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ON RANDOM COVERING OF A CIRCLE

MUHAMMAD NAEEM∗

Abstract. Let Xj , j = 1, 2, ..., n be the independent and identically dis-
tributed random vectors which take the values on the unit circumference.
Let Sn be the area of the convex polygon having Xj as vertices. The paper
by Nagaev and Goldfield (1989) has proved the asymptotic normality of
random variableSn. Our main aim is to show that the random variableSn

can be represented as a sum of functions of uniform spacings. This allows
us to apply known results related to uniform spacings for the analysis of
Sn.

1. Introduction

Consider a circle of radius r and let Xj , j = 1, 2, ..., n be the random points
taken from uniform distribution on it. Denote by Sn the area of the convex
polygon having Xj , j = 1, 2, ..., n as vertices. Obviously Sn → πr2,almost
surely, asn → ∞. Investigation of the random variable Snrelated to the cov-
erage by random arcs of a circle has been done by several authors, we refer
to Holst (1981) and references contained therein. Conditions under which a
given sequence of arcs lengths will almost surely cover the circle were studied
by Dvoretzki (1956).The problem of covering the circle by random arcs has
been considered also by Siegel, A. (1978, 1979). During the discussion of the
covering of a circle several random variables of interest can be represented as
a sum of specific functions, for example, the number of uncovered segments
or gaps on the circumference, for more details see Rao, J. S. (1976) see also
L.Holst and Hustler (1984).
Put ∆n (r) = πr2 − Sn. Nagaev, A.V. and Goldfield, S.M. (1989) has proved
that the random variable ∆n (1) has asymptotically normal distribution with
mean 4π3n−2 and variance160π6

/
n5. They represented the random variable
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Sn as a sum of sine functions and analyzed it by a method known as “ε-
approximation” method which is complicated and long. In this paper we wish
to show that ∆n (r) can be represented as a sum of special function of uniform
spacings. This allow us to use the well known limit theorems for the sum of
functions of uniform spacings, see for example, Pyke (1965,1972), Holst and
Rao (1981), Does et al (1987).

2. Preliminaries

Let z1, z2, ..., zn be the ordered sample from uniform(0, 1) distribution and
Di,n = zi,n − zi−1,n , i = 1, ..., n be their spacings, D = (D1,n, ..., Dn,n). Let
fm,n (y) , m = 0, 1, ..., n be the measurable functions of non-negative argu-
ments y. Consider the statistic

Rn (D) =
n∑

m=1

fm,n (nDm,n) .

Let Y1, Y2, ... be independent exponentially distributed random variables (r.
v.) with parameter 1 and let Y = (Y1, ..., Yn), bn =

∑n
m=1 (Ym − 1), Rn (Y ) =∑n

m=1 fmn (Ym). Then it is well known that

L (Rn (D)) = L (Rn (Y ) /bn = 0) ,

i.e. Rn (D) has the same distribution as a sum of independent special r. v.
given another sum of independent r. v. We suppose that the moments used
below exist.
Let ρn = corr (Rn (Y ) , bn), gm (u) =
fmn (u)−E fm,n (Ym)−ρn

√
varRn (Y ) /n (u− 1), Hn (D) =

∑n
m=1 gm (nDmn)

and Hn (Y ) =
∑n

m=1 gm (Ym).
Note that σ2

n ≡ varHn (Y ) =
(
1− ρ2

n

)
varRn (Y ) and E Hn (Y ) = 0,

cov (Hn (Y ) , bn) = 0. Obviously Hn (D) = Rn (D) − ERn (Y ). Therefore,
without loss of generality, we may consider the statistics Hn (D) instead of
Rn (D). From the definition of σ2

n, it is clear that σ2
n = 0 if and only if

fmn (y) = C y + am, where am are arbitrary constants and C does not de-
pend on m for all m=1,. . . ,n. We suppose that σ2

n > 0, for all n=1,. . . .
Let H̄n = Hn (Yn) /σn , Ȳn = (Yn − 1) /

√
n , βk,n =

∑n
m=1 E

∣∣H̄n

∣∣k, Φ (x) =
1√
2π

∫ x
−∞ e−t2/2dt and An (x) = P {Hn (D) < xσn}. Then by the Corollary 2

of Mirakhmedov (2005) it follows that there exist a constant C such that

sup
x
|An (x)− Φ(x)| ≤ Cβ2+δ,n

for arbitrary δ ∈ (0, 1] and n>2.
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3. main results

Put Fn (x) = P
{(

2r−2∆n (r)− αn

)
β−1

n < x
}

Theorem 1. There exist a constant C > 0 such that

|Fn (x)− Φ(x)| ≤ C√
n

.

Theorem 2. The random variable 2r−2∆n (r) has asymptotically normal dis-
tribution with mean αn = 8π3

/
n2 and varianceβ2

n = 19
(
64π6

/
n5

)
, as n →∞.

We will demonstrate the proof of Theorem 1 only, Theorem 2 readily follows
from Theorem 1.

Proof. We suppose that X1,X2,..., Xn are arranged on the circumference in
such a way that Xi+1 comes after Xi in the counterclockwise direction and
such that Xn = 2πr. Let the successive arc lengths which are the spacings
between these points be denoted by D1, D2, ..., Dn that is Di = Xi−Xi−1, i =
1, 2, ..., n with X0 = 0. We have

Sn =
1
2

n∑

m=1

r2 sin
1
r
Dm (1)

Note that D1 + D2 + ... + Dn = 2πr, and D1, D2, ..., Dn can be considered as
spacings formed from sample drawn from uniform distribution in the interval
[0, 2πr]. Let U1, U2, ..., Un−1 be the ordered sample from uniform (0, 1) distri-
bution and D′

i = Ui −Ui−1, i = 1, 2, ..., n, with U0 = 0, Un = 1, i = 1, 2, ..., n
be their spacings. From (1) we have

2
r2

∆n (r) =
n∑

m=1

(
1
r
Dm − sin

1
r
Dm

)
=

n∑

m=1

(
2πD′

m − sin 2πD′
m

)
=

n∑

m=1

f
(
nD′

m

)

(2)
where f (x) = 2π

n x− sin 2π
n x.

Relation (2) allows us to use known results for the sum functions of uniform
spacings for the analysis of the random variable 2r−2∆n (r). Let f(x) be a
real-valued measurable function defined on [0,∞) and statistic Rn be defined
as Rn =

∑n
m=1 f (nD′

m). Denote g (x) and σ2 as under

g(x) = f(x)− µ− (x− 1)ρ, σ2 = V arg(Y ) = V arf(Y )− ρ2

where µ = Ef(Y ), ρ = cov(f(Y ), Y )
with Y to be random variable having an exponential distribution with expec-
tation 1. Obviously
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Rn − nµ =
n∑

m=1

g(nD′
m).

Put

Pn(x) = P
{
Rn < xσ

√
n + nµ

}
.

Assertion . There exist a positive constant C such that

max
x∈R

|Pn(x)− Φ(x)| ≤ C
E |g(Y )|3

σ3
√

n
.

Assertion follows from Corollary 2 of Mirakhmedov (2005).
By direct calculations we find

µ = Ef (Y ) =
(

2π

n

)3

+ O
(
n−5

)

ρ = Cov (Y, f (Y )) = E (Y − 1, f (Y )) = 3 (2π/n)3 + O
(
n−5

)

V arf(Y ) = Ef2 (Y )− (Ef (Y ))2 = 19 (2π/n)6 + O
(
n−8

)

σ2 = V arf (Y )− ρ2 = 10 (2π/n)6 + O
(
n−8

)
(3)

Eg4(Y ) = E {f (Y )− µ− (Y − 1) ρ}4 = 224136 (2π/n)12 + O
(
n−16

)
(4)

Using Holder’s inequality we get σ−3E |g(Y )|3 ≤ (
σ−4Eg4(Y )

)1/2. Hence The-
orem follows from Assertion and relations (3) and (4). Theorem 2 immediately
implies Theorem1. ¤
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