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MATRIX LIE RINGS THAT CONTAIN AN ABELIAN
SUBRING

EVGENII L. BASHKIROV ∗

Abstract. Let k be a field and k̄ an algebraic closure of k. The paper is
devoted to the description of subrings of the Lie ring sl2(k̄) that contain an
abelian subring which is a one-dimensional subspace of the k-vector space
sl2(k̄).
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If R is an associative ring and a, b ∈ R, then [ab] denotes the Lie product
ab−ba of a and b. Let n be an integer, n ≥ 2. The ring of all n×n matrices over
R is denoted by Mn(R). If R is a field, then the set of all matrices in Mn(R)
the trace of which equals zero is a Lie ring with respect to the multiplication
[ab] (a, b ∈ Mn(R)). This Lie ring is denoted by sln(R). In what follows, k
denotes a field and k̄ is an algebraic closure of k.

In [2], subrings of the Lie ring sln(k̄) that contain sln(P ) has been de-
scribed for n ≥ 2 provided that the algebraic closed field k̄ is a finite extension
of its subfield P . The author of the present paper has generalized this result
for arbitrary algebraic extensions k̄/P and used the generalization for study-
ing subrings of the k-algebra sl2(k̄) that contain an abelian one-dimensional
subalgebra consisting of semi-simple matrices ([1]). It turned out that any
non-solvable Lie ring of this kind is isomorphic to the ring of elements which
are skew symmetric relative to a suitable involution acting on some quaternion
algebra. For the reader convenience it is worthwhile recalling a definition of
these algebras.

Let F be a field of characteristic 6= 2. Let a, b be non-zero elements in
F and A a four dimensional vector space over F with a basis 1, u, v, w. We
define an associative multiplication on these basis elements by the following

∗ Department of Physics and Mathematics, Smolensk State University, Przhevalsky st.
4, Smolensk 214000 Russia E-mail: bashkirov57@mail.ru.

113



114 Evgenii L. Bashkirov

conditions: the element 1 satisfies the identity relation, u2 = a, v2 = b, uv =
−vu = w. We extend this multiplication linearly to a multiplication on A.
The algebra A over F obtained by this construction is called a quaternion
algebra. This algebra admits a unique symlectic type involution J , i. e., the
anti-automorphism J : A → A such that every element of F is fixed under J
whereas uJ = −u, vJ = −v, wJ = −w. The set of all elements x ∈ A such that
xJ = −x constitute a Lie algebra over F under multiplication [xy]. We shall
denote this algebra by s(A). In addition, as is well known each quaternion
algebra is either a division algebra or is isomorphic to the algebra of 2 × 2
matrices with entries in its center.

Recently the author observed that non-complicated arguments in similar
fashion as in [1] permit us to study a more general case, namely, to describe
subrings of sl2(k̄) containing an arbitrary one dimensional subalgebra. The
present paper addresses the proof of the corresponding result. We shall use
the following notations for special matrices in sl2(k̄):

H =
(

1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Also we employ the following relations for H,X, Y :

[HX] = 2X, [HY ] = −2Y, [XY ] = H. (1)

As usual, we denote by GL2(R) the general linear group of degree 2 over an
associative ring R. Unlike the paper [1] the present article concerns certain
solvable Lie rings. Therefore, we begin by giving the definition of a class of
solvable Lie rings in terms of which our main result will be formulated.

So, let c be a non-zero element in k̄, Q a subgroup of the additive group of
the field k̄ such that Q ⊇ kc. Denote by k(Q) the field obtained by adjoining
the set Q to k. We regard the field k̄ as a vector space over the field k(Q).
Next let B be a subspace of the k(Q)-vector space k̄. Define g(c, k,Q,B) to
be the set of matrices qH + bX with q ∈ Q, b ∈ B. The equation

[q1H + b1X, q2H + b2X] = 2(q1b2 − b1q2)X

holds for every qi, bi ∈ k̄. This shows that g(c, k,Q,B) is a subring of sl2(k̄).
It should be evident that g(c, k,Q,B) is solvable and moreover, g(c, k,Q,B)
is abelian if B = {0}.

Now we are in a position to formulate the main result of the paper.

Theorem 1. Let k be a field and k̄ an algebraic closure of k. Suppose that
k 6= F3,F5 if char k 6= 2. Let h be a one-dimensional subalgebra of the Lie
k-algebra sl2(k̄). If g is a subring of sl2(k̄) containing h, then g is either
solvable, or there exists a quaternion algebra A over a subfield F of k̄ such
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that F ⊇ k and g is isomorphic to the Lie F -algebra s(A). If h contains semi-
simple elements only and g is solvable, then g is conjugate by an element of
the group GL2(k̄) to a ring of the form g(c, k,Q,B) with suitable c,Q,B.

We take account of the results presented in [1] to reduce the proof of The-
orem 1 to the consideration of the following two cases:

(1) h consists of nilpotent matrices only.
(2) h consists of semi-simple matrices and g is a solvable Lie ring.

Proposition 2 just below deals with the first case. This proposition actually
states that when case (1) arises, g is conjugate to the ring sl2(L), where L
is an appropriate field, i. e., g is conjugate to the subset of the quaternion
algebra M2(L) consisting of all elements which are skew-symmetric relative to
the involution (

a b
c d

)
→

(
d −b
−c a

)
defined on M2(L).

Proposition 2. Let k be a field of characteristic 6= 2, k̄ an algebraic closure
of k, g a subring of the Lie ring sl2(k̄). Suppose g contains an abelian subring
h which is a one-dimensional k-vector space consisting of nilpotent matrices.
Then g is either solvable or is conjugate by an appropriate matrix of the group
GL2(k̄) to the Lie ring sl2(L), where L is a subfield of k̄ containing k.

Proof. We can replace g by xgx−1 with a suitable matrix x in GL2(k̄) to
assume h = kX. Suppose g is not solvable. Then g contains a matrix v =
v11H + v12X + v21Y ∈ sl2(k̄) with v21 6= 0. It is straightforward to check
that [X[Xv]] = −2v21X ∈ g. It follows that kv21X ⊆ g since kX ⊆ g. By
induction, kvs

21X ⊆ g for any integer s ≥ 1. Since v21 is algebraic over k, this
implies the inclusion k(v21)X ⊆ g. Further,

[v[Xv]] = 2v11v21H + (−4v2
11 − 2v12v21)X + 2v2

21Y. (2)

In the left hand side of (2), we replace v by [v[Xv]] whereas in the right hand
side, let us take 2v11v21,−4v2

11 − 2v12v21, 2v2
21 instead of v11, v12, v21 respec-

tively. With this having been made, we get

[[v[Xv]], [X[v[Xv]]]] = 8v3
21v ∈ g. (3)

Since γX ∈ g for any γ ∈ k(v21), relation (3) shows that

[[v[γXv]], [X[v[Xv]]]] = 8v3
21γv ∈ g.

Hence k(v21)v ⊆ g. Moreover, for any γ ∈ k(v21), we have [v[γXv]] =
γ[v[Xv]] ∈ g, and so g contains the matrix

y =
1
4

[v[Xv]] +
1
2
v21v = v11v21H − v2

11X + v2
21Y.
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Thus the ring g contains a subring g0 generated by y and by the set kX. Put

z =
(

1 −v−1
21 v11

0 1

)
.

Then zg0z
−1 is a subring of sl2(k̄) generated by kX and v2

21Y . Next we
employ (1) to obtain zg0z

−1 = sl2(k(v2
21)). So by Proposition 3 [1], zgz−1 =

sl2(L), where L is a subfield of k̄ containing k(v21). The proposition is proved.
�

Our next proposition in fact proves the part of Theorem 1 covering the case
of solvable Lie rings.

Proposition 3. Let k be a field, k̄ an algebraic closure of k, g a solvable
subring of the Lie ring sl2(k̄), h an abelian one-dimensional subalgebra of
the Lie k-algebra sl2(k̄). Suppose that g ⊇ h and h consists of semi-simple
matrices. Then g is conjugate by an element of GL2(k̄) to a ring of the form
g(c, k,Q,B).

Proof. Since h consists of semi-simple matrices only, char k 6= 2. Replacing h
by xhx−1with an appropriate matrix x ∈ GL2(k̄), one may assume h = kcH,
where c ∈ k̄ \ {0}.

If g contains a matrix v11H + v12X + v21Y with v12 6= 0, v21 6= 0, then
according to the proof of Proposition 2 [1], there exists a quaternion algebra A
such that g is a Lie ring of all elements in A which are skew-symmetric relative
to a symplectic type involution defined on A. But this is impossible because g
is solvable. Therefore for any v11H+ v12X+ v21Y in g, we have either v12 = 0
or v21 = 0. Assume that g contains a matrix v = v11H + v12X + v21Y with
v12 6= 0, v21 = 0 and a matrix v′ = v′11H + v′12X + v′21Y with v′12 = 0, v′21 6= 0.
Then since char k 6= 2, we can choose r in k so that all coefficients of the
matrix v + v′ + crH are non-zero. As we have just shown, this contradicts to
the solvability of g. Therefore, either g consists of upper triangular matrices
or g consists of lower triangular matrices. Replacing g by wgw−1, where w is
a monomial matrix in GL2(k̄), allows us to assume that all matrices in g are
upper triangular.

Set
Q = {q ∈ k̄ | qH ∈ g}, B = {b ∈ k̄ | bX ∈ g}. (4)

It should be obvious that Q is a subgroup of the additive group k̄. Also
kc ⊆ Q since kcH ⊆ g. We seek to show that B is a subspace of the k(Q)-
vector space k̄. To make certain of this, we first prove that kbX ⊆ B for
any b ∈ B. Indeed, if b ∈ B, then bX ∈ g and since kcH ⊆ g, we get
[kcH, bX] = kcbX ⊆ g. It follows that kcmbX ⊆ g for any integer m ≥ 1.
So k(c)bX ⊆ g since c is algebraic over k. But k ⊆ k(c), and so kbX ⊆ g as
claimed. Now let again q1, q2 ∈ Q and b ∈ B. Then [q1H, kbX] = kq1bX ⊆ g
hence [q2H, kq1bX] = kq1q2bX ⊆ g. Thus we have shown that if b ∈ B, then
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kq1q2b ∈ B for every q1, q2 ∈ Q. It is easy to see that this means in fact that
B a vector space over the field k(Q). So the algebra

g(c, k,Q,B) = {qH + bX | q ∈ Q, b ∈ B}
is defined, and by virtue of (4),

g(c, k,Q,B) ⊆ g. (5)

If every element in g is diagonal, then g is abelian and g = g(c, k,Q, {0}).
Suppose now that g contains a matrix v = v11H + v12X with v12 6= 0. Then g
contains an element [cH, v] = 2cv12X. Furthermore, since kcH ⊆ g, we have
kcv12X ⊆ g, and so, by induction, kcmv12X ⊆ g for all integers m ≥ 1. This
implies k(c)v12X ⊆ g. Specifically, v12X ∈ g, and hence v−v12X = v11H ∈ g.
Observe now that the relations v12X ∈ g and v11H ∈ g mean, according to
the definitions of B and Q, that v12 ∈ B and v11 ∈ Q. So v ∈ g(c, k,Q,B).
Consequently, g ⊆ g(c, k,Q,B), and this together with (5) completes the proof
of the proposition. �

Now we can prove our main result without any difficulties.

Proof of Theorem 1. If char k = 2, then g is solvable. So further we shall
suppose that char k 6= 2. Let h = kd with d ∈ sl2(k̄). The trace of d is zero,
hence the Jordan canonical form of d is either X or µH with µ ∈ k̄\{0}. In the
first case the theorem follows from Proposition 2. Now assume that the second
case is valid. If g is not solvable, then the theorem follows from the results
proved in [1]. If g is solvable, then the theorem follows from Proposition 3.
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