MATRIX LIE RINGS THAT CONTAIN AN ABELIAN SUBRING

EVGENII L. BASHKIROV *

ABSTRACT. Let k be a field and \bar{k} an algebraic closure of k. The paper is devoted to the description of subrings of the Lie ring $sl_2(\bar{k})$ that contain an abelian subring which is a one-dimensional subspace of the k-vector space $sl_2(\bar{k})$.

 $Key\ words\ :$ Lie rings, lie algebras, semi-simple matrices, nilpotent matrices.

 $AMS\ SUBJECT$:17B20.

If R is an associative ring and $a, b \in R$, then [ab] denotes the Lie product ab-ba of a and b. Let n be an integer, $n \geq 2$. The ring of all $n \times n$ matrices over R is denoted by $M_n(R)$. If R is a field, then the set of all matrices in $M_n(R)$ the trace of which equals zero is a Lie ring with respect to the multiplication [ab] $(a, b \in M_n(R))$. This Lie ring is denoted by $sl_n(R)$. In what follows, k denotes a field and \bar{k} is an algebraic closure of k.

In [2], subrings of the Lie ring $sl_n(\bar{k})$ that contain $sl_n(P)$ has been described for $n \geq 2$ provided that the algebraic closed field \bar{k} is a finite extension of its subfield P. The author of the present paper has generalized this result for arbitrary algebraic extensions \bar{k}/P and used the generalization for studying subrings of the k-algebra $sl_2(\bar{k})$ that contain an abelian one-dimensional subalgebra consisting of semi-simple matrices ([1]). It turned out that any non-solvable Lie ring of this kind is isomorphic to the ring of elements which are skew symmetric relative to a suitable involution acting on some quaternion algebra. For the reader convenience it is worthwhile recalling a definition of these algebras.

Let F be a field of characteristic $\neq 2$. Let a, b be non-zero elements in F and A a four dimensional vector space over F with a basis 1, u, v, w. We define an associative multiplication on these basis elements by the following

^{*} Department of Physics and Mathematics, Smolensk State University, Przhevalsky st. 4, Smolensk 214000 Russia E-mail: bashkirov57@mail.ru.

conditions: the element 1 satisfies the identity relation, $u^2 = a, v^2 = b, uv = -vu = w$. We extend this multiplication linearly to a multiplication on A. The algebra A over F obtained by this construction is called a quaternion algebra. This algebra admits a unique symlectic type involution J, i. e., the anti-automorphism $J:A\to A$ such that every element of F is fixed under J whereas $u^J=-u,v^J=-v,w^J=-w$. The set of all elements $x\in A$ such that $x^J=-x$ constitute a Lie algebra over F under multiplication [xy]. We shall denote this algebra by s(A). In addition, as is well known each quaternion algebra is either a division algebra or is isomorphic to the algebra of 2×2 matrices with entries in its center.

Recently the author observed that non-complicated arguments in similar fashion as in [1] permit us to study a more general case, namely, to describe subrings of $sl_2(\bar{k})$ containing an arbitrary one dimensional subalgebra. The present paper addresses the proof of the corresponding result. We shall use the following notations for special matrices in $sl_2(\bar{k})$:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Also we employ the following relations for H, X, Y:

$$[HX] = 2X, \quad [HY] = -2Y, \quad [XY] = H.$$
 (1)

As usual, we denote by $GL_2(R)$ the general linear group of degree 2 over an associative ring R. Unlike the paper [1] the present article concerns certain solvable Lie rings. Therefore, we begin by giving the definition of a class of solvable Lie rings in terms of which our main result will be formulated.

So, let c be a non-zero element in \bar{k} , Q a subgroup of the additive group of the field \bar{k} such that $Q \supseteq kc$. Denote by k(Q) the field obtained by adjoining the set Q to k. We regard the field \bar{k} as a vector space over the field k(Q). Next let B be a subspace of the k(Q)-vector space \bar{k} . Define $\mathfrak{g}(c, k, Q, B)$ to be the set of matrices qH + bX with $q \in Q, b \in B$. The equation

$$[q_1H + b_1X, q_2H + b_2X] = 2(q_1b_2 - b_1q_2)X$$

holds for every $q_i, b_i \in \bar{k}$. This shows that $\mathfrak{g}(c, k, Q, B)$ is a subring of $sl_2(\bar{k})$. It should be evident that $\mathfrak{g}(c, k, Q, B)$ is solvable and moreover, $\mathfrak{g}(c, k, Q, B)$ is abelian if $B = \{0\}$.

Now we are in a position to formulate the main result of the paper.

Theorem 1. Let k be a field and \bar{k} an algebraic closure of k. Suppose that $k \neq \mathbb{F}_3$, \mathbb{F}_5 if char $k \neq 2$. Let \mathfrak{h} be a one-dimensional subalgebra of the Lie k-algebra $sl_2(\bar{k})$. If \mathfrak{g} is a subring of $sl_2(\bar{k})$ containing \mathfrak{h} , then \mathfrak{g} is either solvable, or there exists a quaternion algebra A over a subfield F of \bar{k} such

that $F \supseteq k$ and \mathfrak{g} is isomorphic to the Lie F-algebra s(A). If \mathfrak{h} contains semi-simple elements only and \mathfrak{g} is solvable, then \mathfrak{g} is conjugate by an element of the group $GL_2(\bar{k})$ to a ring of the form $\mathfrak{g}(c,k,Q,B)$ with suitable c,Q,B.

We take account of the results presented in [1] to reduce the proof of Theorem 1 to the consideration of the following two cases:

- (1) h consists of nilpotent matrices only.
- (2) \mathfrak{h} consists of semi-simple matrices and \mathfrak{g} is a solvable Lie ring.

Proposition 2 just below deals with the first case. This proposition actually states that when case (1) arises, \mathfrak{g} is conjugate to the ring $sl_2(L)$, where L is an appropriate field, i. e., \mathfrak{g} is conjugate to the subset of the quaternion algebra $M_2(L)$ consisting of all elements which are skew-symmetric relative to the involution

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

defined on $M_2(L)$.

Proposition 2. Let k be a field of characteristic $\neq 2$, \bar{k} an algebraic closure of k, \mathfrak{g} a subring of the Lie ring $sl_2(\bar{k})$. Suppose \mathfrak{g} contains an abelian subring \mathfrak{h} which is a one-dimensional k-vector space consisting of nilpotent matrices. Then \mathfrak{g} is either solvable or is conjugate by an appropriate matrix of the group $GL_2(\bar{k})$ to the Lie ring $sl_2(L)$, where L is a subfield of \bar{k} containing k.

Proof. We can replace \mathfrak{g} by $x\mathfrak{g}x^{-1}$ with a suitable matrix x in $GL_2(\bar{k})$ to assume $\mathfrak{h}=kX$. Suppose \mathfrak{g} is not solvable. Then \mathfrak{g} contains a matrix $v=v_{11}H+v_{12}X+v_{21}Y\in sl_2(\bar{k})$ with $v_{21}\neq 0$. It is straightforward to check that $[X[Xv]]=-2v_{21}X\in \mathfrak{g}$. It follows that $kv_{21}X\subseteq \mathfrak{g}$ since $kX\subseteq \mathfrak{g}$. By induction, $kv_{21}^sX\subseteq \mathfrak{g}$ for any integer $s\geq 1$. Since v_{21} is algebraic over k, this implies the inclusion $k(v_{21})X\subseteq \mathfrak{g}$. Further,

$$[v[Xv]] = 2v_{11}v_{21}H + (-4v_{11}^2 - 2v_{12}v_{21})X + 2v_{21}^2Y.$$
(2)

In the left hand side of (2), we replace v by [v[Xv]] whereas in the right hand side, let us take $2v_{11}v_{21}, -4v_{11}^2 - 2v_{12}v_{21}, 2v_{21}^2$ instead of v_{11}, v_{12}, v_{21} respectively. With this having been made, we get

$$[[v[Xv]], [X[v[Xv]]]] = 8v_{21}^3 v \in \mathfrak{g}.$$
 (3)

Since $\gamma X \in \mathfrak{g}$ for any $\gamma \in k(v_{21})$, relation (3) shows that

$$[[v[\gamma Xv]], [X[v[Xv]]]] = 8v_{21}^3 \gamma v \in \mathfrak{g}.$$

Hence $k(v_{21})v \subseteq \mathfrak{g}$. Moreover, for any $\gamma \in k(v_{21})$, we have $[v[\gamma Xv]] = \gamma[v[Xv]] \in \mathfrak{g}$, and so \mathfrak{g} contains the matrix

$$y = \frac{1}{4}[v[Xv]] + \frac{1}{2}v_{21}v = v_{11}v_{21}H - v_{11}^2X + v_{21}^2Y.$$

Thus the ring \mathfrak{g} contains a subring \mathfrak{g}_0 generated by y and by the set kX. Put

$$z = \begin{pmatrix} 1 & -v_{21}^{-1}v_{11} \\ 0 & 1 \end{pmatrix}.$$

Then $z\mathfrak{g}_0z^{-1}$ is a subring of $sl_2(\bar{k})$ generated by kX and v_{21}^2Y . Next we employ (1) to obtain $z\mathfrak{g}_0z^{-1}=sl_2(k(v_{21}^2))$. So by Proposition 3 [1], $z\mathfrak{g}z^{-1}=sl_2(L)$, where L is a subfield of \bar{k} containing $k(v_{21})$. The proposition is proved.

Our next proposition in fact proves the part of Theorem 1 covering the case of solvable Lie rings.

Proposition 3. Let k be a field, \bar{k} an algebraic closure of k, \mathfrak{g} a solvable subring of the Lie ring $sl_2(\bar{k})$, \mathfrak{h} an abelian one-dimensional subalgebra of the Lie k-algebra $sl_2(\bar{k})$. Suppose that $\mathfrak{g} \supseteq \mathfrak{h}$ and \mathfrak{h} consists of semi-simple matrices. Then \mathfrak{g} is conjugate by an element of $GL_2(\bar{k})$ to a ring of the form $\mathfrak{g}(c,k,Q,B)$.

Proof. Since \mathfrak{h} consists of semi-simple matrices only, char $k \neq 2$. Replacing \mathfrak{h} by $x\mathfrak{h}x^{-1}$ with an appropriate matrix $x \in GL_2(\bar{k})$, one may assume $\mathfrak{h} = kcH$, where $c \in \bar{k} \setminus \{0\}$.

If $\mathfrak g$ contains a matrix $v_{11}H + v_{12}X + v_{21}Y$ with $v_{12} \neq 0, v_{21} \neq 0$, then according to the proof of Proposition 2 [1], there exists a quaternion algebra A such that $\mathfrak g$ is a Lie ring of all elements in A which are skew-symmetric relative to a symplectic type involution defined on A. But this is impossible because $\mathfrak g$ is solvable. Therefore for any $v_{11}H + v_{12}X + v_{21}Y$ in $\mathfrak g$, we have either $v_{12} = 0$ or $v_{21} = 0$. Assume that $\mathfrak g$ contains a matrix $v = v_{11}H + v_{12}X + v_{21}Y$ with $v_{12} \neq 0, v_{21} = 0$ and a matrix $v' = v'_{11}H + v'_{12}X + v'_{21}Y$ with $v'_{12} = 0, v'_{21} \neq 0$. Then since char $k \neq 2$, we can choose r in k so that all coefficients of the matrix v + v' + crH are non-zero. As we have just shown, this contradicts to the solvability of $\mathfrak g$. Therefore, either $\mathfrak g$ consists of upper triangular matrices or $\mathfrak g$ consists of lower triangular matrices. Replacing $\mathfrak g$ by $w\mathfrak g w^{-1}$, where w is a monomial matrix in $GL_2(\bar k)$, allows us to assume that all matrices in $\mathfrak g$ are upper triangular.

Set

$$Q = \{ q \in \bar{k} \mid qH \in \mathfrak{g} \}, \quad B = \{ b \in \bar{k} \mid bX \in \mathfrak{g} \}. \tag{4}$$

It should be obvious that Q is a subgroup of the additive group \bar{k} . Also $kc \subseteq Q$ since $kcH \subseteq \mathfrak{g}$. We seek to show that B is a subspace of the k(Q)-vector space \bar{k} . To make certain of this, we first prove that $kbX \subseteq B$ for any $b \in B$. Indeed, if $b \in B$, then $bX \in \mathfrak{g}$ and since $kcH \subseteq \mathfrak{g}$, we get $[kcH, bX] = kcbX \subseteq \mathfrak{g}$. It follows that $kc^mbX \subseteq \mathfrak{g}$ for any integer $m \geq 1$. So $k(c)bX \subseteq \mathfrak{g}$ since c is algebraic over k. But $k \subseteq k(c)$, and so $kbX \subseteq \mathfrak{g}$ as claimed. Now let again $q_1, q_2 \in Q$ and $b \in B$. Then $[q_1H, kbX] = kq_1bX \subseteq \mathfrak{g}$ hence $[q_2H, kq_1bX] = kq_1q_2bX \subseteq \mathfrak{g}$. Thus we have shown that if $b \in B$, then

 $kq_1q_2b \in B$ for every $q_1, q_2 \in Q$. It is easy to see that this means in fact that B a vector space over the field k(Q). So the algebra

$$\mathfrak{g}(c, k, Q, B) = \{qH + bX \mid q \in Q, b \in B\}$$

is defined, and by virtue of (4),

$$\mathfrak{g}(c,k,Q,B) \subseteq \mathfrak{g}.\tag{5}$$

If every element in \mathfrak{g} is diagonal, then \mathfrak{g} is abelian and $\mathfrak{g} = \mathfrak{g}(c, k, Q, \{0\})$. Suppose now that \mathfrak{g} contains a matrix $v = v_{11}H + v_{12}X$ with $v_{12} \neq 0$. Then \mathfrak{g} contains an element $[cH, v] = 2cv_{12}X$. Furthermore, since $kcH \subseteq \mathfrak{g}$, we have $kcv_{12}X \subseteq \mathfrak{g}$, and so, by induction, $kc^mv_{12}X \subseteq \mathfrak{g}$ for all integers $m \geq 1$. This implies $k(c)v_{12}X \subseteq \mathfrak{g}$. Specifically, $v_{12}X \in \mathfrak{g}$, and hence $v - v_{12}X = v_{11}H \in \mathfrak{g}$. Observe now that the relations $v_{12}X \in \mathfrak{g}$ and $v_{11}H \in \mathfrak{g}$ mean, according to the definitions of B and Q, that $v_{12} \in B$ and $v_{11} \in Q$. So $v \in \mathfrak{g}(c, k, Q, B)$. Consequently, $\mathfrak{g} \subseteq \mathfrak{g}(c, k, Q, B)$, and this together with (5) completes the proof of the proposition.

Now we can prove our main result without any difficulties.

Proof of Theorem 1. If char k=2, then \mathfrak{g} is solvable. So further we shall suppose that char $k\neq 2$. Let $\mathfrak{h}=kd$ with $d\in sl_2(\bar{k})$. The trace of d is zero, hence the Jordan canonical form of d is either X or μH with $\mu\in \bar{k}\setminus\{0\}$. In the first case the theorem follows from Proposition 2. Now assume that the second case is valid. If \mathfrak{g} is not solvable, then the theorem follows from the results proved in [1]. If \mathfrak{g} is solvable, then the theorem follows from Proposition 3. \square

References

- [1] E. L. Bashkirov, Matrix Lie rings that contain a one-dimensional Lie algebra of semisimple matrices, Journal of Prime Research in Mathematics 3 (2007) 111–119.
- [2] Den Yin Wang, Extensions of Lie algebras according to the extensions of fields, J. Math. Res. Exposition, No. 3, **25** (2005) 543–547.