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THE CONNECTED VERTEX GEODOMINATION NUMBER
OF A GRAPH

A. P. SANTHAKUMARAN1, P. TITUS2

Abstract. For a connected graph G of order p ≥ 2, a set S ⊆ V (G) is an
x-geodominating set of G if each vertex v ∈ V (G) lies on an x-y geodesic
for some element y in S. The minimum cardinality of an x-geodominating
set of G is defined as the x-geodomination number of G, denoted by gx(G).
An x-geodominating set of cardinality gx(G) is called a gx-set of G. A con-
nected x-geodominating set of G is an x-geodominating set S such that
the subgraph G[S] induced by S is connected. The minimum cardinal-
ity of a connected x-geodominating set of G is defined as the connected
x-geodomination number of G and is denoted by cgx(G). A connected
x-geodominating set of cardinality cgx(G) is called a cgx-set of G. We de-
termine bounds for it and find the same for some special classes of graphs.
If p, a and b are positive integers such that 2 ≤ a ≤ b ≤ p− 1, then there
exists a connected graph G of order p, gx(G) = a and cgx(G) = b for some
vertex x in G. Also, if p, d and n are integers such that 2 ≤ d ≤ p − 2
and 1 ≤ n ≤ p, then there exists a connected graph G of order p, diameter
d and cgx(G) = n for some vertex x in G. For positive integers r, d and
n with r ≤ d ≤ 2r, there exists a connected graph G with rad G = r,
diam G = d and cgx(G) = n for some vertex x in G.

Key words: geodesic, vertex geodomination number, connected vertex
geodomination number.
AMS SUBJECT: 05C12.

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q
respectively. For basic graph theoretic terminology we refer to Harary [4]. For
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vertices x and y in a connected graph G, the distance d(x, y) is the length of a
shortest x-y path in G. An x-y path of length d(x, y) is called an x-y geodesic.
A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including
the vertices x and y. The diameter diam G of a connected graph G is the
length of any longest geodesic. For any vertex u of G, the eccentricity of u
is e(u) = max{d(u, v) : v ∈ V }. A vertex v of G such that d(u, v) = e(u) is
called an eccentric vertex of u. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. A vertex v is a simplicial
vertex if the subgraph induced by its neighborhood N(v) is complete.

The closed interval I[x, y] consists of all vertices lying on some x-y geodesic
of G, while for S ⊆ V,

I[S] =
⋃

x,y∈S

I[x, y].

A set S of vertices is a geodetic set if I[S] = V, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
g(G) is called a g-set of G. The geodetic number of a graph was introduced
in [1, 5] and further studied in [2]. It was shown in [5] that determining the
geodetic number of a graph is an NP -hard problem. Geodetic concepts were
first studied from the point of view of domination by Chartrand, Harary, Swart
and Zhang in [3], where a pair x, y of vertices in a nontrivial connected graph
G is said to geodominate a vertex v of G if v ∈ I[x, y], that is, v lies on an
x-y geodesic of G. In [3], geodetic sets and the geodetic number were referred
to as geodominating sets and the geodomination number respectively and it is
this terminology that we adopt in this paper.

The concept of vertex geodomination number was introduced by Santhaku-
maran and Titus in [7] and further studied in [8]. A vertex y in a connected
graph G is said to x-geodominate a vertex u if u lies on an x-y geodesic. A
set S of vertices of G is an x-geodominating set if each vertex v ∈ V (G) is
x-geodominated by some element of S. The minimum cardinality of an x-
geodominating set of G is defined as the x-geodomination number of G and
is denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a
gx-set.

Every vertex of an x-y geodesic is x-geodominated by the vertex y. Since,
by definition, a gx-set is minimum, the vertex x and also the internal vertices
of an x-y geodesic do not belong to a gx-set. For the graph G given in Figure
1.1, gu(G) = 3, gv(G) = 4, gw(G) = 2, gx(G) = 2 and gy(G) = 3 with
minimum vertex geodominating sets {x, y, w}, {x, y, u, w}, {x, u}, {u,w} and
{x, u, w} respectively.

It is proved in [7] that for any vertex x in G, gx-set is unique and 1 ≤
gx(G) ≤ p − 1 for any vertex x in G. An elaborate study of results in vertex
geodomination with several interesting applications is given in [7, 8].

The following theorems will be used in the sequel.
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G
Figure 1.1

Theorem 1.1. [4] Let v be a vertex of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every

u-w path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U

and W such that for any vertices u ∈ U and w ∈ W , the vertex v is
on every u-w path.

Theorem 1.2. [7] Let G be a connected graph.
(i) Every simplicial vertex of G other than the vertex x (whether x is

simplicial or not ) belongs to the gx-set for any vertex x in G.
(ii) For any vertex x, eccentric vertices of x belong to the gx-set.
(iii) No cut vertex of G belongs to any gx-set.

Theorem 1.3. [7] Let T be a tree with number of end vertices t. Then
gx(T ) = t− 1 or t according as x is an end vertex or a cut vertex.

Throughout the following G denotes a connected graph with at least two
vertices.

2. Connected Vertex Geodomination Number

Definition 2.1. Let x be any vertex of a connected graph G. A connected
x-geodominating set of G is an x-geodominating set S such that the subgraph
G[S] induced by S is connected. The minimum cardinality of a connected x-
geodominating set of G is the connected x-geodomination number of G and is
denoted by cgx(G). A connected x-geodominating set of cardinality cgx(G) is
called a cgx-set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimum ver-
tex geodominating sets, the vertex geodomination numbers, the minimum con-
nected vertex geodominating sets and the connected vertex geodomination num-
bers are given in Table 2.1.
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G
Figure 2.1

Vertex x gx-set gx(G) cgx-sets cgx(G)
u {y} 1 {y} 1
v {u, y} 2 {u, v, z, y}, {u, v, w, y} 4
w {u, z} 2 {u, v, z} 3
y {u} 1 {u} 1
z {u,w} 2 {u, v, w} 3

Table 2.1.

It is proved in [7] that for any vertex x in G, gx-set of G with respect to x is
unique. However, we observe that in the case of connected x-geodominating
sets, there can be more than one minimum connected x-geodominating set.
For the vertex v of the graph G in Figure 2.1, {u, v, z, y} and {u, v, w, y} are
two distinct cgv- sets of G. It is observed in [7] that x is not an element of the
gx-set of G, where as x may belong to a cgx-set of G. For the graph G given
in Figure 2.1, the vertex v is an element of a cgv-set.

In the following theorem we establish the relationship between the gx-set
and a connected x-geodominating set of G.

Theorem 2.3. For any vertex x in G, the gx-set is contained in every
connected x-geodominating set of G.

Proof. Let S be the gx-set of G and let y ∈ S. Since S is minimum, y
is not x-geodominated by any other vertex of G. If there exists a connected
x-geodominating set, say S′, with y /∈ S′, then y lies on an x-v geodesic for
some v ∈ S′ and hence y is x-geodominated by the vertex v in G, which is a
contradiction. ¤
Remark 2.4. In the proof of Theorem 2.3 the connectedness property of
x-geodominating set is not used. This shows that the same result is true for
any property.

Corollary 2.5. For any vertex x in G, gx(G) ≤ cgx(G).



The Connected Vertex Geodomination Number of a Graph 105

Proof. This follows from Theorem 2.3. ¤
Theorem 2.6. Let x be any vertex of a connected graph G.

(i) If y 6= x is a simplicial vertex of G, then y belongs to every connected
x-geodominating set of G.

(ii) The eccentric vertices of x belong to every connected x-geodominating
set of G.

Proof. This follows from Theorem 1.2 and Theorem 2.3. ¤
Theorem 2.7.

(i) For the complete graph Kp, cgx(Kp) = p− 1 for any vertex x in Kp.
(ii) For any vertex x in a cycle Cp, cgx(Cp) = 1 or 2 according as p is even

or odd.
(iii) For the wheel Wp = K1 + Cp−1(p ≥ 5), cgx(Wp) = p − 1 or p − 4

according as x is K1 or x is in Cp−1.

Proof. (i) For any vertex x in Kp, let S = V (Kp)− {x}. Since each vertex
in S is an eccentric vertex of x, it follows from Theorem 2.6(ii) that cgx(Kp) ≥
|S| = p− 1. It is clear that S is a connected x-geodominating set of G so that
cgx(Kp) = p− 1.

(ii) Let Cp be an even cycle. For any vertex x in Cp, let y be the eccentric
vertex of x. Clearly every vertex of Cp lies on an x-y geodesic and so {y} is a
connected x-geodominating set of Cp so that cgx(Cp) = 1.

Let Cp be an odd cycle. For any vertex x in Cp, let S = {y, z} be the set
of eccentric vertices of x. By Theorem 2.6(ii), cgx(Cp) ≥ |S| = 2. Clearly S is
an x-geodominating set and the induced subgraph G[S] is connected so that
cgx(Cp) = 2.

(iii) Let x be the vertex of K1. Clearly S = V (Cp−1) is the set of all
eccentric vertices of x. By Theorem 2.6(ii), cgx(Wp) ≥ p − 1. Since S is a
connected x-geodominating set, cgx(Wp) = p− 1.

Let Cp−1 : u1, u2, . . . , up−1, u1 be the cycle of Wp. Let x be any vertex
in Cp−1. Assume that x = u1. Since the diameter diam Wp = 2, S =
{u3, u4, . . . , up−2} is the set of all eccentric vertices of x. By Theorem 2.6(ii),
cgx(Wp) ≥ p − 4. Let K1 be z. Then the vertices u2, z and up−1 lie on the
geodesics x, u2, u3; x, z, u3; and x, up−1, up−2 respectively and hence S is an
x-geodominating set of Wp. Clearly the induced subgraph G[S] is connected
and so cgx(Wp) = p− 4. ¤
Theorem 2.8. Let Km,n(2 ≤ m ≤ n) be the complete bipartite graph with
bipartition (V1, V2). Then

(i) cgx(K2,2) = 1 for any vertex x

(ii) cgx(K2,n) =
{

1 if x ∈ V1

n if x ∈ V2 for n ≥ 3
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(iii) cgx(Km,n) =
{

m if x ∈ V1

n if x ∈ V2 for m,n ≥ 3.

Proof. (i) By Theorem 2.7(ii), cgx(K2,2) = 1 for any vertex x.
(ii) Let x ∈ V1 be any vertex. Let y be the other vertex of V1. Then

any vertex v of V2 lies on an x-y geodesic x, v, y and so {y} is a connected
x-geodominating set of K2,n. Thus cgx(K2,n) = 1.

Let x ∈ V2 be any vertex. Clearly S = V2 − {x} is the set of all eccentric
vertices of x. By Theorem 2.6(ii), cgx(K2,n) ≥ n − 1. Then any vertex v of
V1 lies on the geodesic x, v, u where u ∈ S so that S is an x-geodominating
set of K2,n. Since n ≥ 3, the induced subgraph G[S] is disconnected so that
cgx(K2,n) > n − 1. Now, the induced subgraph G[S ∪ {w}] is connected for
any vertex w in V1 and so cgx(K2,n) = n.

(iii) The proof is similar to the second part of the proof of (ii) ¤

Theorem 2.9.

(i) If T is any tree of order p, then cgx(T ) = p for any cut vertex x of T .
(ii) If T is any tree of order p which is not a path, then for an end vertex

x, cgx(T ) = p− d(x, y), where y is the vertex of T with deg y ≥ 3 such
that d(x, y) is minimum.

(iii) If T is a path, then cgx(T ) = 1 for any end vertex x of T .

Proof. (i) Let x be a cut vertex of T and let S be any connected x-geodominat-
ing set of T . By Theorem 2.6(i), every connected x-geodominating set of T
contains all simplicial vertices. If S 6= V (T ), there exists a cut vertex v of
T such that v /∈ S. Let u and w be two end vertices belonging to different
components of T − {v}. Since v lies on the unique path joining u and w,
it follows that the subgraph G[S] induced by S is disconnected, which is a
contradiction. Hence cgx(T ) = p.

(ii) Let T be a tree which is not a path and x an end vertex of T . Let S =
(V (T )− I[x, y])∪{y}. Clearly S is a connected x-geodominating set of T and
so cgx(T ) ≤ |S| = p− d(x, y). We claim that cgx(T ) = p− d(x, y). Otherwise,
there is a connected x-geodominating set M of T with |M | < p − d(x, y).
By Theorem 2.6(i), every connected x-geodominating set of T contains all
simplicial vertices except possibly x and hence there exists a cut vertex v of T
such that v ∈ S and v /∈ M . Let B1, B2, . . . , Bm(m ≥ 3) be the components
of T − {y}. Assume that x belongs to B1.
Case 1. Suppose v = y. Let z ∈ B2 and w ∈ B3 be two end vertices of T .
By Theorem 1.1, v lies on the unique z-w geodesic. Since z and w belong to
M and v /∈ M, G[M ] is not connected, which is a contradiction.
Case 2. Suppose v 6= y. Let v ∈ Bi(i 6= 1). Now, choose an end vertex
u ∈ Bi such that v lies on the y-u geodesic. Let a ∈ Bj(j 6= i, 1) be an end
vertex of T . By Theorem 1.1, y lies on the u-a geodesic. Hence it follows that
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v lies on the u-a geodesic. Since u and a belong to M and v /∈ M, G[M ] is
not connected, which is a contradiction.

(iii) Let T be a path. For an end vertex x in T, let y be the eccentric
vertex of x. Clearly every vertex of T lies on the x-y geodesic and so {y} is a
connected x-geodominating set of T so that cgx(T ) = 1. ¤
Corollary 2.10. For any tree T, cgx(T ) = p if and only if x is a cut vertex
of T .

Proof. This follows from Theorem 2.9. ¤
Theorem 2.11. For any vertex x in a connected graph G, 1 ≤ cgx(G) ≤ p.

Proof. Since V (G) induces a connected x-geodominating set of G, it follows
that cgx(G) ≤ p. Also it is clear that cgx(G) ≥ 1 and so 1 ≤ cgx(G) ≤ p. ¤
Remark 2.12. The bounds for cgx(G) in Theorem 2.11 are sharp. For the
even cycle C2n, cgx(C2n) = 1 for any vertex x. Also, for any non-trivial path
Pn, cgx(Pn) = 1 for any end vertex x. For any path Pn(n ≥ 3), cgx(Pn) = n
for any cut vertex x.

Theorem 2.13. Let x be any vertex of a connected graph G. Then the
following are equivalent:

(i) cgx(G) = 1
(ii) gx(G) = 1
(iii) There exists a vertex y such that every vertex of G is on a diametral

path joining x and y.

Proof. (i) ⇒ (ii) Let cgx(G) = 1. By Corollary 2.5, gx(G) ≤ cgx(G) = 1
and so gx(G) = 1.

(ii)⇒ (iii) Let gx(G) = 1. Let S = {y} be the gx-set of G. If d(x, y) < d(G),
then there exist vertices u and v on distinct geodesics joining x and y such
that d(u, v) = d(G). Thus d(x, y) < d(u, v). Hence we see that

d(x, y) = d(x, u) + d(u, y) (1)
d(x, y) = d(x, v) + d(v, y) (2)

By triangle inequality,
d(u, v) ≤ d(u, x) + d(x, v) and d(u, v) ≤ d(u, y) + d(y, v) (3)
From (1) and (3), d(u, y) = d(x, y)− d(x, u)

< d(u, v)− d(x, u)
≤ d(x, v)

Thus d(u, y) < d(x, v) (4)
Now from (2),(3) and (4), we see that d(u, v) < d(x, v) + d(y, v)

= d(x, v) + d(v, y)
= d(x, y)

Thus d(u, v) < d(x, y), which is a contradiction. Hence d(x, y) = d(G) and
each vertex of G is on a diametral path joining x and y.
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(iii)⇒ (i) Let y be a vertex of G such that every vertex of G is on a diametral
path joining x and y. Then {y} is a connected x-geodominating set of G so
that cgx(G) = 1. ¤

We proved (Corollary 2.5) that gx(G) ≤ cgx(G) for any vertex x in G. The
following theorem gives a realization for these parameters when 2 ≤ a ≤ b ≤
p− 1.

Theorem 2.14. If p, a and b are positive integers such that 2 ≤ a ≤
b ≤ p − 1, then there exists a connected graph G of order p, gx(G) = a and
cgx(G) = b for some vertex x in G.

Proof. We prove this theorem by considering two cases.
Case 1. 2 ≤ a = b ≤ p − 1. Let Pp−a : u1, u2, . . . , up−a be a path of order
p− a and Ka be the complete graph of order a. Let G be the graph obtained
by joining up−a to every vertex of Ka and it is shown in Figure 2.2.

G
Figure 2.2

Then G is of order p and has a + 1 simplicial vertices {u1} ∪ V (Ka). By
Theorem 1.2(i), the gx-set of G contains V (Ka) for x = u1 and hence gx(G) ≥
a. Now, every vertex ui(1 ≤ i ≤ p − a) lies on the x-v geodesic for some
v ∈ V (Ka), it follows that V (Ka) is an x-geodominating set of G and so
gx(G) = a. Also, since Ka is connected, cgx(G) = a.

G
Figure 2.3

Case 2. 2 ≤ a < b ≤ p − 1. Let Pp−a+1 : u1, u2, . . . , up−a+1 be a path of
order p − a + 1. Add a − 1 new vertices v1, v2, . . . , va−1 to Pp−a+1 and join
these to up−b+1, there by producing the tree G of Figure 2.3. Then G is of
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order p with a + 1 pendant vertices. For the vertex x = u1, gx(G) = a by
Theorem 1.3 and cgx(G) = b by Theorem 2.9(ii). ¤

In the following, we construct a graph of prescribed order, diameter and
connected vertex geodomination number under some conditions.

Theorem 2.15. If p, d and n are positive integers such that 2 ≤ d ≤ p− 2
and 1 ≤ n ≤ p, then there exists a connected graph G of order p, diameter d
and cgx(G) = n for some vertex x in G.

Proof. We prove this theorem by considering two cases.
Case 1. Let d = 2. If n = p− 1 or p, then take G = K1,p−1. By Theorem 2.9,
cgx(G) = p − 1 or p according as x is an end vertex or the cut vertex. Now
we consider two cases. First let n = 1. Let G be the complete bipartite graph
K2,p−2 with partite sets X = {u1, u2} and Y = {w1, w2, . . . , wp−2}. Then G
has order p and diameter d = 2. For the vertex x = u1, clearly {u2} is a
connected x-geodominating set of G so that cgx(G) = 1.

Now let 2 ≤ n ≤ p − 2. Let Pn+2 : u1, u2, . . . , un+2 be the path of or-
der n + 2. Join u2 with u4, u5, . . . , un+2. Now add p − n − 2 new vertices
w1, w2, . . . , wp−n−2 to Pn+2. Let G be the graph obtained by joining each
wi(1 ≤ i ≤ p − n − 2) to ui(i = 1, 3, 4, . . . , n + 2). The graph G is shown in
Figure 2.4. Then G has order p and diameter d = 2.

Let x = u1 and let S = {u3, u4, . . . , un+2}. Then S is the set of all eccentric
vertices of x in G. By Theorem 2.6(ii), S is a subset of every connected x-
geodominating set of G and so gx(G) ≥ |S| = n. Clearly the induced subgraph
G[S] is connected and so cgx(G) = |S| = n.

G
Figure 2.4
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Case 2. Let 3 ≤ d ≤ p− 2. Let Pd+1 : u0, u1, u2, . . . , ud be a path of length
d.

Subcase 1. Let n = 1. Add p − d − 1 new vertices w1, w2, . . . , wp−d−1 to
Pd+1 and join these to both u0 and u2, there by producing the graph G of
Figure 2.5. Then G has order p and diameter d. For the vertex x = u0, clearly
{ud} is a connected x-geodominating set of G so that cgx(G) = 1.

G
Figure 2.5

Subcase 2. Let n = 2. Add p− d− 1 new vertices w1, w2, . . . , wp−d−2, v to
Pd+1 and join w1, w2, . . . , wp−d−2 to both u0 and u2 and join v to both ud−1

and ud, there by producing the graph G of Figure 2.6. Then G has order p
and diameter d. For the vertex x = u0, clearly {ud, v} is the cgx-set so that
cgx(G) = 2.

G
Figure 2.6

Subcase 3. Let 3 ≤ n ≤ p−1. We consider two cases. If n ≤ p−d, then add
p− d− 1 new vertices w1, w2, . . . , wp−d−n+1, v1, v2, . . . , vn−2 to Pd+1 and join
w1, w2, . . . , wp−d−n+1 to both u0 and u2 and join v1, v2, . . . , vn−2 to ud−1, there
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by producing the graph G of Figure 2.7. Then G has order p and diameter d.
Clearly S = {ud, v1, v2, . . . , vn−2} is the set of all simplicial vertices of G. Let
x = u0. By Theorem 2.6(i), cgx(G) ≥ |S| = n−1. Since the induced subgraph
G[S] is not connected, cgx(G) > |S| = n− 1. Let S′ = S ∪ {ud−1}. Then S′ is
an x-geodominating set of G and G[S′] is connected so that cgx(G) = |S′| = n.

G
Figure 2.7

If n > p− d, then add p− d− 1 new vertices v1, v2, . . . , vp−d−1 to Pd+1 and
join each vi(1 ≤ i ≤ p − d − 1) to up−n, there by producing the graph G of
Figure 2.8. Since G is a tree, by Theorem 2.9(ii), cgx(G) = p − (p − n) = n
for the vertex x = u0.

G
Figure 2.8

Subcase 4. Let n = p. Let G be any tree of order p and diameter d. Then
for any cut vertex x in G, cgx(G) = p, by Theorem 2.9(i). ¤

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand [6]
showed that every two positive integers a and b with a ≤ b ≤ 2a are realizable
as the radius and diameter, respectively, of some connected graph. Ostrand’s
theorem can be extended so that the connected vertex geodomination number
can also be prescribed.
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Theorem 2.16. For positive integers r, d and n with r ≤ d ≤ 2r, there
exists a connected graph G with rad G = r, diam G = d and cgx(G) = n for
some vertex x in G.

Proof. If r = 1, then d = 1 or 2. If d = 1, let G = Kn+1. Then by Theorem
2.7(i), cgx(G) = n for any vertex x in G. Let d = 2. For n = 1, take G = P3

so that for an end vertex x, cgx(G) = 1. For n = 2, consider the graph G
given in Figure 2.9. Then cgx(G) = 2 for the vertex x in G. For n ≥ 3, let
G = K1,n. Then by Theorem 2.9(ii), cgx(G) = n for an end vertex x in G.

G
Figure 2.9

Now, let r ≥ 2. We construct a graph G with the desired properties as
follows:
Case 1. Suppose r = d. For n = 1, let G = C2r. Then r = d and by Theorem
2.7(ii), cgx(G) = 1 for any vertex x in G. For n = 2, let G = C2r+1. Then r = d
and by Theorem 2.7(ii), cgx(G) = 2 for any vertex x in G. Now, let n ≥ 3.
Let l = 2

⌈
n
2

⌉−1 and p = l+2r−1. Then l is odd, p is even and 3 ≤ l ≤ p−3.
Let m = (l +3)/2, k = p− (l− 1)/2 and s = p/2+ 1. Then it is clear that 2 <
m < s < k < p. Let C : x1, x2, . . . , xm, . . . , xs, . . . , xk, . . . , xp, x1 be an even
cycle. Let G be the graph obtained from C by joining every pair of vertices of
{x1, x2, . . . , xm} and also every pair of vertices of {xk, xk+1 . . . , xp, x1}. The
graph G is shown in Figure 2.10 for n = 7 and r = 3. It is to be noted that
for any fixed r ≥ 2, when n ≥ 3 and n is odd the graph G constructed as
above is same for n, n + 1. Then S = {x2, x3, . . . , xm−1, xk+1, xk+2, . . . , xp} is
the set of all simplicial vertices of G with |S| = l− 1. It is easily verified that
the eccentricity of each vertex of G is r so that rad G = diam G = r. Now,
we shall consider two subcases.

Subcase 1. Suppose n is odd. Then l = n. Let x = xs. Clearly d(x, x1) =
r = e(x) and hence x1 is an eccentric vertex of x in G. Let T = S ∪ {x1}. By
Theorem 2.6, cgx(G) ≥ |S| + 1 = l. It is clear that x = xs, xs−1, . . . , xm, x1

is an x-x1 geodesic and also x = xs, xs+1, . . . , xk, x1 is an x-x1 geodesic so
that T is an x-geodominating set of G. Clearly the induced subgraph G[T ] is
connected and so cgx(G) = l = n.

Subcase 2. Suppose n is even. Then l = n − 1. Let x = xs+1. Clearly
d(x, xm) = r = e(x) and hence xm is an eccentric vertex of x in G. Let
T = S ∪ {xm}. By Theorem 2.6, cgx(G) ≥ |S| + 1 = l. It is clear that x =
xs+1, xs, . . . , xm is an x-xm geodesic and also x = xs+1, xs+2, . . . , xk, x1, xm is
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G
Figure 2.10

an x-xm geodesic so that T is an x-geodominating set of G. Since the induced
subgraph G[T ] is disconnected we see that cgx(G) > l. Let T ′ = T ∪ {x1}.
Then T ′ is a connected x-geodominating set of G and so cgx(G) = l + 1 = n.
Case 2. Suppose r < d ≤ 2r. Let C2r : v1, v2, . . . , v2r, v1 be a cycle of order
2r and let Pd−r+1 : u0, u1, . . . , ud−r be a path of order d− r + 1. Let H be a
graph obtained from C2r and Pd−r+1 by identifying v1 in C2r and u0 in Pd−r+1.

For n = 1, let G = H. Then for x = vr+1, the set {ud−r} is a connected
x-geodominating set of G so that cgx(G) = 1.

For n = 2, we add a new vertex w to H and join w to both ud−r−1 and ud−r

and obtain the graph G of Figure 2.11. Then rad G = r and diam G = d.
The set S = {w, ud−r} is the set of all simplicial vertices of G. For the vertex
x = vr+1, it is clear that S is a connected x-geodominating set of G and so by
Theorem 2.6(i), cgx(G) = 2.

G
Figure 2.11

For n ≥ 3, we add n− 2 new vertices w1, w2, . . . , wn−2 to H and join each
vertex wi(1 ≤ i ≤ n − 2) to the vertex ud−r−1 and obtain the graph G of
Figure 2.12.
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G
Figure 2.12

Then rad G = r and diam G = d. The set S = {ud−r, w1, w2, . . . , wn−2}
is the set of all simplicial vertices of G. For the vertex x = vr+1, it is clear
that S is an x-geodominating set of G. Since the induced subgraph G[S] is
disconnected we see that cgx(G) > |S| = n− 1. Let T = S ∪ {ud−r−1}. Then
T is a connected x-geodominating set of G so that cgx(G) = n. ¤
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