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Gp-FINITENESS OF TENSOR PRODUCT
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Abstract. In this paper we introduce GP finiteness of a Von-Neumann
algebra and we define a G-dimension function. Then we prove a result on
tensor product of fixed point algebra under group of automorphisms and
finally verify a result under which the tensor product is GP finite.
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1. Introduction

A Von Neumann algebra is finite if and only if there exist a centre-valued
trace. Replacing the role played by the centre by the fixed point algebra of the
Von Neumann algebra under group of automorphisms, G-dimension function
is introduced. The study of the classification problem of tensor product of
Von Neumann algebras is a part and parcel of the study of the classification
problems of Von Neumann algebra.

2. Preliminaries

Definition 1. Let M be a Von neumann algebra and G be the group of auto-
morphisms on M . Define the fixed point algebra MG as the set of all a in M
such that t(a) = a, for t in G. Denote P as set of all projections in M .

Theorem 1. [5] Let M1 and M2 be two Von Neumann algebras and M1⊗M2

be their tensor product. Then M1⊗M2 is finite if and only if M1 and M2 are
finite.
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Definition 2. [2] Let M1 and M2 be two Von Neumann algebras on the Hilbert
space H1 and H2 respectively, M1 ⊗M2 be their tensor product. G1 and G2

be groups of automorphism of M1 and M2 respectively. For a⊗ b in M1 ⊗M2

and t1 in G1 and t2 in G2 define a map,

t : M1 ⊗M2 −→M1 ⊗M2

as
t(a⊗ b) = t1(a)⊗ t2(b).

Let G1 ⊗G2 denote the set of all such t obtained from all possible pairs t1 in
G1 and t2 in G2.

For t and t′ in G1 ⊗G2 define

(t · t′)(a⊗ b) = t(t′(a⊗ b)).

Then G1 ⊗ G2 is a group of automorphism on M1 ⊗ M2 under the above
multiplication.

3. Main Results

Definition 3. Let M be a Von Neumann algebra, G, a group of automor-
phisms on M . We define a relation between projections in M as follows. Pro-
jections e and f in M are said to be equivalent relative to G or G equivalent
denoted by e ∼G f if and only if there exists t ∈ G such that e = t(f).

Remark 1. ∼G is an equivalence relation in P .

Definition 4. M,G, MG and P as above. Then M is said to be GP -finite if
e ∼G f ≤ e implies e = f for every pair of projections e and f in P .

Definition 5. A G-dimension function on M is a mapping

d : P →MG

which satisfies
(1) d(e) > 0 if e 6= 0,
(2) d(e + f) = d(e) + d(f),
(3) d(e) = d(f) if e ∼G f
(4) d(q) = q if q is a projection in MG for every e, f ∈ P .

Remark 2. If a G-dimension function d : P → MG exists, then M is GP -
finite.

Remark 3. If G is a group of inner automorphisms on M ,then MG reduecd
to the centre, Z of M then d can be cosidered as a function from M to Z. Let
H be a Hilbert space with dimension n. Let M = B(H), e a projection in M
and dim E denote dimension of the subspace e(H) of H then d(E) = dim E

n I,
where I is the identity operator in H.
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Definition 6. G- Central carrier or G-Central support of a projection e in
M is defined as the smallest projection in MG majorising e and is denoted by
CG

e .

Remark 4. If e ∼G f then CG
e = CG

f .

Proposition 2. Let M1, M2 be Von Neumann algebras, G1, and G2 groups of
automorphisms on M1 and M2 respectively. Let M = M1⊗M2, G = G1⊗G2,
then MG = MG1

1 ⊗MG2
2 .

Proof. Let a ⊗ b belongs to MG. Then (t1 ⊗ t2)(a ⊗ b) = a ⊗ b for every
t1 ⊗ t2 ∈ G. Hence

t1(a)⊗ t2(b) = a⊗ b ∀t1 ⊗ t2 ∈ G.

i.e.,
t1(a)⊗ t2(b) = a⊗ b ∀t1 ∈ G1 and t2 ∈ G2.

Taking t2 = e2, the identity of G2, t1(a)⊗ e2(b) = a⊗ b)
implies

t1 (a⊗ b) = a⊗ b.

implies
(t1(a)− a)⊗ b = 0.

b is nonzero operator in M2 implies t1(a)− a = 0. Therefore

t1(a) = a ∀t1 ∈ G1.

Hence a is in MG1
1 . Similarly we can prove that b is in MG2

2 . Therefore a⊗ b

is in MG1
1 ⊗MG2

2 . MG is subset of MG1
1 ⊗MG2

2 .
Conversely, let a⊗ b in MG1

1 ⊗MG2
2 such that a in MG1

1 and b in MG2
2 . Then

t1(a) = a ∀t1 ∈ G1 and t2(b) = b ∀t2 ∈ G2. Hence a⊗b = t1(a)⊗t2(b) ∀t1 ∈ G1

and ∀t2 ∈ G2. Hence a⊗ b = (t1⊗ t2)(a⊗ b) for every t1⊗ t2 ∈ G1⊗G2. This
shows that on the generators of MG1

1 ⊗MG2
2 we have

(t1 ⊗ t2)(a⊗ b) = a⊗ b.

But if a⊗ b in MG1
1 ⊗MG2

2 is arbitrary, then a⊗ b is the weak limit of a net
am ⊗ bm where am in MG1

1 and bm in MG2
2 . But for t1 ∈ G1 and t2 ∈ G2

the automorphism t1 ⊗ t2 defined on M1 ⊗M2 is ultraweakly continuous and
hence weakly continuous. Therefore (t1 ⊗ t2)(am ⊗ bm) converges weakly to
(t1⊗ t2)(a⊗b). Consider | < (t1⊗ t2)(a⊗b)− (a⊗b)x, y > | = | < (t1⊗ t2)(a⊗
b)− (t1t2)(am⊗bm)+(t1⊗ t2)(ambm)− (am−bm)+(am⊗bm)− (a⊗b)x, y > |.
This converges to zero. Hence (t1⊗t2)(a⊗b) is equal to a⊗b in weak topology.
Therefore a ⊗ b lies in MG and also MG is the weak closure of MG1

1 ⊗MG2
2 .

Hence the result. �
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Proposition 3. Let M1 and M2 be two Von Neumann algebras. G1 and
G2 be groups of automorphisms on M1 and M2 respectively. Let G1- central
support of e1 be CG1

e1
and G2-central support of e2 be CG2

e2
where e1 and e2 are

projection in M1 and M2 respectively. Let e = e1⊗e2 and G = G1⊗G2. Then
G-central support of e is CG

e = CG1
e1
⊗ CG2

e2
.

Proof. CG
e is G-central support and hence it is the smallest projection in MG

majorizing e. Therefore

CG
e (e1 ⊗ e2) = (e1 ⊗ e2).

Now

CG1
e1
⊗ CG2

e2
(e1 ⊗ e2) = CG1

e1
e1 ⊗ CG2

e2
e2

= e1 ⊗ e2,

by the definition of CG1
e1

and CG2
e2

. Hence by the definition of CG
e ,

CG1
e1
⊗ CG2

e2
≥ CG

e . (1)

Now let f1⊗ f2 is any projection in MG with let f1 in MG
1 and f2 in MG

2 such
that

(f1 ⊗ f2)(e1 ⊗ e2) = (e1 ⊗ e2). (2)

Therefore
f1e1 ⊗ f2e2 = e1 ⊗ e2

implies
f1e1 = me1 and f2e2 = m−1e2,

where m is a scalar. Therefore (m−1f1)e1 = e1 and (mf2)e2 = e2m
−1f1

belongs to MG
1 implies CG1

e1
≤ m−1f1;mf2 belongs to MG

2 implies CG2
e2
≥ mf2.

Therefore

CG1
e1
⊗ CG2

e2
≤ m−1f1mf2

= (m−1m)(f1f2).

Therefore
CG1

e1
⊗ CG2

e2
≤ f1 ⊗ f2

for any projection f1 ⊗ f2 in MG. CG
e is the smallest projection in MG ma-

jorizing e. Therefore in particular

CG1
e1
⊗ CG2

e2
≤ CG

e (3)

From (1) and (3), result follows. �
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Theorem 4. Let M1 and M2 be two Von Neumann algebras G1 and G2 be
groups of automorphism on M1 and M2 respectively. Let G = G1 ⊗ G2 and
P1 set of all projections in M1. Suppose P1 ⊗ P2 is ordered by the relation ,
e1 ⊗ e2 ≤ f1 ⊗ f2 if and only if e1 ≤ f1 and e2 ≤ f2. If M1 is G1

P - finite and
M2 is GP

2 - finite then M1 ⊗M2 is GP -finite.

Proof. Let e1⊗e2 ∼G f1⊗f2 ≤ e1⊗e2 in M1⊗M2. e1⊗e2 ∼G f1⊗f2 implies
there exists t ∈ G such that e1 ⊗ e2 = t(f1 ⊗ f2). t ∈ G implies t = t1 ⊗ t2,
where t1 ∈ G1 and t2 ∈ G2. Therefore

e1 ⊗ e2 = t1(f1)⊗ t2(f2)

implies
e1 = mt1(f1)ande2 = m−1t2(f2),

where m is a scalar. Therefore e1 ∼G f1and e2 ∼G f2. Also

f1 ⊗ f2 ≤ e1 ⊗ e2

implies
f1 ≤ e1 and f2 ≤ e2

Hence
e1 ∼G f1 ≤ e1.

Since M1 is G1
P - finite, e1 = f1. Also M2 is G2

P - finite and e2 ∼G f2 ≤ e2implies
e2 = f2. Therefore e1 ⊗ e2 = f1 ⊗ f2 and hence M1 ⊗M2 is GP -finite. �
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