(i)
n

)
⊆

p∏
i=1

nI−lim sup
n → ∞ Ω(i)

n .

Proof. (i) Let z = (z1, z2, . . . , zp) ∈
nI−lim inf
n → ∞

(∏p
i=1Ω

(i)
n

)
. So ∆−

z

(∏p
i=1Ω

(i)
n

)
∈ I. By Proposition 2.5,⋃p

i=1∆
−
zi

(
Ω
(i)
n

)
∈ I. Therefore ∆−

zi

(
Ω
(i)
n

)
∈ I for each i = 1, 2, 3, . . . , p. Thus, zi ∈

nI−lim inf
n → ∞ Ω

(i)
n for

each i = 1, 2, 3, . . . , p. So, z = (z1, z2, . . . , zp) ∈
∏p

i=1

nI−lim inf
n → ∞ Ω

(i)
n . Therefore,

nI−lim inf
n → ∞

(∏p
i=1Ω

(i)
n

)
⊆∏p

i=1

nI−lim inf
n → ∞ Ω

(i)
n .

Conversely, let z = (z1, z2, . . . , zp) ∈
∏p

i=1

nI−lim inf
n → ∞ Ω

(i)
n . So, zi ∈

nI−lim inf
n → ∞ Ω

(i)
n for each i = 1, 2, 3, . . . , p.

i.e., ∆−
zi

(
Ω
(i)
n

)
∈ I, for each i = 1, 2, 3, . . . , p. Therefore,

⋃p
i=1∆

−
zi

(
Ω
(i)
n

)
∈ I. Now, by Proposition 2.5,

∆−
z

(∏p
i=1Ω

(i)
n

)
∈ I. So, z ∈

nI−lim inf
n → ∞

(∏p
i=1Ω

(i)
n

)
. Therefore,

∏p
i=1

nI−lim inf
n → ∞ Ω

(i)
n ⊆

nI−lim inf
n → ∞

(∏p
i=1Ω

(i)
n

)
.

Hence,
nI−lim inf
n → ∞

( p∏
i=1

Ω(i)
n

)
=

p∏
i=1

nI−lim inf
n → ∞ Ω(i)

n .

(ii) Let z = (z1, z2, . . . , zp) ∈
nI−lim sup
n → ∞

(∏p
i=1Ω

(i)
n

)
. So ∆+

z

(∏p
i=1Ω

(i)
n

)
∈ (P(N) \ I) ∪ F(I). By

Proposition 2.5,
⋂p

i=1∆
+
zi

(
Ω
(i)
n

)
∈ (P(N)\I)∪F(I). Therefore, ∆+

zi

(
Ω
(i)
n

)
∈ (P(N)\I)∪F(I) for each i =

1, 2, 3, . . . , p. Thus, zi ∈
nI−lim sup
n → ∞ Ω

(i)
n for each i = 1, 2, 3, . . . , p. So, z = (z1, z2, . . . , zp) ∈

∏p
i=1

nI−lim sup
n → ∞ Ω

(i)
n .

Therefore,
nI−lim sup
n → ∞

( p∏
i=1

Ω(i)
n

)
⊆

p∏
i=1

nI−lim sup
n → ∞ Ω(i)

n .

Example 3.16. Let X = {1, 2}, then τ = {∅, {1}, X} is a topology on X.
B = τ × τ = {∅, {(1, 1)}, {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, X ×X} is the base for the product space defined on
X ×X = {(1, 1), (1, 2), (2, 1), (2, 2)}. Consider the sequences

Φn =

{
{1}, if n is even,

{2}, otherwise.
and Ψn =

{
{2}, if n is even,

{1}, otherwise.
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Now, ∆+
1 (Φn) = 2N ̸∈ Iδ; ∆+

2 (Φn) = N ̸∈ Iδ; ∆+
1 (Ψn) = N \ 2N ̸∈ Iδ and ∆+

2 (Ψn) = N ̸∈ Iδ.
So,

nI−lim sup
n → ∞ (Φn) = {1, 2} and

nI−lim sup
n → ∞ (Ψn) = {1, 2}. Therefore,

nI−lim sup
n → ∞ (Φn) ×

nI−lim sup
n → ∞ (Ψn) =

{(1, 1), (1, 2), (2, 1), (2, 2)}.

But, Φn ×Ψn =

{
{(1, 2)}if n is even,

{(2, 1)}otherwise.

∆+
(1,1)(Φn×Ψn) = ∅ ∈ Iδ; ∆+

(1,2)(Φn×Ψn) = 2N ̸∈ Iδ; ∆+
(2,1)(Φn×Ψn) = N\2N ̸∈ Iδ and ∆+

(2,2)(Φn×Ψn) =

N ̸∈ Iδ. So,
nI−lim sup
n → ∞ (Φn ×Ψn) = {(1, 2), (2, 1), (2, 2)}.

Thus,
nI−lim sup
n → ∞

(
Φn ×Ψn

)
⊆

nI−lim sup
n → ∞ Φn ×

nI−lim sup
n → ∞ Ψn.

Theorem 3.17. In an I-compact space, every sequence {Ωn : n ∈ N} of closed sets having I-intersection
property possess a nI − lim inf .

Proof. Let X be an I-compact space and the sequence {Ωn : n ∈ N} of closed sets possess I-intersection
property.

Let nI − lim inf of {Ωn : n ∈ N} does not exists. So,
nI−lim inf
n → ∞ Ωn = ∅. Therefore, for every x ∈ X,

∆−
x (Ωn) ̸∈ I. Let a ∈ X is arbitrary.

So, ∆−
a (Ωn) = {k ∈ N : U ∩ Ωk = ∅ for at least one neighborhood U of a} ̸∈ I.

i.e., ∆−
a (Ωn) = {k ∈ N : a ̸∈ Ωk} ̸∈ I.

But Ωk is closed for all k ∈ N and ∅ ∈ I. Therefore, ∆−
a (Ωn) = {k ∈ N : a ̸∈ Ωk} ≠ ∅.

Thus, a ̸∈
⋂

∆−
a (Ωn)

Ωn ⊇
⋂
n∈N

Ωn.

⋂
n∈N

Ωn = ∅, which is a contradiction to I-intersection theorem (Theorem 2.9).

Therefore,
nI−lim inf
n → ∞ Ωn ̸= ∅. Hence, nI − lim inf of {Ωn : n ∈ N} exists.

4. Conclusion

This study established an ideal convergence criteria for the sequence of sets that is applicable for any
sequence of sets irrespective of the nature of the sets. Sandwich theorem holds for this nI convergence
criteria. The nI − lim inf of finite product of sequence of sets is equal to finite product of nI − lim inf
of sequence of sets. But this property does not hold for nI − lim sup. Moreover, in an I-compact space,
sequence of closed sets having I intersection property maintains a nonempty nI − lim inf . The concept can
further be used for the analysis of bounded sequence of sets. In light of [1] and [4],this study explores a new
avenue for the application of ideal convergence in the field of selection principles.
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