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EXACT SOLUTIONS OF GENERALIZED OLDROYD-B
FLUID SUBJECT TO A TIME-DEPENDENT SHEAR STRESS

IN A PIPE

QAMMAR RUBBAB1, SYED MUHAMMAD HUSNINE2, AMIR MAHMOOD3

Abstract. The velocity field and the shear stress corresponding to the
unsteady flow of a generalized Oldroyd-B fluid in an infinite circular cylin-
der subject to a longitudinal time-dependent shear stress are determined
by means of Hankel and Laplace transforms. The exact solutions, writ-
ten in terms of the generalized G-functions, satisfy all imposed initial and
boundary conditions. The similar solutions for ordinary Oldroyd-B, ordi-
nary and generalized Maxwell, ordinary and generalized second grade as
well as for Newtonian fluids are obtained as limiting cases of our general
solutions.
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1. Introduction

Numerous models have been proposed to describe the response of fluids
that cannot be characterized by the classical Navier-Stokes fluid model. The
simplest constitutive equation for a fluid is a Newtonian one and the classi-
cal Navier-Stokes theory is based on this equation. The mechanical behavior
of many fluids is well enough described by this theory. However, there are
many rheologically complicated fluids such as polymer solutions, blood and
certain oils, suspensions, liquid crystals in industrial processes with non-linear
viscoelastic behavior that can not be described by a Newtonian constitutive
equation, as it does not reflect any relaxation and retardation phenomena. For
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this reason, many models have been proposed. Among them, the models of
differential type [1] and those of rate type [2] have received much attention.
One of the rate type models, in which besides the upper-convected deriva-
tive of the stress tensor, also the upper-convected derivative of the rate of
strain tensor is included, is the Oldroyd-B model [3]. This model has become
very popular among rheologists in modeling the response of dilute polymeric
solutions [4, 5]. It can describe many of the non-Newtonian characteristics
exhibited by polymeric materials such as stress-relaxation, normal stress dif-
ferences in simple shear flows and creep. Moreover, it is amenable to analysis
and more importantly experimental.

Recently, the fractional calculus has encountered much success in the de-
scription of viscoelasticity. Especially, the rheological constitutive equations
with fractional derivatives play an important role in the description of the
behavior of the polymer solutions and melts. The constitutive equations cor-
responding to the generalized non-Newtonian fluids are obtained from those
for non-Newtonian fluids by replacing the inner time derivatives of an integer
order by the so called Riemann-Liouville fractional operators. More exactly,
the ordinary derivatives of first, second or higher orders are replaced by frac-
tional derivatives of non-integer order [6, 9-16].

The aim of this paper is to establish exact solutions for the unsteady flow
of an incompressible generalized Oldroyd-B fluid (GOF) in an infinite circular
cylinder subject to a longitudinal time-dependent shear stress. These solu-
tions, obtained by means of Hankel and Laplace transforms, are presented
under integral and series form in terms of the generalized G-functions. Sim-
ilar solutions for the flow of Maxwell and second grade fluids with fractional
derivative models as well as those for the ordinary models are obtained as
limiting cases of our general solutions. Moreover, respective solutions for the
flow of ordinary Oldroyd-B and Newtonian fluids are also achieved.

2. Governing Equation

The type of flows to be here considered has the velocity V and the extra-
stress S of the form [7]

V = V(r, t) = v(r, t)ez, S = S(r, t), (1)

where ez is the unit vector along the z-direction of the cylindrical coordinate
system r, θ and z. For such flows the constraint of incompressibility is auto-
matically satisfied. Furthermore, if the fluid is at rest up to the moment t = 0,
then

V(r, 0) = 0, S(r, 0) = 0, (2)

The constitutive equations corresponding to incompressible Oldroyd-B flu-
ids and the balance of linear momentum, in the absence of body forces and
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pressure gradient in the flow direction, lead to Srr = Srθ = Sθθ = Sθz = 0 and
the relevant equations [7]

(1 + λ∂t)τ(r, t) = µ(1 + λr∂t)∂rv(r, t), ρ∂tv(r, t) =
(

∂r +
1
r

)
τ(r, t), (3)

where µ is the dynamic viscosity, ρ is the constant density of the fluid, λ and
λr are relaxation and retardation times and τ(r, t) = Srz(r, t) is the tangential
stress, which is different of zero. Eliminating τ(r, t) between Eqs. (3) we attain
to the governing equation (cf. [7, Eq. (2.5)] or [8, Eq. (4.1)])

(1 + λ∂t)∂tv(r, t) = ν(1 + λr∂t)
(

∂r +
1
r

)
∂rv(r, t), (4)

where ν = µ/ρ is the kinematic viscosity of the fluid.
The governing equations corresponding to an incompressible generalized

Oldroyd-B fluid (GOF) are obtained from Eqs. (3)1 and (4) by replacing the
inner derivatives with respect to t by the fractional differential operators Dγ

t

and Dβ
t (β ≥ γ), defined by [6]

Dp
t f(t) =

{
1

Γ(1−p)
d
dt

∫ t
0

f(τ)
(t−τ)p dτ ; 0 < p < 1,

d
dtf(t); p = 1,

(5)

where Γ(·) is the Gamma function. More exactly, the governing equations to
be used here are (cf. [9, Eqs. (7) and (10)]) or [10, Eqs. (2) and (23)]

(1 + λDγ
t )τ(r, t) = µ(1 + λrD

β
t )∂rv(r, t), (6)

(1 + λDγ
t )∂tv(r, t) = ν(1 + λrD

β
t )

(
∂r +

1
r

)
∂rv(r, t), (7)

where the new material constants λ and λr have the dimensions of tγ and tβ,
respectively. In some recent papers (see [11], for instance), the authors use λγ

and λβ
r instead of λ and λr into their constitutive equations. However, for sim-

plicity, we are keeping the same notations although these material constants
have different significations in Eqs. (3)1, (4) and (6), (7), respectively.

3. Axial Couette Flow Through an Infinite Circular Cylinder

Let us consider an incompressible GOF at rest in an infinite circular cylinder
of radius R. At time t = 0+, a time-dependent shear stress

τ(R, t) =
f

λ
Gγ,−2,1

(
− 1

λ
, t

)
; t > 0, (8)
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is created at the boundary of the cylinder, where f is a constant and [20, Eq.
(101)]

Ga,b,c(d, t) =
∞∑

j=0

djβ(c + j)
β(c)β(j + 1)

t(c+j)a−b−1

β[(c + j)a− b]
. (9)

Owing to the shear, the fluid is gradually moved, its velocity being of the form
of Eq. (1)1 and the governing equation is (7). The appropriate initial and
boundary conditions are

v(r, 0) = ∂tv(r, 0) = τ(r, 0) = 0 ; r ∈ [0, R), (10)

(1 + λDγ
t )τ(R, t) = µ(1 + λrD

β
t )∂rv(R, t) = ft; t ≥ 0 . (11)

Of course, τ(R, t) given by Eq. (8) is just the solution of the fractional differ-
ential equation (11)1. To solve this problem we shall use as in [9, 10, 18, 19]
the Laplace and Hankel transforms.

3.1. Calculation of the Velocity Field. Having in mind the initial condi-
tions (10), apply the Laplace transform to Eqs. (7) and (11)2 and using the
Laplace transform formula for fractional derivatives [6], we obtain

(q + λqγ+1)v(r, q) = ν(1 + λrq
β)

(
∂r +

1
r

)
∂rv(r, q); r ∈ (0, R), (12)

∂rv(R, q) =
f

µq2(1 + λrqβ)
, (13)

where v(r, q) =
∫∞
0 v(r, t) exp(−qt)dt is the Laplace transform of v(r, t) and q

is the transform parameter. In the following we denote by [17]

vH (rn, q) =
∫ R

0
rv(r, q)J0(rrn)dr ,

the finite Hankel transform of v(r, q), where J0(·) is the Bessel function of
first kind of order zero and rn, n = 1, 2, 3, · · · are the positive roots of the
transcendental equation J1(Rr) = 0.

Multiplying both sides of Eq. (12) by rJ0(rrn), integrating with respect
to r from 0 to R and taking into account the condition (13) and using the
relation [17, Eq. (13.4.31)]

∫ R

0
r

[
∂2

rv(r, q) +
1
r
∂rv(r, q)

]
J0(rrn)dr

= RJ0(Rrn)∂rv(R, q)− r2
nvH(rn, q) , (14)
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we find that

vH(rn, q) =
RfJ0(Rrn)

ρ

1
q2[q + λ qγ+1 + νr2

n(1 + λrqβ)]
. (15)

Now, for a suitable presentation of the final results, we rewrite vH(rn, q) in
the following equivalent form

vH(rn, q) =
RfJ0(Rrn)

µr2
n

1
q2(1 + λrqβ)

− RfJ0(Rrn)
µr2

n

1 + λqγ

q(1 + λrqβ)[q + λ qγ+1 + νr2
n(1 + λrqβ)]

. (16)

Applying the inverse Hankel transform [17, Eq. (13.4.30)] to Eq. (16) and
taking into consideration the fact that the finite Hankel transform of r2 is
2R2J0(Rrn)/r2

n, we find that

v(r, q) =
fr2

2µR

1
q2(1 + λrqβ)

− 2f

µR

∞∑

n=1

J0(rrn)
r2
nJ0(Rrn)

× q−1

1 + λrqβ

1 + λqγ

q + λ qγ+1 + νr2
n(1 + λrqβ)

. (17)

In order to obtain the velocity field v(r, t) = L−1{v(r, q)} and to avoid
the burdensome calculations of residues and contour integrals, we apply the
discrete Laplace transform method [9-16]. However, we firstly rewrite the last
factor of Eq. (17) in the following equivalent form

(1 + λqγ)
q + λ qγ+1 + νr2

n(1 + λrqβ)

=
1
λ

∞∑

k=0

k∑

m=0

Cm
k λm

r

(−νr2
n

λ

)k qβm−k−1 + λ qγ+βm−k−1

(
qγ + 1

λ

)k+1
, (18)

where Cm
k = k!/ (m!(k −m)!) is the binomial coefficient. Introducing (18) into

(17), applying the discrete inverse Laplace transform and using the convolution
theorem of Laplace transform as well as the formula [20]

L−1

{
qb

(qa − d)c

}
= Ga,b,c(d, t); Re (ac− b) > 0, Re (q) > 0,

∣∣∣∣
d

qa

∣∣∣∣ < 1, (19)
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we find for v(r, t) the expression

v(r, t) =
fr2

2µλrR
Gβ,−2,1

(
− 1

λr
, t

)
− 2f

µλλ rR

∞∑

n=1

J0(rrn)
r2
nJ0(Rrn)

×
∞∑

k=0

k∑

m=0

Cm
k λm

r

(−νr2
n

λ

)k ∫ t

0
Gβ,−1,1

(
− 1

λr
, t− τ

)

×
[
Gγ,βm−k−1,k+1

(
− 1

λ
, τ

)
+ λGγ,γ+βm−k−1,k+1

(
− 1

λ
, τ

)]
dτ. (20)

3.2. Calculation of the Shear Stress. Applying the Laplace transform to
Eq. (6), it results that

τ(r, q) = µ
(1 + λrq

β)
(1 + λqγ)

∂rv(r, q). (21)

Differentiating Eq. (17) with respect to r, we find that

∂rv(r, q) =
fr

µR

1
q2(1 + λrqβ)

+
2f

µR

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

× 1
1 + λrqβ

1 + λqγ

q[q + λ qγ+1 + νr2
n(1 + λrqβ)]

. (22)

Introducing (22) into (21), we get

τ(r, q) =
fr

R

1
q2(1 + λqγ)

+
2f

R

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

× 1
q[q + λ qγ+1 + νr2

n(1 + λrqβ)]
, (23)

Applying again the discrete inverse Laplace transform to Eq. (23), we find the
shear stress τ(r, t) under the form

τ(r, t)=
fr

λR
Gγ,−2,1

(
− 1

λ
, t

)
+

2f

λR

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

×
∞∑

k=0

k∑

m=0

Cm
k λm

r

(
−νr2

n

λ

)k

Gγ,βm−k−2,k+1

(
− 1

λ
, t

)
. (24)

Of course, making r = R into (24), we recover Eq. (8).
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4. Limiting Cases

1. Making γ and β → 1 into Eqs. (20), (24) and using the following results

G1,−2,1

(
− 1

λr
, t

)
= λr

[
t− λr

(
1− e−t/λr

)]
, (25)

and

G1,−1,1

(
− 1

λr
, t

)
= λr

(
1− e−t/λr

)
, (26)

we obtain the velocity field

v(r, t) =
fr2

2µR

[
t− λr

(
1− e−t/λr

)]
− 2f

µλR

∞∑

n=1

J0(rrn)
r2
nJ0(Rrn)

×
∞∑

k=0

k∑

m=0

Cm
k λm

r

(−νr2
n

λ

)k ∫ t

0

(
1− e(τ−t)/λr

)

×
[
G1,m−k−1,k+1

(
− 1

λ
, τ

)
+ λG1,m−k,k+1

(
− 1

λ
, τ

)]
dτ, (27)

and the shear stress

τ(r, t) =
rf

R

[
t− λ

(
1− e−t/λ

)]
+

2f

λR

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

×
∞∑

k=0

k∑

m=0

Cm
k λm

r

(
−νr2

n

λ

)k

G1,m−k−2,k+1

(
− 1

λ
, t

)
, (28)

corresponding to ordinary Oldroyd-B fluids performing the same motion.

2. Making β → 1 and λr → 0 into Eqs. (20) and (24) and using the
following limit

lim
η→0

1
η k

Ga,b,k

(
−1

η
, t

)
=

t−b−1

Γ(−b)
; b < 0, (29)

the velocity field

v(r, t) =
fr2

2µR
t− 2f

µλR

∞∑

n=1

J0(rrn)
r2
nJ0(Rrn)

∞∑

k=0

(−νr2
n

λ

)k

×
[
Gγ,−k−2,k+1

(
− 1

λ
, τ

)
+ λGγ,γ−k−2,k+1

(
− 1

λ
, τ

)]
dτ. (30)
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and the associated shear stress

τ(r, t) =
rf

λR
Gγ,−2,1

(
− 1

λ
, t

)
+

2f

λR

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

×
∞∑

k=0

(−νr2
n

λ

)k

Gγ,−k−2,k+1

(
− 1

λ
, t

)
, (31)

for a generalized Maxwell fluid are obtained. By making γ → 1 in (30) and
(31), the respective solutions for the flow of ordinary Maxwell fluid can be
obtained.

3. Now, making γ → 1 and λ → 0 into Eqs. (20) and (24) and again using
the limit (29) and the following equalities
∞∑

k=0

k∑

m=0

Cm
k λm

r

(− νr2
n

)k
∫ t

0
Gβ,−1,1

(
− 1

λr
, t− τ

)
τ−βm+k

Γ(−βm + k + 1)
dτ

=
∞∑

k=0

(−νr2
n)k

∫ t

0
Gβ,0,1

(
− 1

λr
, τ

)
G1−β,−βk−β−1,k+1

(−νλrr
2
n, t− τ

)
dτ, (32)

∞∑

k=0

k∑

m=0

Cm
k λm

r

(−νr2
n

)k t−βm+k+1

Γ(−βm + k + 2)

=
∞∑

k=0

(−νr2
n

)k
G1−β,−βk−β−1,k+1

(−νλrr
2
n, t

)
, (33)

the known solutions of velocity field and shear stress

v(r, t)=
fr2

2α1R
Gβ,−2,1

(
− µ

α1
, t

)
− 2f

α1R

∞∑

n=1

J0(rrn)
r2
nJ0(Rrn)

∞∑

k=0

(− νr2
n

)k

×
∫ t

0
Gβ,0,1

(
− µ

α1
, τ

)
G1−β,βk−β−1,k+1

(−αr2
n, t− τ

)
dτ, (34)

τ(r, t) =
fr

R
t +

2f

R

∞∑

n=1

J1(rrn)
rnJ0(Rrn)

×
∞∑

k=0

(−νr2
n

)k
G1−β,−βk−β−1,k+1

(−αr2
n, t

)
. (35)

corresponding to the similar flow of generalized second grade fluid are re-
covered [18, Eqs. (21) and (24)], where in (34) and (35), α1 = µλr and
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α = α1/ρ. Of course, by making β → 1 in (34) and (35), the solutions for
ordinary second grade fluid can be recovered.

4. Finally, by making γ → 1 and λ → 0 into Eqs. (30) and (31)
(
or by

making β → 1 and λr → 0 into Eqs. (34) and (35)
)
, the known solutions [7,

18, 19]

v(r, t) =
fr2t

2µR
− 2f

µνR

∞∑

n=1

J0(rrn)
r4
nJ0(Rrn)

[
1− e−νr2

nt
]
, (36)

τ(r, t) =
frt

R
+

2f

νR

∞∑

n=1

J1(rrn)
r3
nJ0(Rrn)

[
1− e−νr2

nt
]
, (37)

corresponding to the similar flow of Newtonian fluid are recovered.

5. Concluding Remarks

The aim of this note is to provide exact solutions for the velocity field
v(r, t) and the shear stress τ(r, t) corresponding to the unsteady flow of a
generalized Oldroyd-B fluid due to an infinite circular cylinder subject to a
longitudinal time-dependent shear stress. The solutions have been obtained
by using Hankel and Laplace transforms and they are written under integral
and series form in terms of the generalized G-function. Furthermore, these
solutions satisfy the governing equation of motion and all imposed initial and
boundary conditions. In the special cases, the similar solutions for Ordinary
Oldroyd-B, generalized and ordinary Maxwell, generalized and ordinary sec-
ond grade as well as Newtonian fluids are recovered from literature by taking
into consideration suitable limits.
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