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HYBRID FUNCTIONS APPROACH FOR SOLVING
FREDHOLM AND VOLTERRA INTEGRAL EQUATIONS

T. SHOJAEIZADEH1, Z. ABADI2, E. GOLPAR RABOKY3

Abstract. This paper presents a computational technique for Fredholm
and Volterra integral equations of the second kind. The method based
upon hybrid functions approximation. The properties of hybrid functions
consisting of block-pulse functions and legendre polynomials are presented.
The operational matrices of integration and product are utilized to reduce
the computation of integral equation into some algebraic equations. Illus-
trative examples are included to demonstrate the validity and applicability
of the technique.
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1. Introduction

There are three classes of sets of orthogonal functions which are widely
used. The first includes sets of piecewise constant basis functions(e.g.,Walsh
[1], block-pulse[2], Rationalized Haar[3], etc.). The second consists of sets of
orthogonal polynomials(e.g., Laguerre [4], Legendre [5], Chebyshev [6], etc.).
The third is the widely used sets of sine-cosine functions in Fourier series [7].
While orthogonal polynomials and sine-cosine functions together form a class
of continuous basis functions, piecewise constant basis functions (PCBFs) have
inherent discontinuities or jumps. It is worth noting that approximating a
continuous function with PCBFs results in an approximation that is piecewise
constant.

Orthogonal functions have been used to solve various problems of dynamic
systems. The main characteristic of this technique is that it reduces these
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problems to those of solving a system of algebraic equations thus greatly sim-
plifying the problem.

In the present paper we introduce a new numerical method to solve Fred-
holm integral equations of the second kind and Volterra integral equations
of the second kind. This method consists of reducing the integral equation
to a set of algebraic equations by expanding y(t) as hybrid functions with
unknown coefficients. These hybrid functions, which consist of block-pulse
functions plus Legendre polynomials are given.

The operational matrix of integration is introduced, this matrix together
with the product operational matrix are then utilized to evaluate the unknown
coefficients.

The paper is organized as follows: In section 2 we describe the basic formula-
tion of the hybrid functions of block-pulse and Legendre polynomials required
for our subsequent development. Section 3 is devoted to the formulation of
the Fredholm integral equations of the second kind and the proposed method
is used to approximate the unknown function y(t). In section 4 we describe
the Volterra integral equations of the second kind and the proposed method
is used to approximate the unknown function y(t). In section 5, we report our
numerical finding and demonstrate the accuracy of the proposed numerical
scheme by considering two numerical examples.

2. Properties of Hybrid Functions

2.1. Hybrid Functions of Block Pulse and Legendre Polynomials. Hy-
brid functions bnm(t), n = 1, . . . , N,m = 0, 1, . . . , M−1, have three arguments;
n and m are the order of block-pulse functions and Legendre polynomials re-
spectively. They are defined on the interval [0, tf ) as

bnm(t) =





Pm(2N
tf

t− 2n + 1), t ∈ [
n−1
N tf , n

N tf
)

0, otherwise.

(1)

Here, Pm(t) are the well-known Legendre polynomials of order m which
satisfy the following recursive formula on the interval [−1, 1]

P0(t) = 1, P1(t) = t (2)

Pm+1(t) =
2m + 1
m + 1

tPm(t)− m

m + 1
Pm−1(t), m = 1, 2, 3, . . . (3)

From the Eq. (1), it is clear that the set of hybrid functions are orthogonal.
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2.2. Function Approximation. A function f(t), defined over the interval 0
to tf may be expanded as

f(t) '
N∑

n=1

M−1∑

m=0

cnmbnm(t) = CT B(t), (4)

where

C = [c10, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , cN0, . . . , cN(M−1)]
T (5)

and

B(t) = [BT
1 (t), BT

2 (t), . . . , BT
N (t)]T (6)

where

Bi(t) = [bi0(t), bi1(t), . . . , bi(M−1)(t)]
T , i = 1, 2, . . . , N

In Eq. (4) cnm is given as

cnm =
(f(t), bnm(t))

(bnm(t), bnm(t))
(7)

In Eq. (7) (., .) denotes the inner product and defined as

u(t), v(t)) =
∫ tf

0
u(t)v(t)dt.

We can also approximate the function g(t, s) ∈ L2([0, 1]× [0, 1]) as follows

g(t, s) = BT (t)GB(s), (8)

where G = (gij) is an MN ×MN matrix such that

gij =
(Bi(t), g(t, s), Bj(s))

(Bi(t), Bi(t)) (Bj(s), Bj(s))
, i = 1, . . . , N, j = 0, 1, . . . , M − 1

(9)

2.3. Operational Matrix of Integration. The integration of the vector
B(t) defined in Eq.(6) can be approximated by

∫ t

0
B(t

′
)dt

′ ' PB(t), (10)
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where P is the MN ×MN operational matrix for integration and is given [8]
as:

P =




E H H · · · H

0 E H · · · H

0 0 E · · · H

...
...

...
...

0 0 0 · · · E




(11)

where

H = diagonal
[
tf
N

, 0, . . . , 0
]

and

E =
tf
2N




1 1 0 0 · · · 0 0 0

−1
3 0 1

3 0 · · · 0 0 0

0 −1
5 0 1

5 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · −1
2M−3 0 1

2M−3

0 0 0 0 · · · 0 −1
2M−1 0




3. The Product Operational Matrix of The Hybrid of
Block-Pulse and Legendre Polynomials

The following property of the product of two hybrid function vectors will
also be used. Let

B(t)BT (t)C ' C̃B(t), (12)

where C and B(t) are given in Eqs. (5) and (6), respectively. Also C̃ is a
MN ×MN product operational matrix as follows:

C̃ = diagonal
[
C̃1, C̃2, . . . , C̃N

]
. (13)

In Eq. (13), 0 denotes M×M -dimensional zero matrix and C̃i, i = 1, 2, . . . , N
are M ×M matrices depending on M . For example, if we choose M = 3, then
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C̃i, i = 1, . . . , N are 3× 3 matrices given by

C̃i =




ci0 ci1 ci2

1
3ci1 ci0 + 2

5ci2
2
3ci1

1
5ci2

2
5ci1 ci0 + 2

7ci2




.

Also, for M = 4 we have

C̃i =




ci0 ci1 ci2 ci3

1
3ci1 ci0 + 2

5ci2
2
3ci1 + 3

7ci3 0

1
5ci2

2
5ci1 + 9

35ci3 ci0 + 2
7ci2

4
15ci3

1
7ci3

9
35ci2

3
7ci1 + 4

21ci3 ci0 + 4
15ci2




, i = 1, . . . , N.

Furthermore, the integration of cross-product of two hybrid functions vector
is

L =
∫ tf

0
B(t)BT (t)dt. (14)

In Eq. (14) L is a MN ×MN diagonal matrix given by

L = diagonal [D, . . . ,D] ,

and D is a M ×M diagonal matrix given by

D =
tf
N

diagonal
[
1,

1
3
, . . . ,

1
2M − 1

]
.

4. Fredholm Integral Equation of The Second Kind

Consider the following integral equation

y(t) =
∫ 1

0
k(t, s)y(s)ds + x(t), (15)

where x(t) ∈ L2[0, 1], k(t, s) ∈ L2([0, 1] × [0, 1]). The problem is to find an
unknown function y(t), satisfying Eq.(15). To solve for y(t), we let

y(t) = Y T B(t), (16)

where B(t) is given by Eq. (6) and Y is an unknown MN × 1 vector. Fur-
thermore, let

k(t, s) = BT (t)KB(s), (17)

x(t) = XT B(t), (18)
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where K ∈ RMN×MN is the hybrid functions coefficient matrix given by Eq.
(8) and X is a known MN × 1 vector given by Eq. (4). By substituting Eqs.
(16)-(18) in Eq. (15) we get

BT (t)Y =
∫ 1

0
BT (t)KB(s)BT (s)Y ds + BT (t)X. (19)

Using Eqs. (14) and (19) we obtain

BT (t)Y = BT (t)KLY + BT (t)X, (20)

therefore
(I −KL)Y −X = 0, (21)

where I is MN ×MN -dimensional identity matrix. Eq. (21) is a system of
linear equations and can be solved for the unknown vector Y, easily.

5. Volterra Integral Equation of The Second Kind

Consider the following integral equation

y(t) =
∫ t

0
k(t, s)y(s)ds + x(t), (22)

where x(t) ∈ L2[0, 1], k(t, s) ∈ L2([0, 1]× [0, 1]) and y(t) is an unknown func-
tion. we expand y(t) in hybrid functions as

y(t) = Y T B(t), (23)

where Y is an unknown vector of order MN × 1 and B(t) is given by Eq. (6).
We also expand k(t, s) and x(t) in hybrid functions as Eqs. (17) and (18),
respectively. By substituting Eqs. (17), (18) and (23) in Eq. (22) we get

Y T B(t) =
∫ t

0
BT (t)KỸ B(s)ds+XT B(t) = BT (t)KỸ PB(t)+XT B(t) (24)

where Ỹ can be calculated similarly to matrix C̃ in Eq. (12) and P is
given by Eq. (10). In order to construct the approximations for y(t) we
collocate Eq. (24) in MN points. For a suitable collocation points we choose
Legendre polynomials nodes as ti, i = 1, 2 . . . , MN. These nodes are the
roots of differential (M − 1)th of hybrid functions bnm(t) for n = 1, . . . , N ,
m = 0, 1, . . . ,M − 1. Furthermore, we define the square hybrid matrix as

HMN = [B(t1), B(t2), . . . , B(tMN )] . (25)

In Eq. (25) HMN is a MN ×MN -dimensional matrix given by

HMN = diagonal [A, . . . , A] .
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where 0 denotes M ×M -dimensional zero matrix and A is a M ×M matrix
depending on M . For example, if we choose M = 3, then A is a 3× 3 matrix
given by

A =




1 1 1

−1 0 1

1 −1
2 1




.

Furthermore, if we choose M = 4 then

A =




1 1 1 1

−1 −0.447214 0.447214 1

1 −0.2 −0.2 1

−1 0.447214 −0.447214 1




.

With these comments and by using Eqs. (6) and (25) we have

B(ti) = HMN ei, i = 1, 2, . . . ,MN (26)

where

ei =


0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
MN−i




T

.

Now, equation (24) can be expressed as

Y T HMN ei = eT
i HT

MN
KỸ PHMN ei + XT HMN ei, i = 1, 2, . . . , MN. (27)

Obviously, Eq. (27) can be solved for the unknown vector Y .

6. Illustrative Examples

Two examples are given in this section. These examples were considered
in [3] by using Haar Wavelets. Our methods differs from their approach and
thus these examples could be used as a basis for comparison.

6.1. Example 1. Consider the Fredholm integral equation of the second kind[3]

y(t) =
∫ 1

0

(
−1

3
e2t− 5

3
s

)
y(s)ds + e2t+ 1

3 (28)

The analytic solution for y(t) is [3]

y(t) = e2t
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By using the method in section 3, Eq. (28) is solved. In Table I, the results for
y(t) using hybrid functions of block pulse and Legendre polynomials together
Rationalized Haar functions[3] are listed.

Table I.
Absolute error of the approximate solution of Example 1.

Hybrid functions Haar wavelets[3]
t M=3, N=4 M=3, N=10 M=4, N=4 m=128

0.0 0.26E− 4 0.66E− 6 0.34E− 7 0.4E− 4
0.1 0.60E− 3 0.80E− 6 0.32E− 4 0.7E− 4
0.2 0.14E− 2 0.98E− 6 0.22E− 4 0.2E− 4
0.3 0.20E− 2 0.12E− 5 0.34E− 4 0.6E− 4
0.4 0.11E− 2 0.15E− 5 0.54E− 4 0.3E− 4
0.5 0.70E− 4 0.18E− 5 0.93E− 7 0.6E− 4
0.6 0.16E− 2 0.22E− 5 0.87E− 4 0.5E− 4
0.7 0.37E− 2 0.27E− 5 0.60E− 4 0.9E− 4
0.8 0.54E− 2 0.33E− 5 0.93E− 4 0.3E− 4
0.9 0.31E− 2 0.40E− 5 0.15E− 4 0.4E− 4
1.0 0.19E− 3 0.49E− 5 0.25E− 6 0.5E− 4

6.2. Example 2. Consider the following integral equation[3]

y(t) = cos t−
∫ t

0
(t− s) cos (t− s) y(s)ds. (29)

The exact solution for this problem is[3]

y(t) =
1
3

(
2 cos

√
3t + 1

)

We solve Eq. (29) using the method in section 4. In Table 2, a comparison
is made between the computational results for hybrid functions together by
rationalized Haar functions.

7. Conclusion

The hybrid functions operational matrices of integration and product are
used to solve Fredholm and Volterra integral equations of the second kind.
The problem has been reduced to solving a system of algebraic equations.
The method can be implemented on a digital computer. It occupies less mem-
ory space and consumes less computer time than method in[3]. Illustrative
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examples are included to demonstrate the validity and applicability of the
technique.

Table II.
Absolute error of the approximate solution of Example 2.

Hybrid functions Haar wavelets[3]
t M=3, N=4 M=3, N=10 M=4, N=4 m=128

0.0 0.14E− 3 0.18E− 5 0.65E− 5 0.6E− 5
0.1 0.18E− 4 0.44E− 5 0.12E− 4 0.6E− 4
0.2 0.14E− 3 0.31E− 5 0.62E− 5 0.2E− 4
0.3 0.35E− 3 0.55E− 5 0.56E− 5 0.8E− 4
0.4 0.20E− 3 0.14E− 4 0.10E− 4 0.5E− 4
0.5 0.29E− 3 0.91E− 5 0.35E− 5 0.2E− 4
0.6 0.21E− 3 0.20E− 4 0.60E− 5 0.1E− 4
0.7 0.55E− 3 0.95E− 5 0.24E− 5 0.3E− 4
0.8 0.59E− 3 0.99E− 5 0.12E− 5 0.1E− 4
0.9 0.30E− 3 0.23E− 4 0.19E− 5 0.2E− 4
1.0 0.28E− 3 0.11E− 4 0.35E− 5 0.1E− 4
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