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CONTRACTIBLE FIBERS OF POLYNOMIAL FUNCTIONS

ZAHID RAZA∗

Abstract. In this short note, we investigate the topology of complex
polynomials f(x, y) in two variables. The description of the topology of
the corresponding level curves Ct : f(x, y) = t is directly related to the van-
ishing of the leading coefficients cj(t) of the discriminant of the polynomial
f(x, y)− t, regarded as polynomials in t.

In particular, we look for condition such that Ct is smooth and con-
tractible, since this implies that the corresponding polynomial is a coor-
dinate on C2. A detailed description including the homotopy types of the
curves Ct and the associated geometry is so far known only up to the degree
2, and we will try to extend it to the degree 3.
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1. Introduction

Let f : Cn 7−→ C be a polynomial map, n ≥ 2. It is known that a complex
polynomial function might not be a locally trivial topological fibration over
the complement in C of its critical values. The following general result by R.
Thom, A. Varchenko and J.-L. Verdier is well-known, see [13], [15], [16], [14].

Theorem 1. Let f : Cn → C be a complex polynomial map, with n ≥ 2. Then
there is a minimal finite set B(f) in C such that

f : Cn \ f−1(B(f))→ C \B(f)

is a locally trivial fibration.

This bifurcation set B(f) contains two type of points : the critical values
C(f) of f and the critical values at infinity I(f) of f .
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In this note, we concentrate on the simpler case n = 2. First we recall
the usual definition of I(f) in terms of jumps of the Milnor number of the
singularities of f at infinity and a result by Krasiǹski.

In fact, we make this result more precise in Proposition 5. It is surprising
that this explicit and constructive description of the set of critical values at
infinity I(f), which apparently goes back to Krasiǹski and Hà is present neither
in Durfee’s excellent survey [7], nor in the recent monograph by Tibăr [14].

In Theorem 6, we relate the degree of ∆(x) to the topology of the affine
curve C′ : f = 0 supposed to be smooth and irreducible. We also investigate
the relation between the possible values of deg ∆(x) and the geometry of the
curve C′ for d = 3.

2. Teissier’s result and Krasiǹski’s formula

First we recall what is a critical value at infinity in the case n = 2.

Definition 1. Let f(x, y) ∈ C[x, y] be a reduced polynomial and let C be the
projective closure of the affine curve C′ : f(x, y) = 0. Let C∞ = C ∩ L∞ be the
set of points at infinity of C. We consider the projective curves Ct (possibly
with multiple factors) given by the equations

Ct : F (x, y, z)− tzd = 0

where d = deg f and F (x, y, z) = zdf(x/z, y/z). Clearly C∞ = Ct∩L∞ for any
t ∈ C. Let µt

p = µp(Ct) be the Milnor number of Ct at p ∈ C∞. If a multiple
component of Ct passes through p, then we set µt

p = +∞. Let

µmin
p = min{µt

p : t ∈ C}. (1)

With this notation one has

I(f) = {t ∈ C : ∃ p ∈ C∞ s.t. µt
p > µmin

p } , (2)

see, for instance, [8] or [5], pp. 20-22. The elements of I(f) are called critical
values at infinity of the polynomial function f : C2 7−→ C. Different equivalent
definitions of critical values at infinity are discussed in [7]. For every t ∈ C
we put

λt(f) =
∑

p∈C∞

(µt
p − µmin

p ).

Lemma 2. Let C′ be a curve defined by the reduced polynomial f(x, y) = 0
such that the line x = a intersects the curve C′ in a finite number of points.
Then for any point p = (a, b) ∈ C′ one has

(f,
∂f

∂y
)p = µp(f) + (f, x− a)p − 1 . (3)

This is a two dimensional case of a formula due to Teissier, see [12], Chap.2,
Proposition 1.2 or (see in [11], Chap.2, Theorem 5).
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Definition 2. Let C ⊂ P2 be a reduced projective curve given by F = 0 and
q = [q0 : q1 : q2] ∈ P2 such that q0 ∂F

∂x + q1
∂F
∂Y + q2

∂F
∂z 6= 0 in C[x, y, z]. The

polar curve Γq(C) of C with respect to q is the projective plane curve defined
by the equation

q0
∂F

∂x
+ q1

∂F

∂Y
+ q2

∂F

∂z
= 0.

Lemma 3. For any point p 6= q on the projective curve C, one has

(C,Γq(C))p = µp(C) + (C, p̄q)p − 1

where p̄q is the line passing through the points p and q.

Proof. We choose coordinates on P2 so that p = [0 : 0 : 1], q = [0 : 1 : 0]. Then
the above formula reduces to Teissier’s local formula at the origin

(f, ∂f
∂y )0 = µ0(f) + (f,X)0 − 1.

�

Let f(x, y) ∈ C[x, y] be a reduced polynomial such that degyf = degf =
d > 1. Let ∆(x, T ) = discy(f(x, y) − T ) = Ry(f(x, y) − T, ∂f

∂y ) be the y

discriminant regard as a polynomial in C[x, T ]. Let us write

∆(x, T ) = ∆0(T )xN + · · ·+ ∆N (T ),where ∆0(T ) 6= 0 ∈ C[T ].

Let ∆(x) = discyf(x, y) be the y-discriminant of the polynomial f .

Proposition 4. Let f be a polynomial of two variables x, y which is is x-
regular, i.e. the equality degy f = deg f holds. Then, for any value of t ∈ C,
we have ∑

p∈C∞ µp(Ct) = c− degx(∆(x, t))
where c is a constant independent of t.

This formula is due to Krasiǹski, for details see [10].

3. Main Results

In this section, we shall establish our main results. First we improve the re-
sult in Proposition 4 by calculating the value of the constant c in the following
Proposition.

Proposition 5. Let f(x, y) ∈ C[x, y] be a reduced polynomial such that degyf =
degf = d > 1 and let C be the projective closure of the affine curve f(x, y) = 0.
Let C∞ be the set of points at infinity of C and let k = #C∞. Then

deg∆(x) = d(d− 2) + k −
∑

p∈C∞

µp(C). (4)



Contractible Fibers of Polynomial Functions 151

Proof. If F (x, y, z) be the homogenous polynomial corresponding to f(x, y),
so C is defined by F (x, y, z) = 0. Then ∂F

∂y corresponds to ∂f
∂y because we have

assumed that degyf = degf . Let q = (0 : 1 : 0), note that q /∈ C and consider
the corresponding polar curve Γq(C) : ∂F

∂y = 0. Then by well known properties
of the discriminant, we have

deg ∆(x) = degRy(f,
∂f

∂y
) =

∑
p∈C2

(f,
∂f

∂y
)p

=
∑

p∈C\L∞

(C,Γq(C))p =
∑
p∈C

(C,Γq(C))p −
∑

p∈L∞

(C,Γq(C))p.

By Bézout s’ Theorem and Lemma 3 for C,Γq(C), we get

deg ∆(x) = d(d− 1)−
∑

p∈C∞

µp(C)−
∑

p∈C∞

((C, p̄q)p − 1)

= d(d− 1)−
∑

p∈C∞

µp(C)− d+
∑

p∈C∞

1 = d(d− 2) + k −
∑

p∈C∞

µp(C).

�

Remark 1. In the above Propositions we need the condition degfy = degf =
d > 1. Indeed, we can not apply the affine from of the Bézout ’s Theorem to
get the equality

degRy(f,
∂f

∂y
) =

∑
p∈C2

(f,
∂f

∂y
)p

in the proof of Proposition 5, because the point [0 : 1 : 0] at infinity lies on both
curves defined by the equations F and ∂F

∂y . As an explicit example, consider
f(x, y) = x2y − x. Then discy(x, t) = 1, so we can derive no information
about the critical values at infinity. But we know that f has a critical value at
infinity, namely t = 0.

Theorem 6. Let f(x, y) = t ∈ C[x, y] be a reduced (without multiple factors)
polynomial such that degyf = degf = d > 1. Assume that the fiber C′t = f−1(t)
is smooth and irreducible, then

degx∆(x, t) = d− 1 + b1(C′t).

Proof. Let f(x, y) = yd + a1(x)yd−1 + · · · + ad(x) − t be a reduced (without
multiple factors) polynomial such that degyf = degf = d > 1 and let C be the
projective closure of the affine curve f(x, y) = 0. Let k be the cardinality of
the set of points at infinity of C. Let ∆(x) = discyf(x, y) be the y-discriminant
of the polynomial f , then

χ(C′t) = χ(Ct)− k.
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Using the Corollary (5.4.4) in [5], p. 162, we get

χ(C′t) = χ(Cd,smooth) +
k∑

i=1

µpi(C, p)− k

By Proposition 5, we get

χ(C′t) = χ(Cd,smooth) + d(d− 2) + k − degx∆(x, t)− k

but
χ(Cd,smooth) = 2− 2g = 3d− d2

so
χ(C′t) = d− degx∆(x, t).

On the other hand C′t is a affine variety of dimension one, so has the homo-
topy type of a CW -complex of dimension one i.e. a bouquet of b1(C′t) circles
S1. It follows the result. �

Corollary 7. If the fiber C′t is smooth and irreducible. Then C′t is contractible
iff

degx∆(x, t) = d− 1.

Example 1. We give detail explanation when the fibers are contractible for
d = 3 i.e. when the conditions of the above corollary hold. The general form of
a polynomial of degree three is f(x, y) = y3 + (ax2 + c)y+Ax3 +Bx2 +Cx− t.
Then the y-discriminant of f(x, y) is:
∆(x, t) = (−4a3− 27A2)x6− 54ABx5 + (−54AC− 12a2c− 27B2)x4 + (54At−
54BC)x3 + (54Bt− 27C2 − 12ac2)x2 + 54Ctx− 4c3 − 27t2.
Now the fiber C′t is contractible⇐⇒ degx∆(x, t) = 3−1 = 2. So the coefficients
of x6, x5, x4, x3 must be zero i.e.
x6 : 4a3 + 27A2 = 0
x5 : AB = 0
x4 : 18Ac+ 4a2c+ 9B2 = 0
x3 : At−BC = 0
x2 : 18Bt− 9C2 − 4ac2 6= 0
Case(i) If A = 0. Then a = 0 and B = 0, the coefficient of x2 is non-zero
iff C 6= 0. So the polynomial becomes f(x, y) = y3 + cy + Cx − t, which is
equivalent to a linear form i.e. f is a global coordinate change on C2. Hence
C′t is contractible.
Case(ii) If A 6= 0.
Then a 6= 0, B = 0 t = 0, and polynomial becomes

f(x, y) = y3 + ax2y +Ax3︸ ︷︷ ︸ +Cx+ cy.

f3 = y3 + ax2y +Ax3.
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=⇒ f3 has a double root i.e. f3 = (y− ux)2(y+ 2ux), so A = 2u3, a = −3u2.
Then the coefficient of x4 becomes

18u3C + 18u4c = 0 =⇒ u = −C
c .

If c = 0 =⇒ C = 0.
So the coefficient of x2 becomes zero, which is impossible. If c 6= 0. The
polynomial becomes reducible f(x, y) = (y− ux)((y− ux)(y+ 2ux) + c), which
is impossible. So degx∆(x, t) 6= 2 in this case. Hence fiber is not contractible.

References

[1] S. S. Abhyankar, T. T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math.
276(1975), 148–166.

[2] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo Velasco: On polynomials whose fibers are
irreducible with no critical points, Math. Ann. 299 (1994), 477-490.
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[9] H.V. Hà, T.S. Pha.m: Remark on the equisingularity of families of affine plane curves,

Ann. Polon. Math. 68 (1998), no. 3, 275–280.
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