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ON THE PARTITION DIMENSION OF SOME WHEEL
RELATED GRAPHS

IMRAN JAVAID∗, SARA SHOKAT∗

Abstract. Let G be a connected graph. For a vertex v ∈ V (G) and an
ordered k-partition Π = {S1, S2, ..., Sk} of V (G), the representation of v
with respect to Π is the k-vector r(v|Π) = (d(v, S1), d(v, S2), ..., d(v, Sk))

where d(v, Si) = min
w∈Si

d(v, w)(1 ≤ i ≤ k). The k-partition Π is said to be

resolving if the k-vectors r(v|Π), v ∈ V (G), are distinct. The minimum
k for which there is a resolving k-partition of V (G) is called the partition
dimension of G, denoted by pd(G). In this paper, we give upper bounds for
the cardinality of vertices in some wheel related graphs namely gear graph,
helm, sunflower and friendship graph with given partition dimension k.

Key words : Resolving partition, partition dimension, gear graph, helm,
sunflower and friendship graph.
AMS SUBJECT : 05C12.

1. Introduction

If G is a connected graph, the distance d(u, v) between two vertices u and
v in G is the length of a shortest path between them. The diameter of G,
denoted by diam(G) is the largest distance between two vertices in V (G). For
a vertex v of a graph G and a subset S of V (G), the distance between v and
S is d(v, S) = min{d(v, x)|x ∈ S}. Let Π = {S1, S2, . . . , Sk} be an ordered
k-partition of vertices of G and let v be a vertex of G. The representation
r(v|Π) of v with respect to Π is the k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)). If
distinct vertices of G have distinct representations with respect to Π, then Π
is called a resolving partition for G. The cardinality of a minimal resolving
partition is called the partition dimension of G, denoted by pd(G).

If d(x, S) 6= d(y, S) we shall say that the class S distinguishes vertices x
and y. If a class S of Π distinguishes vertices x and y we shall also say that
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Π distinguishes x and y. From these definitions it can be observed that the
property of a given partition Π of the vertices of a graph G to be a resolving
partition of G can be verified by investigating the pairs of vertices in the same
class. Indeed, every vertex x ∈ Si (1 ≤ i ≤ k) is at distance 0 from Si, but is
at a distance different from zero from any other class Sj with j 6= i. It follows
that x ∈ Si and y ∈ Sj are distinguished either by Si or by Sj for every i 6= j.

Another useful property in determining pd(G) is the following lemma from
3.

Lemma 1. Let Π be a resolving partition of V (G) and u, v ∈ V (G). If
d(u, w) = d(v, w) for all vertices w ∈ V (G) \ {u, v}, then u and v belong
to different classes of Π.

Partition dimension was firstly studied by Chartrand et. al in 3. and 4.
perhaps as a variation of metric dimension. Metric dimension of a graph is
defined in the following way. A subset of vertices W = {w1, . . . , wk} is called
a resolving set for G if for every two distinct vertices x, y ∈ V (G), there is
a vertex wi ∈ W such that d(x, wi) 6= d(y, wi). A resolving set containing a
minimum number of vertices is called a metric basis for G and the number of
vertices in a metric basis is its metric dimension denoted by dim(G). They
gave upper and lower bounds for partition dimension of a graph in terms of
metric dimension of a graph in 3.

Theorem 2. If G is a nontrivial connected graph, then

pd(G) ≤ dim(G) + 1.

Moreover, for every a, b of positive integers with d b
2e + 1 ≤ a ≤ b + 1, there

exist a connected graph G such that pd(G) = a and dim(G) = b.

Following this theorem there was an open problem. Is it the case that

pd(G) ≥ ddim(G)
2

e+ 1

for every nontrivial connected graph G? This problem was answered in 2. We
give a counter example to show that answer is NO.
We consider a wheel W19. In 1, it was shown that dim(Wn) = b2n+2

5 c. So
dim(W19) = 8 and we show that pd(W19) ≤ 4. Let c be the central vertex and
v0, v1, v2, . . . , v18 be the rim vertices of W19. We consider the following resolv-
ing partition: Π = {S1, S2, S3, S4} where S1 = {c, v0, v1, v2, v4, v6, v13, v17},
S2 = {v9, v11, v14, v18}, S3 = {v3, v8, v10, v16} and S4 = {v5, v7, v12, v15}. This
gives that 4 ≥ 5 which shows that pd(G) ≥ ddim(G)

2 e+ 1 is not true in general.
The concepts of metric dimension of a graph was introduced by Slater in

14. and 15. to uniquely determine the location of an intruder in a network
and this concept was studied independently by Harary and Melter in 10. It
has since been extensively studied (see 1–6, 10–15). These concepts have some
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applications in chemistry for representing chemical compounds (see 6) or to
problems of pattern recognition and image processing, some of which involve
the use of hierarchical data structures (see 12) and arise in areas like coin
weighing problems (see 13) robot navigation (see 11) and strategies for the
Mastermind game (see 8 and 9).

Motivation for this paper is to answer the following extremal problem pro-
posed in 2. for some wheel related graphs.
Problem: Determine, for each d and k, the maximum order of a graph having
diameter d and partition dimension k.

Following theorem about the cardinality of vertices in graphs with diameter
two and partition dimension k ≥ 2 was proved in 2.

Theorem 3. The maximum order of a graph with diameter two and partition
dimension k ≥ 2 is

l[
(

2l − 1
l

)
+ 22l−1], if k = 2l,

and

(2l + 1)[
(

2l − 1
l

)
+ 22l−1], if k = 2l + 1.

In 16, it was shown that for given partition dimension k, |V (Wn)| < k3

2 for
every k ≥ 2 and following that it was shown that k ≥ d(2n)1/3e. Following
theorem was proved in 16.

Theorem 4. For every n ≥ 4

d(2n)1/3e ≤ pd(Wn) ≤ p + 1,

where p is the smallest prime number such that p(p− 1) ≥ n.

In this paper we give upper bound for cardinality of vertices in gear graph,
helm, sunflower and friendship graph. In the section to follow, we give an
upper bound for the cardinality of vertices in gear graph G2n and show that
pd(G2n) ≥ d12 log2(2n+1)e−1 for every n ≥ 2. In the third and fourth section
we give upper bound for the number of vertices in helm Hn and sunflower
SFn. In the last section for the friendship graph we show that if pd(fn) = k

then n ≤
(
k
2

)
and this bound is attainable for every k.

2. Partition Dimension of Gear Graph

Gear graph G2n is defined as follows: consider an even cycle C2n : v0, v1, . . . ,
v2n−1, v0, where n ≥ 2 and a new vertex c adjacent to n vertices of C2n :
v0, v2, . . . , v2n−2. G2n has order 2n+ 1 and size 3n. Equivalently, a gear graph
is obtained from the wheel by adding a vertex between every pair of adjacent
vertices of the cycle. This definition is taken from 7.
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The vertices of C2n in G2n are of two kinds: vertices of degree two and
three, respectively. The vertices of degree two will be referred to as minor
vertices and vertices of degree three to as major vertices. It is not difficult to
see that pd(G4) = 3 (S1 = {c, v0}, S2 = {v1} and S3 = {v2, v3}), pd(G6) = 3
(S1 = {c, v0, v5}, S2 = {v1, v2} and S3 = {v3, v4}) and pd(G8) = 3 with
minimal resolving partition consisting of S1 = {c, v0, v1, v2}, S2 = {v3, v4, v5}
and S3 = {v6, v7}. Now we find bounds for the value of n for a given k such
that pd(G2n) = k. Suppose that c ∈ S1.
Claim 1. There can be at most two 1’s in the vector representation of a rim
vertex other than the first position.
Claim 2. There can be at most two 2’s in the vector representation of a minor
rim vertex other than the first position.
Claim 3. The greatest number in the vector representation of a minor vertex
is 4.
Claim 4. The greatest number in the vector representation of a major vertex
is 3.
Now, we present some lemmas.

Lemma 5. The number of distinct representations of the center c of gear
graph with respect to partitions of V (G2n) is 2k−1.

Proof. Let pd(G2n) = k. Without loss of generality, we can assume that
c ∈ S1. Then c is at distance 0 from S1 and it can be at distance 1 or 2 from
other k − 1 classes. So k − 1 positions of the vector for c can be filled by 1 or
2. Hence there can be 2k−1 distinct representations for c. �

Lemma 6. The number of distinct representations of the major rim vertices
in S1 containing the center c of gear graph with respect to partitions of V (G2n)
is
∑2

i=0

(
k−1

i

)
2k−i−1.

Proof. Let v be a major vertex in S1. Then first entry in the vector represen-
tation of v with respect to Π is 0. So there are k − 1 positions which can be
filled by 1, 2 or 3. Since 1 can be at most twice by claim 1 then the number
of possible distinct representations is

∑2
i=0

(
k−1

i

)
2k−i−1. �

Lemma 7. The number of distinct representations of the minor rim vertices
in S1 containing the center c of gear graph with respect to partitions of V (G2n)
is
∑2

j=0

∑2
i=0

(
k−1

j

)(
k−j−1

i

)
2k−i−j−1.

Proof. Since the first entry in the representation is 0, there are k−1 positions
which can be filled by 1, 2, 3 or 4. Since 1 can be at most on two positions
and by claim 2, 2 can also be on at most two positions then the number of
possible distinct representations is

∑2
j=0

∑2
i=0

(
k−1

j

)(
k−j−1

i

)
2k−i−j−1. �
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Lemma 8. The number of distinct representations of the major rim vertices
in other classes than S1 containing the center c of gear graph with respect to
partitions of V (G2n) is

∑2
i=0

(
k−2

i

)
2k−i−2.

Proof. Let v be a vertex in any class other than S1. Without loss of generality
we may assume that v ∈ S2. Then first entry in the vector representation of
v with respect to Π is 1 and second entry is 0. So there are k − 2 positions
which can be filled by 1, 2 or 3. Since 1 can be at most twice by claim 1, then
the number of possible distinct representations is

∑2
i=0

(
k−2

i

)
2k−i−2. �

Lemma 9. The number of distinct representations of the minor rim vertices
in other classes than S1 containing the center c of gear graph with respect to
partitions of V (G2n) is 2

∑2
j=0

∑2
i=0

(
k−2

j

)(
k−j−2

i

)
2k−i−j−2.

Proof. Since the first entry in the representation is 1 or 2 and the second
entry is 0, so there are k − 2 positions which can be filled by 1, 2, 3 or 4.
Since 1 can be at most on two positions and by claim 2, 2 can also be at
most on two positions then the number of possible distinct representations is
2
∑2

j=0

∑2
i=0

(
k−2

j

)(
k−j−2

i

)
2k−i−j−2. �

Theorem 10. Let n ≥ 2 and k denote the partition dimension of G2n. Then
2n + 1 < 3k4(k + 2)2k−7.

Proof. If c ∈ S1, then by Lemmas 5-7 we deduce that

|S1| ≤ 2k−1 +
2∑

i=0

(
k − 1

i

)
2k−i−1 +

2∑
j=0

2∑
i=0

(
k − 1

j

)(
k − j − 1

i

)
2k−i−j−1

= 2k−7(k4 − 2k3 + 27k2 + 14k + 152)

< 3k42k−6

for every k ≥ 3. If l 6= 1 then by Lemmas 8 and 9 we get

|Sl| ≤
2∑

i=0

(
k − 2

i

)
2k−i−2 + 2

2∑
j=0

2∑
i=0

(
k − 2

j

)(
k − j − 2

i

)
2k−i−j−2

= 2k−7(k4 − 6k3 + 35k2 − 46k + 80)

< 3k42k−7

for every k ≥ 3. This implies that

2n + 1 =
k∑

l=1

|Sl|

< 3k42k−6 + 3(k − 1)k42k−7

< 3k4(k + 2)2k−7
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for every k ≥ 3. Then it is easy to see that pd(G2n) ≥ 3 for every n ≥ 2, which
implies that 2n + 1 < 3k4(k + 2)2k−7, where k = pd(G2n) for every n ≥ 2. �

Note that the lower bound for pd(G2n) given by Theorem 10 is asymptot-
ically better than general bounds proposed in 2. We have 3k4(k + 2) < 2k+9

for every k ≥ 3, which implies that 2n + 1 < 22k+2, hence the following result
holds:

Corollary 11. pd(G2n) ≥ d12 log2(2n + 1)e − 1 for every n ≥ 2.

3. Partition Dimension of Helm

Helm Hn is a graph obtained from a wheel Wn with cycle Cn having a
pendant edge attached to each vertex of the cycle. Helm Hn consists of the
vertex set V (Hn) = {vi|0 ≤ i ≤ n− 1} ∪ {ai|0 ≤ i ≤ n− 1} ∪ {c} and edge set
E(Hn) = {vivi+1|0 ≤ i ≤ n− 1} ∪ {viai|0 ≤ i ≤ n− 1} ∪ {vic|0 ≤ i ≤ n− 1},
where i + 1 is taken modulo n. The definition of helm is taken from 7.

The vertices of Hn\{c} are of two kinds: vertices of degree four and one,
respectively. The vertices of degree one will be referred to as minor vertices
and vertices of degree four to as major vertices. It is not difficult to see that
pd(H3) = 4 (S1 = {c}, S2 = {v0, a0}, S3 = {v1, a1} and S4 = {v2, a2}),
pd(H4) = 3 (S1 = {c, v0, a0, v1, a1}, S2 = {v2, a2} and S3 = {v3, a3}) and
pd(H5) = 3 with minimal resolving partition consisting of S1 = {c, v0, a0, v1, a1},
S2 = {v2, a2, v3, a3} and S3 = {v4, a4}. Now we find bounds for the value of n
for a given k such that pd(Hn) = k. Suppose that c ∈ S1.

Claim 1. There can be at most three 1’s in the vector representation of a
major vertex other than the first position.
Claim 2. There can be at most one 1 in the vector representation of a minor
vertex.
Claim 3. There can be at most two 2’s in the vector representation of a minor
vertex other than the first position.
Claim 4. The greatest number in the vector representation of a major vertex
is 3.
Claim 5. The greatest number in the vector representation of a minor vertex
is 4.

Lemma 12. The number of distinct representations of the center c of helm
with respect to partitions of V (Hn) is 2k−1.

Proof. Let pd(Hn) = k. Without loss of generality, we can assume that c ∈ S1.
Then c is at distance 0 from S1 and it can be at distance 1 or 2 from other
k − 1 classes. So k − 1 positions of the vector for c can be filled by 1 or 2.
Hence there can be 2k−1 distinct representations for c. �
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Lemma 13. The number of distinct representations of the major vertices
in S1 containing the center c of helm with respect to partitions of V (Hn) is∑3

i=0

(
k−1

i

)
2k−i−1.

Proof. Let v be a major vertex in S1. Then first entry in the vector represen-
tation of v with respect to Π is 0. So there are k − 1 positions which can be
filled by 1, 2 or 3. Since 1 can be at most thrice by claim 1 then the number
of possible distinct representations is

∑3
i=0

(
k−1

i

)
2k−i−1. �

Lemma 14. The number of distinct representations of the minor vertices
in S1 containing the center c of helm with respect to partitions of V (Hn) is∑1

j=0

∑2
i=0

(
k−1

j

)(
k−j−1

i

)
2k−i−j−1.

Proof. Since the first entry in the representation is 0, there are k−1 positions
which can be filled by 1, 2, 3 or 4. By claim 2, 1 can be at most on one position
and by claim 3, 2 can also be at most on two positions then the number of
possible distinct representations is

∑1
j=0

∑2
i=0

(
k−1

j

)(
k−j−1

i

)
2k−i−j−1. �

Observation 1: There are
∑1

j=0

∑2
i=0

(
k−1

j

)(
k−j−1

i

)
representations which

appear for major as well as minor vertices for vertices in class S1.

Lemma 15. The number of distinct representations of the major vertices in
other classes than S1 containing the center c of helm with respect to partitions
of V (Hn) is

∑3
i=0

(
k−2

i

)
2k−i−2.

Proof. Let v be a vertex in any class other than S1. Without loss of generality
we may assume that v ∈ S2. Then first entry in the vector representation of
v with respect to Π is 1 and second entry is 0. So there are k − 2 positions
which can be filled by 1, 2 or 3. Since 1 can be at most thrice by claim 1, then
the number of possible distinct representations is

∑3
i=0

(
k−2

i

)
2k−i−2. �

Lemma 16. The number of distinct representations of the minor vertices in
other classes than S1 containing the center c of helm with respect to partitions
of V (Hn) is

∑1
j=0

∑2
i=0

(
k−2

j

)(
k−j−2

i

)
2k−i−j−2 +

∑2
i=0

(
k−2

i

)
2k−i−2.

Proof. Since the first entry in the representation is 1 or 2 and the second
entry is 0, so there are k − 2 positions which can be filled by 1, 2, 3 or 4.
Since 1 can be at most on one position and by claim 3, 2 can also be at
most on two positions then the number of possible distinct representations is∑1

j=0

∑2
i=0

(
k−2

j

)(
k−j−2

i

)
2k−i−j−2 +

∑2
i=0

(
k−2

i

)
2k−i−2. �

Observation 2: There are
∑1

j=0

∑2
i=0

(
k−2

j

)(
k−j−2

i

)
representations which

appear for major as well as minor vertices for vertices in class other than S1.

Theorem 17. Let n ≥ 3 and k denote the partition dimension of Hn. Then
2n + 1 < 2k−1 +

∑3
i=0 2k−i−1

(
k−1

i

)
(k − i) +

∑1
j=0

∑2
i=0 2k−i−j−2

(
k−1
i,j

)
(k − i−

j + 1).
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Proof. If c ∈ S1, then by Lemmas 12-14 and Observation 1, we deduce that

|S1| < 2k−1 +
3∑

i=0

(
k − 1

i

)
2k−i−1 +

1∑
j=0

2∑
i=0

(
k − 1

j

)(
k − j − 1

i

)
2k−i−j−1

for every k ≥ 3. If l 6= 1 then by Lemmas 15, 16 and Observation 2, we get

|Sl| <

3∑
i=0

(
k − 2

i

)
2k−i−2 +

1∑
j=0

2∑
i=0

(
k − 2

j

)(
k − j − 2

i

)
2k−i−j−2

+
2∑

i=0

(
k − 2

i

)
2k−i−2

for every k ≥ 3. This implies that

2n + 1 =
k∑

l=1

|Sl|

< 2k−1 +
3∑

i=0

2k−i−1

(
k − 1

i

)
(k − i)

+
1∑

j=0

2∑
i=0

2k−i−j−2

(
k − 1
i, j

)
(k − i− j + 1)

for every k ≥ 3. Then it is easy to see that pd(Hn) ≥ 3 for every n ≥ 3, which
implies that 2n + 1 < 2k−1 +

∑3
i=0 2k−i−1

(
k−1

i

)
(k − i) +

∑1
j=0

∑2
i=0 2k−i−j−2(

k−1
i,j

)
(k − i− j + 1), where k = pd(Hn) for every n ≥ 3. �

4. Partition Dimension of Sunflower

Sunflower graph SFn is defined as follows: consider a wheel with central ver-
tex c and an n-cycle v0, v1, v2, . . . , vn−1 and additional n vertices w0, w1, w2, . . . ,
wn−1 where wi is joined by edges to vi, vi+1 for i = 0, 1, 2, . . . , n−1 where i+1
is taken modulo n. SFn has order 2n + 1 and size 4n.

The vertices of SFn\{c} are of two kinds: vertices of degree five and two,
respectively. The vertices of degree two will be referred to as minor ver-
tices and vertices of degree five to as major vertices. It is not difficult to
see that pd(SF3) = 4 (S1 = {c, v0, w0}, S2 = {v1, w1}, S3 = {v2} and
S4 = {w2}), pd(SF4) = 3 (S1 = {c, v0, w0, v1}, S2 = {w1, v2, w2} and S3 =
{v3, w3}) and pd(SF5) = 3 with minimal resolving partition consisting of
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S1 = {c, v0, w0, v1, w1, v2}, S2 = {w2, v3, w3} and S3 = {v4, w4}. Now we
find an upper bound for the cardinality of V (SFn) for a given k such that
pd(SFn) = k. Suppose that c ∈ S1.

Claim 1. There can be at most four 1’s in the vector representation of a
major vertex other than the first position.
Claim 2. There can be at most two 1’s in the vector representation of a minor
vertex.
Claim 3. There can be at most four 2’s in the vector representation of a
minor vertex other than the first position.
Claim 4. The greatest number in the vector representation of a major vertex
is 3.
Claim 5. The greatest number in the vector representation of a minor vertex
is 4.

Lemma 18. The number of distinct representations of the center c of sun-
flower with respect to partitions of V (SFn) is 2k−1.

Lemma 19. The number of distinct representations of the major vertices in
S1 containing the center c of sunflower with respect to partitions of V (SFn) is∑4

i=0

(
k−1

i

)
2k−i−1.

Lemma 20. The number of distinct representations of the minor vertices in
S1 containing the center c of sunflower with respect to partitions of V (SFn) is∑2

j=0

∑4
i=0

(
k−1

j

)(
k−j−1

i

)
2k−i−j−1.

Observation 1: There are
∑2

j=0

∑4
i=0

(
k−1

j

)(
k−j−1

i

)
representations which

appear for major as well as minor vertices in class S1.

Lemma 21. The number of distinct representations of the major vertices
in other classes than S1 containing the center c of sunflower with respect to
partitions of V (SFn) is

∑4
i=0

(
k−2

i

)
2k−i−2.

Lemma 22. The number of distinct representations of the minor vertices in
other classes than S1 containing the center c of sunflower with respect to parti-
tions of V (SFn) is 2

∑2
j=0

∑4
i=0

(
k−2

j

)(
k−j−2

i

)
2k−i−j−2−

∑4
i=0

(
k−2
2

)(
k−4

i

)
2k−i−4.

Proofs of Lemmas 18–22 are analogous to proofs of lemmas proved for helm
in the last section.
Observation 2: There are

∑2
j=0

∑4
i=0

(
k−2

j

)(
k−j−2

i

)
representations which

appear for major as well as minor vertices in classes other than S1.

Theorem 23. Let n ≥ 3 and k denote the partition dimension of SFn. Then
2n + 1 < 2k−1 +

∑4
i=0 2k−i−2

(
k−1

i

)
(k− i + 1) +

∑2
j=0

∑4
i=0 2k−i−j−1

(
k−1
i,j

)
(k−

i− j).
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Proof. If c ∈ S1, then by Lemmas 18-20 and Observation 1, we deduce that

|S1| < 2k−1 +
4∑

i=0

(
k − 1

i

)
2k−i−1 +

2∑
j=0

4∑
i=0

(
k − 1

j

)(
k − j − 1

i

)
2k−i−j−1

for every k ≥ 3. If l 6= 1 then by Lemmas 21, 22 and Observation 2, we get

|Sl| <

4∑
i=0

(
k − 2

i

)
2k−i−2 + 2

2∑
j=0

4∑
i=0

(
k − 2

j

)(
k − j − 2

i

)
2k−i−j−2

−
4∑

i=0

(
k − 2

2

)(
k − 4

i

)
2k−i−4

for every k ≥ 3. This implies that

2n + 1 =
k∑

l=1

|Sl|

< 2k−1 +
4∑

i=0

2k−i−2

(
k − 1

i

)
(k − i + 1)

+
2∑

j=0

4∑
i=0

2k−i−j−1

(
k − 1
i, j

)
(k − i− j)

for every k ≥ 3. Then it is easy to see that pd(SFn) ≥ 3 for every n ≥ 3, which
implies that 2n+1 < 2k−1+

∑4
i=0 2k−i−2

(
k−1

i

)
(k−i+1)+

∑2
j=0

∑4
i=0 2k−i−j−1(

k−1
i,j

)
(k − i− j), where k = pd(SFn) for every n ≥ 3. �

5. Partition Dimension of Friendship Graph

Friendship graph fn is collection of n triangles with a common point. Friend-
ship graph can also be obtained from a wheel W2n with cycle C2n by deleting
alternate edges of the cycle. Another way of obtaining friendship graph is
addition of K1 and n copies of K2. We present a theorem for the cardinality
of friendship graph with partition dimension k.

Theorem 24. Let n ≥ 2 and pd(fn) = k then n ≤
(
k
2

)
.
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Proof. Let pd(fn) = k then there exist a resolving partition Π = {S1, S2, . . . , Sk}
where Si(1≤i≤k) ⊂ V (fn). Since both vertices in a copy of K2 can not belong
to same class by Lemma 1. So one class can contain at most k − 1 vertices
other than center. As there are k classes and center can belong to only one
class so

V (fn) = 2n +1 ≤ k(k − 1) + 1
2n ≤ k(k − 1)
n ≤

(
k
2

)
.

�

This bound is attainable for every value of k. Hence for every k ≥ 2, there
exists a friendship graph such that pd(fn) = k.
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