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MATHEMATICAL MODELING OF THROMBUS
GROWTH IN MICROVESSELS

A. G. ALENITSYN*, A. S. KONDRATYEV**, I. MIKHAILOVA***,
1. SIDDIQUE*»****

ABSTRACT. Richardson’s phenomenological mathematical model of
the thrombi growth in microvessels is extended to describe more re-
alistic features of the phenomenon. Main directions of the gener-
alization of Richardson’s model are: 1) the dependence of platelet
activation time on the distance from the injured vessel wall; 2) the
nonhomogeneity of the platelet distribution in blood flow in the vicin-
ity of the vessel wall. The generalization of the model corresponds
to the main experimental results concerning thrombi formation ob-
tained in recent years. The extended model permits to achieve a
numerical agreement between model and experimental data.
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Aggregation of platelets at a mural site involves biochemical and phys-
ical processes, and the growth rates are affected by the neighboring flow
field. Acute thrombogenesis in a flowing bloodstream occurs on damaged
tissues in the normal circulation and the thrombi are composed predomi-
nantly of platelets. The reliable results of quantitative experimental data
on growth rates of thrombi produced in vivo were obtained by Begent
and Born [1], and the first theoretical description of the phenomenon was
offered by Richardson [2] on the basis of the conception of ”activation”
time.
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Circulating platelets normally show no tendency to adhere to intact
vessel walls, so a change must have come over those that adhere and
aggregate where a vessel is injured. This change from a nonadhesive to
an adhesive condition may usefully be referred to as platelet activation.
Activation consists of different physical and biochemical events, for ex-
ample, it is associated with an increase of free calcium in platelets [3].
The activation time of platelets is defined as the interval between the
encounter of platelets with activating agents, such as ADP (adenosine
diphosphate), and their ability to react with plasma fibrinogen [2,4]. Ac-
cording to modern representation [5] ADP opens calcium channels in the
platelet membrane within 20 ms.

Richardson explained the main results obtained by Begent and Born.
His theory depends on the assumption that platelets have a characteristic
activation time. Evidence for the assumption was based on results ob-
tained with the iontophoretic technique [6]. Thus, Richardson assumed
a linear profile of blood flow velocity near the vessel wall with v = T'y (y
is a distance from the damaged wall site in the direction perpendicular
to blood flow; I' is a velocity gradient near the vessel wall, which does
not depend on y), and assumed the activation time ¢4 of 0.1-0.2 sec. in-
dependent of the distance from the wall. The expression obtained for the
number of platelets aggregating per unit time is

2
N = gnorR?*F(rr), (1)

where ng is a uniform platelet concentration per unit volume of blood, R
is a radius of thrombus cross section in a direction normal to the blood
flow, and I'7 is a dimensionless parameter proportional to blood velocity:
7 ~ t4. The function F(I't) was shown to be:

1, I'r<1;
F(I'r) = 1_(@)3 e 1 (2)
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FIGURE 1. Mean growth rate of thrombus section in down-
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stream direction as a function of mean blood velocity.

197

The comparison of experimental data of Begent and Born [1] and of
Petrishchev and Mikhailova [7,8] (shown on Fig.1 in conventional units)
with the Richardson model (1) (shown by the curve 1 on Fig.2) confirmed
the basic idea of the activation time and indicated the necessity of the
further development of the model which would take into account more
realistic features of the phenomenon than those taken into account in

deriving (1) and (2).

FIGURE 2. Model curves for the thrombus growth rate

versus blood velocity.
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A detailed discussion of the nature of the activation time [4,9] revealed
ways in which the reaction time of individual platelets may be estimated
from various experimental and theoretical approaches. The experimental
determination of platelet activation time revealed several problems which
had not yet been solved. One of the most important among them is
whether the activation time is constant under varying conditions or may
be altered by them. The chemical condition for platelet activation is
the concentration of activating agents within and immediately around a
growing thrombus. Thrombi can grow around a highly localized source
of activating agent on the vessel wall. On the other hand, activation
may be initiated through actual contact of arriving platelets with the
thrombus. The transit time is not uniform for all platelets passing a
thrombus, being shortest for those farthest from the vessel wall. As the
shear rate increases with increasing blood flow velocity, the platelets more
able to escape capture are those passing over the top of the thrombus
rather than those passing its sides [9]. The concentration of activating
agent decreases with the distance from the wall.

Thus, the most evident generalization of the Richardson model is as-
sociated with the assumption that the activation time ¢4 depends on the
distance y from the damaged wall site [10]. Concentration of ADP de-
creases with the distance from the damaged site and consequently the
activation time increases. The corresponding law can be assumed to be

tA:tAO—l—ayk (3)

where t4,=the activation time near the wall; k-is a phenomenological
parameter of the model. The expression for aggregation frequency in
this case is similar to Eq. (1):

N:%mmmpmmﬂ, (4)

where 3 = aRF/ts, > 0. Analytical expressions for F(3,I'7) can be
obtained for several different values of k [7]. For the simplest linear
dependance k = 1 we have

1, rr(p+1) <1,

F(p,Ir) = 1-0-#@M+§—)jw,ﬁw+u>y(m

Further development of the model should be associated with consider-
ing rheological factors in platelet-vessel wall interactions which involve
cell-cell encounters, platelet-vessel wall encounters and platelet-thrombus
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interactions [9,10]. Among different factors that influence the process of
thrombi formation one should take into account that thrombus growth
rates are affected by the presence of red cells which are larger than
platelets. The effect attributed initially to enhancement of platelet dif-
fusivity by red cell motion was considered as a purely rheological effect,
but later was considered to involve the red cell biochemically as well.

After different experimental investigations of the problem it became
clear that experiments to test the hypothesis about the nature of the
chemical response of red cells under shear are difficult to perform because
the amounts of adenine nucleotides being looked for are rather small. The
results do not yet appear definitive [11].

Animal models provided opportunities for observation of thrombus
growth [12]. In the microcirculation (mouse mesentery, rat mesentery,
rat cremaster, etc.) it was possible to record thrombus growth on an
injured vessel site by using a 1 mA discharge or a laser beam to induce
vessel damage. The aggregometer and electron microscope showed how
platelets are activated by an adequate concentration of ADP, with mor-
phological changes leading quite rapidly to the development of pseudopo-
dia. It was realized that the development of pseudopodia would increase
the effective cell radius and thereby increase the collision frequency in a
shear flow. The discussed and other observations lead to a thrombosis
hypothesis incorporating feedback [9]. This hypothesis was formulated
to give distinguish between processes that are predominantly physical or
predominantly biochemical.

The study of the adhesion of platelets to foreign surfaces led to obser-
vation that many platelets depart after adhesions lasting 2-3 min, and
moreover that sites previously occupied by platelets were preferred for
adhesion by platelets (passing subsequently) compared with unused ad-
hesion sites [13]. It is not yet clear whether repeated adhesions and
detachments are necessary to augment the adhesiveness, or whether it
occurs with the passage of time after a damaging event as illustrated by
the results of [14].

Coming to the conclusion of this brief discussion we should state again
that the magnitude of the forces that can be exerted between platelets
and a wall are not well known, although this is obviously important in
determining the stability of adhesion.

The experiments produced both in vivo and in vitro showed that
platelet concentration profiles in flowing blood have excess concentra-
tion near walls [15-20]. The typical profiles of platelet concentrations in
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vivo are shown on Fig.3 [20]. Concentration profile of blood platelets in
vivo differs in arterioles and venules.

VEMULES CONTROL

NORMALIZED PLATELET DENSITY

laft wall ~ center right wall

VESSEL DIAMETER

F1GURE 3. Experimental data for platelet concentration
in venules and arterioles.

The model based on the extended equation for platelet transport was
developed in [21]. The extended equation in [21] is a single component
description, but it implicitly includes effects due to red cells and plasma
by the use of an augmented diffusion constant and the drift function
which is introduced to describe rheological events that are not encom-
passed by the use of an augmented diffusion coefficient. The transport
equation was numerically integrated to determine concentration profiles.
The calculated concentration profiles had near-wall excesses that qualita-
tively mimic experimental results, thus implying the extended equation
is an adequate description of rheological events.
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Once activated, platelets bind soluble adhesive molecules and become
the reactive surface for continuing platelet deposition. Initial platelet
tethering to a surface and subsequent platelet-platelet cohesion are typi-
cally identified as two separate stages of thrombus formation, defined as
adhesion and aggregation, respectively [22]. Thus, at both early and late
stages of thrombus formation, platelet adhesive mechanisms in rapidly
flowing blood depend on multiple synergistic bonds, involving different
receptors and ligands with specific functions [23].

In spite of considerable advances during the last several years, key
aspects of the mechanism that regulate platelet functions in hemosta-
sis and thrombosis remain to be elucidated. The interpretation of such
findings, yet to be reported in full detail, may not be straightforward.
Future research should offer a more global view of the processes under-
lying hemostasis and thrombosis. Thus, at the present moment we can
consider only a phenomenological theory in describing the growth rates
of thrombi.

Many factors described in the presented review of the phenomenon can
be taken into account by the condition (3), so the most essential further
generalization of the Richardson model is associated with the usage of
a realistic profile of platelet distribution in the blood flow n(y). The
qualitative estimation of the influence of the excess concentration made in
[24] confirmed the advantage of such a model of platelet distribution. The
same considerations that provided the derivation of the equations (1)—(5)
lead to the following expression for the number of platelets aggregating
per unit time:

Ymaz 01
N =2R / n(y)v(y)cosfdy = 2R3F/n(9) cos’Osinfdf,  (6)
0 0

where y = Rsinf, n(y) is a platelet concentration on the distance y
from the wall, and all other notations coincide with those in (1) and
(4). The upper limit of the integration is determined by the condition:
if I'7(8+1) < 1 then 0, = 7/2; if I'7(S + 1) > 1, then the limit 6, is
determined from the equation:

I'7sinf (1 + Bsin®6,) = 1 (7)

with 0 < 6, < /2, where k is the phenomenological parameter in (3).
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The present discussion leads to the conclusion that the generalized
Richardson’s phenomenological model taking into account the depen-
dance of activation time on the distance from the vessel wall and real
profile of platelet concentration in the blood stream is capable to present
a proper quantitative description of the phenomena provided the parame-
ters of the model can be varied in sufficient range. This requires a certain
mathematical development of the model.

We start from the equations (1), (6) and (7), with the aim to construct
a universal algorithm for plotting graphs of the function 't F'(3, ') ver-
sus I't, applicable for any values of the phenomenological parameters
B > 0and k > 0 and for any reasonable choice of the function n(Rsiné).
To emphasize F' we exclude N from (1) and (6); for I't(6 + 1) < 1, we
get F(B,I't) =1, while for I't(8+ 1) > 1, we get the expression

N

01
F(B,I't) = 3 /n(Rsin 0) cos® 0sin 0 db, (8)
0

with 6; = 6,(5,1'7) satisfying (7). Note that sinf; = 1 corresponds to
Ir(f+1) =1

Unfortunately, the equation (7) can be explicitly solved with respect to
sin ¢, for only several values of k, in particular, for the case kK = 1 consid-
ered above. In the general case we will use the parametric representation
of the mutual dependence between I'r and F(I'7).

For the sake of simplicity we take R = 1 and introduce the notations

x=T7, y=zF(f,x), p=sinf, 0<p<IL.

The equation (7) takes the form zp(1+ 8p*) =1 and leads to the first

parametric equation:
1

r(p) = ————=7
) p(1+ Bp*)
while (8) results in the second parametric equation:

(9)

arcsin p

1
5 / n(sin ) cos® 0 sin 6 db),

uip) = p(1+ 8p%) no

or, after the substitution s = sin 6,

y(p) 1 i/n(s)svl —s2ds, 0<p<1. (10)

~ p(1+ 607 no J
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Formulae (9)—(10) enable one to plot on the (z,y)-plane a graph of the
desired function y = 't F(GT'7) versus x = I'7, but only for values I't(8+
1) € [1,00) which correspond to 0 < p < 1, or ﬁ <z < oco. In order to
obtain a complete graph, the functions z(p), y(p) should be continued
to the rest interval p € (1,00), which corresponds to 0 < x < [ﬁ The
continuation of z(p) onto the range p > 1 is defined by the same formula
(9); the function y(p) is continued as y(p) = z(p) = m because here
F(p,Tr)=1.

In the simplest model, when n is taken as a constant n = ng, the
integral (10) is easily evaluated, so for 0 < p < 1 we have

1

a(p) = ———, ylp)=—=[1—(1-p")*?.

(®) p(1+ BpF) y(p) p(1+6p’“)[ ( ]

In the very special case § = 0 we get the Richardson model: y = (1 —
(1—272)%2).

In more realistic models, where n is assumed to be variable, the scal-
ing factor ng should be chosen in such a way that the resulting curve
(z(p),y(p)) be continuous at p = 1. So we can write:

1 1
3
1= - n(s)svV1—s2ds, mng= 3/71(3)3\/1 — s2ds.
0
0 0

The ultimate parametric equations
1 1 I(p
2(p) )

~ p(1+ Bpk)’ ulp) = p(1+ BpF) I(1)

p

with I(p) = [n(s)sv1— s?ds, are valid for p € (0,1], while for p €
0

[1,00), we have simply y = x

= S

With the use of mathematical computer packages (e.g., Maple or De-
rive), the proposed algorithm provides a very convenient way to plot
graphs for various values of the phenomenological parameters.

The calculations show that the best agreement with the experimental
data is archived when the parameter k in (3) equals 1 and the concen-
tration of platelets n(s) is approximated by the function

n(s) =2 — ((1.8s* — 0.3)2 = 0.8)”

shown on Fig. 4, which suits the experimental data for venules shown on
Fig. 3 and corresponds to the results of [7,8].
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The curves 2, 3 and 4 on Fig. 2 correspond to the values of the parameter
B, equal 0.5, 1.0 and 2.0 correspondingly.

FIGURE 4. Model function n(s) for the concentration of
platelets in venules.

It should be mentioned that the model proved to be stable relative
small variations of all the parameters.
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