ON THE GRACEFULNESS OF THE DIGRAPHS $n - \vec{C}_m$ FOR m ODD

ZHAO LINGQI*, JIRIMUTU*, XIRONG XU**, WANG LEI**

ABSTRACT. A digraph D(V,E) is said to be graceful if there exists an injection $f:V(G)\to\{0,1,\cdots,|E|\}$ such that the induced function $f^{'}:E(G)\to\{1,2,\cdots,|E|\}$ which is defined by $f^{'}(u,v)=[f(v)-f(u)]\pmod{|E|+1}$ for every directed edge (u,v) is a bijection. Here, f is called a graceful labeling (graceful numbering) of D(V,E), while $f^{'}$ is called the induced edge's graceful labeling of D. In this paper we discuss the gracefulness of the digraph $n-\vec{C_m}$ and prove that $n-\vec{C_m}$ is a graceful digraph for m=5,7,9,11,13 and even n.

Key words: Digraph, directed cycles, graceful graph, graceful labeling. AMS $SUBJECT \!\!:\! 05C65.$

1. Introduction

A graph G(V,E) is said to be graceful if there exists an injection $f:V(G)\to\{0,1,\cdots,|E|\}$ such that the induced function $f':E(G)\to\{1,2,\cdots,|E|\}$ which is defined by f'(u,v)=|f(u)-f(v)| for every edge (u,v) is a bijection. Here, f is called a graceful labeling (graceful numbering) of G, while f' is called the induced edge's graceful labeling of G. A digraph D(V,E) is said to be graceful if there exists an injection $f:V(G)\to\{0,1,\cdots,|E|\}$ such that the induced function $f':E(G)\to\{1,2,\cdots,|E|\}$ which is defined by $f'(u,v)=[f(v)-f(u)]\pmod{|E|+1}$ for every directed edge (u,v) is a bijection, where $[v]\pmod{u}$ denotes the least positive residue of v modulo v. In this case, v is called a graceful labeling (graceful numbering) of v and v is called the induced edge's graceful labeling of v (see[3]).

 $^{^{\}ast}$ College of Mathematics and Computer Science, Inner Mongolian University for Nationalities, 028043,P.R.China. E-mail: jrmt@sina.com.

^{**}Department of Computer Science, Dalian University of Technology, 116024, P. R. China. E-mail: xirongxu@dlut.edu.cn.

Let C_m and \vec{C}_m denote the cycle and directed cycle on m vertices, respectively, $n \cdot C_n$ and $n - C_m$ denote the graphs obtained from any n copies of C_m which have just one common vertex and have just one common edge, respectively. At the same time, let $n \cdot \vec{C}_m$ and $n - \vec{C}_m$ denote the digraphs obtained from any n copies of the directed cycle \vec{C}_m which have just one common vertex and have just one common edge, respectively.

As to the gracefulness of $n \cdot \vec{C}_m$ we know the following results: Ma proved in [3] that the gracefulness of $n \cdot \vec{C}_3$ implies that n is even, at same times he conjectured that the condition that n is even was also sufficient for $n \cdot \vec{C}_3$ to be graceful. In [5], Jirimutu et al has showed this conjecture. It was showed that $n \cdot \vec{C}_{2k}$ is graceful for every integer $n \geq 1$ and $k \geq 1$ in [6], and $n \cdot \vec{C}_{2k+1}$ is graceful for n even and k = 2, 3 in [7].

About the gracefulness of $n - \vec{C}_m$, to our knowledge, there are no so much result: It was showed in [3] that $n - \vec{C}_3$ is graceful when n is even, and it was proved in [6] that the necessary condition for $n - \vec{C}_m$ to be graceful is $mn \equiv 0 \pmod{2}$. In [8], we have showed that $n - \vec{C}_m$ is graceful if m = 4, 6, 8, 10 and n is even.

In this paper, we will further discuss the gracefulness of the digraph $n - \vec{C_m}$ and prove the digraph $n - \vec{C_m}$ is graceful if m = 5, 7, 9, 11, 13 and n is even.

2. Main Results

Let $\vec{C}_m^1, \vec{C}_m^2, \cdots, \vec{C}_m^n$ denote the n directed cycles in $n-\vec{C}_m$. The two vertices of the common edge of \vec{C}_m^i 's are denoted by v_0 and v_{m-1} , and other m-2 vertices of the \vec{C}_m^i are denoted by v_j^i $(j=1,\ldots,m-2;i=1,2,\cdots,n)$, respectively. For convenience, we put $v_0^1=v_0^2=\cdots=v_0^n=v_0,v_m^1=v_m^2=\cdots=v_m^n=v_m$, and take subscripts j's modulo m. Obviously, $|E(n-\vec{C}_m)|=(m-1)n+1$.

Suppose that $n - \vec{C}_m$ is graceful and f and f' are its graceful labeling and the induced edge's graceful labeling, respectively.

For every i, it is easy to see that

$$\sum_{j=0}^{m-1} \left[f(v_j^i) - f(v_{j-1}^i) \right] \equiv \sum_{j=0}^{m-1} f(v_j^i) - \sum_{j=0}^{m-1} f(v_{j-1}^i) = 0 \pmod{((m-1)n+2)},$$

which means that there is an integer k_i such that

$$\sum_{i=0}^{m-1} \left[f(v_j^i) - f(v_{j-1}^i) \right] = k_i((m-1)n + 2), \ (1 \le i \le n).$$
 (1)

This implies that there is an integer k such that

$$\sum_{i=1}^{n} \sum_{j=0}^{m-1} \left[f(v_j^i) - f(v_{j-1}^i) \right] = k((m-1)n + 2).$$
 (2)

On the other hand, setting $q = |E(n - \vec{C}_m)| = (m-1)n + 1$ and $d = [f(v_0) - f(v_{m-1})]$, by definition we have

$$\sum_{i=1}^{n} \sum_{j=0}^{m-1} \left[f(v_j^i) - f(v_{j-1}^i) \right] = (n-1)d + \frac{1}{2}q(q+1) = k(q+1).$$
 (3)

From the above discussion we obtain the necessary condition as follows.

$$(n-1)d \equiv 0 \pmod{\frac{q+1}{2}}.$$
 (4)

In the argument below we always take $f(v_0) = 0$ and $f(v_{m-1}) = \frac{q+1}{2}$. Thus, $d = [f(v_0) - f(v_{m-1})] = [-\frac{q+1}{2}] \equiv \frac{q+1}{2} \pmod{q+1}$, which satisfies the condition given in (4).

Theorem 1. For every even integer n, the digraph $n - \vec{C}_5$ is graceful.

Proof.We have had $f(v_0) = 0$ and $f(v_4) = 2n + 1$. For other vertices, define:

$$\begin{split} f(v_1^i) &= \left\{ \begin{array}{ll} i, & 1 \leq i \leq \frac{n}{2}, \\ n+i, & \frac{n}{2}+1 \leq i \leq n, \end{array} \right. \\ f(v_2^i) &= n+\frac{n}{2}+1-i, 1 \leq i \leq n, \\ f(v_3^i) &= \left\{ \begin{array}{ll} 2n+1+i, & 1 \leq i \leq \frac{n}{2}, \\ 3n+1+i, & \frac{n}{2}+1 \leq i \leq n. \end{array} \right. \end{split}$$

Firstly, we show that f is an injective mapping from $V(n-\vec{C}_5)$ into $\{0, 1, \dots, 4n+1\}$.

Put
$$S_j = \{f(v_i^i) | 1 \le i \le n\}, \ 0 \le j \le 4$$
. Then

$$\begin{array}{ll} S_0 &= \{f(v_0)\} = \{0\}, \\ S_1 &= \{f(v_1^i) | 1 \leq i \leq n\} = \{i | 1 \leq i \leq \frac{n}{2}\} \cup \{n+i | \frac{n}{2}+1 \leq i \leq n\}, \\ &= \{1,2,\cdots,\frac{n}{2}\} \cup \{n+\frac{n}{2}+1,n+\frac{n}{2}+2,\cdots,2n\} \\ S_2 &= \{f(v_2^i) | 1 \leq i \leq n\} = \{n+\frac{n}{2}+1-i | 1 \leq i \leq n\} \\ &= \{\frac{n}{2}+1,\frac{n}{2}+2,\cdots,n+\frac{n}{2}\} \\ S_3 &= \{f(v_3^i) | 1 \leq i \leq n\} = \{2n+1+i | 1 \leq i \leq \frac{n}{2}\} \cup \{3n+1+i | \frac{n}{2}+1 \leq i \leq n\}, \end{array}$$

$$S_3 = \{f(v_3^i) | 1 \le i \le n\} = \{2n+1+i | 1 \le i \le \frac{n}{2}\} \cup \{3n+1+i | \frac{n}{2}+1 \le i \le n\}$$

$$= \{2n+2, 2n+3, \cdots, 2n\frac{n}{2}+1\} \cup \{3n+\frac{n}{2}+2, 3n+\frac{n}{2}+3, \cdots, 4n+1\}$$

$$S_4 = \{f(v_4)\} = \{2n+1\}.$$

Hence, $S_i \cap S_j = \emptyset$ for $i \neq j, i, j \in \{0, 1, 2, 3, 4\}$, which yields that f is an injection from $V(n - \vec{C_5})$ into $\{0, 1, \dots, 4n + 1\}$.

Secondly, we show the induced edges labeling f' is a bijective mapping from $E(n-\vec{C}_5)$ onto $\{1,2,\cdots,4n+1\}$.

Set
$$B_j = \{ [f(v_{j+1}^i) - f(v_j^i)] \pmod{4n+2} | 1 \le i \le n \}, \ 0 \le j \le 4, \text{ and } B = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4. \text{ Then}$$

$$B_0 = \{ [f(v_1^i) - f(v_0)] \pmod{(4n+2)} | 1 \le i \le n \}$$

$$= B_{01} \cup B_{02} \text{ where}$$

$$B_{01} = \{ i | 1 \le i \le \frac{n}{2} \} = \{ 1, 2, \cdots, \frac{n}{2} \},$$

$$B_{02} = \{ n+i | fracn 2 + 1 \le i \le n \} = \{ n + \frac{n}{2} + 1, n + \frac{n}{2} + 2, \cdots, 2n \}$$

$$\begin{array}{ll} B_1 &= \{[\,f(v_2^i) - f(v_1^i)] \pmod{(4n+2)} | 1 \leq i \leq n \} \\ &= B_{11} \cup B_{12} \text{ where} \\ &B_{11} = \{n + \frac{n}{2} + 1 - 2i | 1 \leq i \leq \frac{n}{2} \} = \{\, \frac{n}{2} + 1, \frac{n}{2} + 3, \cdots, \, \, n + \frac{n}{2} - 1 \} \\ &B_{12} = \{\, \frac{n}{2} + 1 - 2i | \frac{n}{2} + 1 \leq i \leq n \} = \{2n + \frac{n}{2} + 3, 2n + \frac{n}{2} + 5, \cdots, 3n + \frac{n}{2} + 1 \} \end{array}$$

$$B_2 = \{ [f(v_3^i) - f(v_2^i)] \pmod{(4n+2)} | 1 \le i \le n \}$$

$$= B_{21} \cup B_{22} \text{ where}$$

$$B_{21} = \{ \frac{n}{2} + 2i | 1 \le i \le \frac{n}{2} \} = \{ \frac{n}{2} + 2, \frac{n}{2} + 4, \cdots, n + \frac{n}{2} \}$$

$$B_{22} = \{ n + \frac{n}{2} + 2i | \frac{n}{2} + 1 \le i \le n \} = \{ 2n + \frac{n}{2} + 2, 2n + \frac{n}{2} + 4, \cdots, 3n + \frac{n}{2} \}$$

$$B_3 = \{ [f(x_4) - f(x_3^i)] \pmod{(4n+2)} | 1 \le i \le n \}$$

$$= B_{31} \cup B_{32} \text{ where}$$

$$B_{31} = \{ 4n + 2 - i | 1 \le i \le \frac{n}{2} \} = \{ 3n + \frac{n}{2} + 2, 3n + \frac{n}{2} + 3, \dots, 4n - 1 \}$$

$$B_{32} = \{ 3n + 2 - i | \frac{n}{2} + 1 \le i \le n \} = \{ 2n + 2, 2n + 3, \dots, 2n + \frac{n}{2} + 1 \}$$

$$B_4 = \{ [f(x_0) - f(x_4^i)] \pmod{(4n+2)} | 1 \le i \le n \} = \{2n+1\}$$

Hence,

$$B = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4$$

$$= B_{01} \cup B_{11} \cup B_{21} \cup B_{02} \cup B_4 \cup B_{32} \cup B_{22} \cup B_{12} \cup B_{31}$$

$$= \{1, 2, \cdots, \frac{n}{2}\} \cup \{\frac{n}{2} + 1, \frac{n}{2} + 3, \cdots, n + \frac{n}{2} - 1\}$$

$$\cup \{\frac{n}{2} + 2, \frac{n}{2} + 4, \cdots, n + \frac{n}{2}\} \cup \{n + \frac{n}{2} + 1, n + \frac{n}{2} + 1, \cdots, 2n\}$$

$$\cup \{2n + 1\} \cup \{2n + 2, 2n + 3, \cdots, 2n + \frac{n}{2} + 1\}$$

$$\cup \{2n + \frac{n}{2} + 2, 2n + \frac{n}{2} + 4, \cdots, 3n + \frac{n}{2}\}$$

$$\cup \{2n + \frac{n}{2} + 3, 2n + \frac{n}{2} + 5, \cdots, 3n + \frac{n}{2} + 1\}$$

$$\cup \{3n + \frac{n}{2} + 2, 3n + \frac{n}{2} + 3, \cdots, 4n - 1\}$$

$$= \{1, 2, \cdots, 4n + 1\}.$$

which implies that f' is surjective, hence, bijective. So we prove that $n - \vec{C}_5$ is a graceful digraph for even n.

Theorem 2. For every even integer n, the digraph $n - \vec{C}_7$ is graceful.

Proof. Define

$$f(v_0) = 0, f(v_6) = 3n + 1$$

and

$$f(v_j^i) = \begin{cases} \frac{j-1}{4}(5n+1) + i, & j = 1, 5, \ 1 \le i \le n; \\ 4n+1+i, & j = 3, \ 1 \le i \le \frac{n}{2}; \\ 2n+i, & j = 3, \ \frac{n}{2} + 1 \le i \le n; \\ jn+2-i, & j = 2, 4, \ 1 \le i \le \frac{n}{2}; \\ \frac{8}{j} + 2-i, & j = 2, 4, \ \frac{n}{2} + 1 \le i \le n. \end{cases}$$

Firstly, we show that f is an injective mapping from $V(n-\vec{C}_7)$ into $\{0,1,\cdots,6n+1\}$.

Set
$$S_j = \{f(v_j^i) | 1 \le i \le n\}, \ 0 \le j \le 6 \text{ and } S = S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6.$$
 Then

$$\begin{array}{lll} S_0 &= \{f(v_0)\} = \{0\} \\ S_1 &= \{f(v_1^i)|1 \leq i \leq n\} = \{i|1 \leq i \leq n\} = \{1,2,\cdots,n\} \\ S_2 &= \{f(v_2^i)|1 \leq i \leq n\} \} \\ &= S_{21} \cup S_{22}, \text{ where} \\ &S_{21} = \{f(v_2^i)|1 \leq i \leq \frac{n}{2}\} = \{n+\frac{n}{2}+2,n+\frac{n}{2}+3,\cdots,2n+1\}, \\ &S_{22} = \{f(v_1^i)|\frac{n}{2}+1 \leq i \leq n\} = \{3n+2,3n+3,\cdots,3n+\frac{n}{2}+1\} \\ S_3 &= \{f(v_3^i)|1 \leq i \leq n\} \\ &= S_{31} \cup S_{32}, \text{ where} \\ &S_{31} = \{f(v_3^i)|1 \leq i \leq \frac{n}{2}\} = \{4n+2,4n+3,\cdots,4n+\frac{n}{2}+1\}, \\ &S_{32} = \{f(v_3^i)|\frac{n}{2}+1 \leq i \leq n\} = \{2n+\frac{n}{2}+1,2n+\frac{n}{2}+2,\cdots,3n\}, \\ S_4 &= \{f(v_4^i)|1 \leq i \leq n\} \\ &= S_{41} \bigcup S_{42}, \text{ where} \\ &S_{41} = \{f(v_4^i)|1 \leq i \leq \frac{n}{2}\} = \{3n+\frac{n}{2}+2,3n+\frac{n}{2}+3,\cdots,4n+1\}, \\ &S_{42} = \{f(v_4^i)|\frac{n}{2}+1 \leq i \leq n\} = \{n+1,n+2,\cdots,n+\frac{n}{2}\}, \\ S_5 &= \{f(v_5^i)|1 \leq i \leq n\} = \{5n+2,5n+3,\cdots,6n+1\} \\ S_6 &= \{f(v_6)\} = \{3n+1\}. \end{array}$$

Hence,

$$S = S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6$$

$$= S_0 \cup S_1 \cup S_{42} \cup S_{21} \cup S_{32} \cup S_6 \cup S_{22} \cup S_{41} \cup S_{31} \cup S_5$$

$$= \{0\} \cup \{1, 2, \cdots, n\} \cup \{n+1, n+2, \cdots, n+\frac{n}{2}\}$$

$$\cup \{n+\frac{n}{2}+2, n+\frac{n}{2}+3, \cdots, 2n+1\} \cup \{2n+\frac{n}{2}+1, 2n+\frac{n}{2}+2, \cdots, 3n\}$$

$$\cup \{3n+1\} \cup \{3n+2, 3n+3, \cdots, 3n+\frac{n}{2}+1\}$$

$$\cup \{4n+2, 4n+3, \cdots, 4n+\frac{n}{2}+1\} \cup \{5n+2, 5n+3, \cdots, 6n+1\}$$

$$\subseteq \{1, 2, \cdots, 6n+1\}.$$

It is clear that the labels of each vertices are different. So, f is a injection from $V(n-\vec{C}_7)$ into $\{0,1,\cdots,6n+1\}$.

Secondly, we show the induced edges labeling f' is a bijective mapping from $E(n-\vec{C}_7)$ onto $\{1,2,\cdots,6n+1\}$.

```
Set B_j = \{ [f(v_{i+1}^i) - f(v_i^i)] \pmod{6n+2} | 1 \le i \le n \} \ (0 \le j \le 6) \text{ and let}
B = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_6. Then
 B_0 = \{ [f(v_1^i) - f(v_0)] \pmod{6n+2} | 1 \le i \le n \} = \{1, 2, \dots, n \}
 B_1 = \{ [f(v_2^i) - f(v_1^i)] \pmod{6n+2} | 1 \le i \le n \}
       = B_{11} \cup B_{12}, where
          B_{11} = \{ [2n+2-2i] \pmod{6n+2} | 1 \le i \le \frac{n}{2} \} = \{ n+2, n+4 \cdots, 2n \},
          B_{12} = \{ [4n+2-2i] \pmod{6n+2} | \frac{n}{2}+1 \le i \le n \} = \{ 2n+2, 2n+4, \cdots, 3n \},
 B_2 = \{ [f(v_3^i) - f(v_2^i)] \pmod{6n+2} | 1 \le i \le n \}
       = B_{21} \bigcup B_{22}, where
          B_{21} = \{ [2n-1+2i] \pmod{6n+2} | 1 \le i \le \frac{n}{2} \} = \{ 2n+1, 2n+3, \cdots, 3n-1 \},
          B_{22} = \{ [4n+2i] \pmod{6n+2} | \frac{n}{2}+1 \le i \le n \} = \{ 5n+2, 5n+4, \cdots, 6n \},
 B_3 = \{ [f(v_4^i) - f(v_3^i)] \pmod{6n+2} | 1 \le i \le n \}
       = B_{31} \bigcup B_{32}, where
          B_{31} = \{ [6n+3-2i) \mid \pmod{6n+2} | 1 \le i \le \frac{n}{2} \} = \{ 5n+3, 5n+5, \cdots, 6n+1 \},
          B_{32} = \{ [6n+3-2i] \pmod{6n+2} | \frac{n}{2}+1 \le i \le n \} = \{ 4n+3, 4n+5, \dots, 5n+1 \},
 B_4 = \{ [f(v_5^i) - f(v_4^i)] \pmod{6n+2} | 1 \le i \le n \}
= B_{41} \bigcup B_{42}, where
          B_{41} = \{ [n-1+2i] \pmod{6n+2} | 1 \le i \le \frac{n}{2} \} = \{ n+1, n+3, \cdots, 2n-1 \},
          B_{42} = \{ [3n+2i] \pmod{6n+2} | \frac{n}{2}+1 \le i \le n \} = \{ 4n+2, 4n+4, \cdots, 5n \},
 B_5 = \{ [f(v_6^i) - f(v_5^i)] \pmod{6n+2} | 1 \le i \le n \} = \{ 4n+2-i | 1 \le i \le n \} = \{ 3n+2, 3n+3, \cdots, 4n+1 \}
 B_6 = \{ [f(v_0^i) - f(v_6^i)] \pmod{6n+2} | 1 \le i \le n \} = \{ 3n+1 \}.
Hence, B = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_6 is the set of labels of all edges,
     = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_6
       = B_0 \cup B_{41} \cup B_{11} \cup B_{21} \cup B_{12} \cup B_6 \cup B_5 \cup B_{42} \cup B_{32} \cup B_{22} \cup B_{31}
       = \{1, 2, \dots, n\} \cup \{n+1, n+3, \dots, 2n-1\} \cup \{n+2, n+4, \dots, 2n\}
          \cup \{2n+1, 2n+3, \cdots, 3n-1\} \cup \{2n+2, 2n+4, \cdots, 3n\} \cup \{3n+1\}
          \cup \{3n+2, 3n+5, \cdots, 4n+1\} \cup \{4n+2, 3n+4, \cdots, 5n\}
          \cup \{4n+3,4n+5,\cdots,5n+1\} \cup \{5n+2,5n+4,\cdots,6n\}
          \cup \{5n+3, 5n+5, \cdots, 6n+1\}
       = \{1, 2, \ldots, 6n + 1\}.
```

It shows that f' is a bijection from $E(n-\vec{C_7})$ onto $\{1,2,\cdots,|E(n-\vec{C_7})|\}$. So we conclude that $n-\vec{C_7}$ is graceful for even n.

Theorem 3. For every even integer n, the digraph $n - \vec{C}_9$ is graceful.

Proof. Define

$$f(v_0) = 0, \ f(v_8) = 4n + 1$$

and

$$\begin{split} f(v_j^i) &= \frac{j-1}{2}n+i, \ j=1,5 \ \text{ and } \ 1 \leq i \leq n, \\ f(v_2^i) &= \left\{ \begin{array}{ll} 2n+1-i, & 1 \leq i \leq \frac{n}{2}, \\ 7n+3-i, & \frac{n}{2}+1 \leq i \leq n, \end{array} \right. \\ f(v_j^i) &= \frac{j+7}{2}+1+i, \ j=3,7 \ \text{ and } \ 1 \leq i \leq n, \\ f(v_j^i) &= \frac{j}{2}(n+1)+2n-1-i, \ j=4,6 \ \text{ and } \ 1 \leq i \leq n, \end{split}$$

Similar to the proof of Theorem 1 and Theorem 2, it can be shown that this assignment provides a graceful labeling of $n - \vec{C}_9$ for even n. Hence $n - \vec{C}_9$ is graceful for even n.

Theorem 4. For every even integer n, the digraph $n - \vec{C}_{11}$ is graceful.

Proof. Define

 $f(v_0) = 0, \ f(v_{10}) = 5n + 1$

and

$$\begin{split} f(v^i_j) &= \frac{3(j-1)}{8}n + i, j = 1, 9 \text{ and } 1 \leq i \leq n, \\ f(v^i_j) &= 2(j-1)n + i, j = 3, 5 \text{ and } 1 \leq i \leq n, \\ f(v^i_j) &= (\frac{j+4}{6} + 8)n + 2 - i, \ j = 2, 8 \text{ and } 1 \leq i \leq n, \\ f(v^i_j) &= \frac{36 - 5j}{2}n + 1 - i, \ j = 4, 6 \text{ and } 1 \leq i \leq n, \\ f(v^i_7) &= \left\{ \begin{array}{ll} 5n + 1 + i, & 1 \leq i \leq \frac{n}{2} \\ n - 1 + i, & \frac{n}{2} + 1 \leq i \leq n \end{array} \right. \end{split}$$

Similar to the proof of Theorem 1 and Theorem 2, it can be shown that this assignment provides a graceful labeling of $n - \vec{C}_{11}$ for even n. Hence $n - \vec{C}_{11}$ is graceful for even n.

Theorem 5. For every even integer n, the digraph $n - \vec{C}_{13}$ is graceful.

Proof. Define

$$f(v_0) = 0, \ f(v_{12}) = 6n + 1$$

and

$$\begin{split} f(v^i_j) &= \frac{j-1}{4}n + i, \ j = 1, 5 \ \text{ and } \ 1 \leq i \leq \ n \ , \\ f(v^i_j) &= \frac{7j-2}{4} + \frac{j}{2} - i, \ j = 2, 6 \ \text{ and } \ 1 \leq i \leq \ n, \\ f(v^i_j) &= \frac{7+3j}{4}n + 1 + i, \ j = 3, 7 \ \text{ and } \ 1 \leq i \leq \ n, \end{split}$$

124

$$f(v_9^i) = \begin{cases} 10n + 2 + i, & 1 \le i \le \frac{n}{2}, \\ 5n + i, & \frac{n}{2} + 1 \le i \le n, \end{cases}$$
$$f(v_{10}^i) = 4n + 1 - i, & 1 \le i \le n,$$
$$f(v_{11}^i) = 11n + 1 + i, & 1 \le i \le n,$$

Similar to the proof of Theorem 1 and Theorem 2, it can be shown that this assignment provides a graceful labeling of $n - \vec{C}_{13}$ for even n. Hence $n - \vec{C}_{13}$ is graceful for even n.

In Figure 1, we give graceful labelings of $8-\vec{C}_5, 8-\vec{C}_7, 8-\vec{C}_9$, $8-\vec{C}_{11}$ and $8-\vec{C}_{13}$.

REFERENCES

- [1] J. A. Bondy, U S R Murty. *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [2] J. A. Gallian. A Dynamic Survey of Graph Labeling. THE ELECTRONIC JOURNAL OF COMBINATORICS, # DS6(2008 VERSION).
- [3] Ma Kejie. Graceful graphs: The first edition, Beijing University press, 1991.
- [4] Choudum, S.Pitchai Muthu Kishore, Graceful labeling of the union of paths and cycles. *Discrete Math*,1999,(206):105-117.
- [5] Jirimutu, Sqinbatur. On the proof of a conjecture that the digraph $n \cdot \vec{C}_3$ is a graceful graph. Mathematics in Practice and Theory, 2000,(30):232-234.
- [6] Du Zi-ting, Cun Hui-quan. The gracefulness of digraph $n \cdot \ddot{C}_{2p}$, Journal of Beijing University of Posts and Telecommunications, 1994,(17):85-88.
- [7] Jirimutu, Sqinbatur. On the gracefulness of the digraph $2k \cdot \vec{C}_5$ and $2k \cdot \vec{C}_7$. Journal of Engineering Mathematics, 1999,(16):131-134.
- [8] Jirimutu, Xu Xirong. On the gracefulness of the digraphs $n \vec{C}_m$ for m even, submitted.

Figure 1: Graceful labelings of $8-\vec{C}_5, 8-\vec{C}_7, 8-\vec{C}_9, 8-\vec{C}_{11}$ and $8-\vec{C}_{13}$.