ON F-DERIVATIONS OF BCI-ALGEBRAS

FARHAT NISAR 1

ABSTRACT. In this paper we introduce the notions of right F-derivation and left F-derivation of a BCI-algebra and some related properties are explored.

Key words: BCI-algebra, initial element, center, branch, derivation, f-derivation, F-derivation. $AMS\ SUBJECT$: 06F35, 03G25.

1. Introduction

In [13], Y.B. Jun and X.L. Xin introduced the notion of derivation in BCI-algebras, which is defined in a way similar to the notion in ring theory (see [1, 2, 11, 14]), and investigated some properties related to this concept.In [16] J. Zhan and Y.L. Liu introduced the notion of f-derivation in BCI-algebras. In particular, they studied the regular f-derivations in detail and gave a characterization of regular f-derivations and characterized p-semisimple BCI-algebras using the notion of regular f-derivation. In this paper we introduce the notions of right F-derivation and left F-derivation of a BCI-algebra and some related properties are explored. We also investigated that the notion of left-right (resp. right-left) f-derivation of a p-semisimple BCI-algebra is a left (resp. right) F-derivation of X.

2. Preliminaries

Definition 1. A BCI-algebra X is an abstract algebra (X, *, o) of type (2, 0), satisfying the following conditions; for all $x, y, z \in X$,

- 1.1 ((x*y)*(x*z))*(z*y) = o1.2 (x*(x*y))*y = o
- $1.3 \ x * x = o$

 $^{^1\}mathrm{Department}$ of Mathematics, Queen Mary College, Lahore, Pakistan. Email: fhtnr2003@yahoo.com.

$$1.4 x * y = o = y * x \Rightarrow x = y$$
$$1.5 x * o = o \Rightarrow x = o$$

where $x * y = o \Leftrightarrow x \leq y$

In a BCI-algebra X, the set $M = \{x \in X : o * x = o\}$ is a subalgebra and is called the BCK-part of X. A BCI-algebra X is called proper if $X - M \neq \phi$.

Moreover, the following properties hold in every BCK/BCI-algebra (see [9], [10]):

```
1.6 x * o = x

1.7 (x * y) * z = (x * z) * y

1.8 x \le y \Rightarrow x * z \le y * z and z * y \le z * x

1.9 (x * y) * (x * z) \le x * z
```

Definition 2. Let X be a BCI-algebra. An element $x_o \in X$ is said to be an initial element of X, if $x \le x_o \Rightarrow x = x_o$. [3]

Definition 3. Let I_x denote the set of all initial elements of X. We call it the center of X.[3] It is well known that the center I_x of a BCI-algebra X is p-semisimple. [4]

Definition 4. Let X be a BCI-algebra with I_x as its center. Let $x_o \in I_x$, then the set $A(x_o) = \{x \in X : x_o \leq x\}$ is known as the branch of X determined by x_o . [3]

- 1.10 . Let X be a BCI-algebra. The following properties are equivalent for all x, $y \in X$:
 - (i) X is p-semi-simple.
 - (ii) $o^*(o^*x) = x$
 - (iii) $x * y = o \Rightarrow x = y$
 - (iv) y * (y * x) = x

for all x, y, $z \in X$.[6, 15]

- 1.11 Let X be a BCI-algebra. If $x \leq y$, then x, y are contained in the same branch of X [3].
- 1.12 Let X be a BCI-algebra and $A(x_o) \subseteq X$. Then $x, y \in A(x_o) \Rightarrow x * y, y * x \in M$.[3]
- 1.13 Let X be a BCI-algebra with I_x as its center. If $x \in A(x_o)$, $y \in A(y_o)$, then $x * y \in A(x_o * y_o)$, for $x_o, y_o \in I_x$. [7]
- 1.14 Let X be a BCI-algebra with I_x as its center. Let $x_o, y_o \in I_x$. Then for all $y \in A(y_o)$, $x_o * y = x_o * y_o$.[7]
- 1.15 Let X be a BCI-algebra. Then for $x \in X$, o*(o*x) = x and $o*x \in I_x$. [8]

- 1.16 Let f be an endomorphism of a BCI-algebra X and I_x be its center. Then for any $x \in I_x$, $f(x) \in I_x$. [8]
- 1.17 Let f be an endomorphism of a BCI-algebra X with center I_x . Then for $x, y \in X$, following identities hold:
 - (i) $f_x * f_y \in I_x$.
 - (ii) $f_{x*y} = f_x * f_y$ [8]
- 1.18 Let f be an endomorphism of a BCI-algebra X. Then for all $x \in A(x_o)$, $f(x_o) = o * (o * f(x))$. [8]

Definition 5. Let X be a BCI-algebra. By a left-right derivation (briefly, (l, r)-derivation) of X, a self map d of X satisfying the identity $d(x * y) = (d(x) * y) \wedge (x * d(y))$, for all $x, y \in X$. If d satisfies the identity $d(x * y) = (x * d(y)) \wedge (d(x) * y)$, for all $x, y \in X$ then we say that d is a right-left f-derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both (l, r)- and (r, l)-derivation, it is said that d is an derivation of X. (see [12])

Definition 6. A self-map of a BCI-algebra X is said to be regular if d (o) = o.(see [12])

Definition 7. Let X be a BCI-algebra. By a left-right f-derivation (briefly, (l, r)- derivation) of X, a self map d_f of X satisfying the identity $d_f(x * y) = (d_f(x) * f(y)) \land (f(x) * d_f(y))$, for all $x, y \in X$ is meant, where f is an endomorphism of X. If d_f satisfies the identity $d_f(x * y) = (f(x) * d_f(y)) \land (d_f(x) * f(y))$, for all $x, y \in X$ then it is said that d_f is a right-left f-derivation (briefly, (r, l)-f-derivation) of X. Moreover, if d is both (l, r)- and (r, l)-f-derivation, it is said that d_f is an f-derivation of X. (see [16])

Definition 8. A mapping f of a BCI-algebra X into itself is called an endomorphism if f(x * y) = f(x) * f(y). Note that f(o) = 0. (see [16])

Definition 9. A BCI-algebra X is said to be commutative if and only if $x \le y \Rightarrow y * (y * x) = x$, for all $x, y \in X$. [12]

3. F-Derivations

In this section we introduce the notion of right F-derivation and left F-derivation of a BCI-algebra and give some examples to explain the theory of derivation, f-derivation and F-derivation in BCI-algebras.

Definition 10. Let X be a BCI-algebra. By a right F-derivation of X, we mean a self map D_F of X satisfying the identity

$$D_F(x * y) = (F(x) * D_F(y)) \wedge (F(y) * D_F(x))$$

Fig1.bmp [width=2.3 in, height=.8 in]

for all $x, y \in X$, where F is an endomorphism of X. If D_F satisfies the identity

$$D_F(x * y) = (D_F(x) * F(y)) \wedge (D_F(y) * F(x)))$$

for all $x, y \in X$, then it is said that D_F is a left F-derivation of X. Moreover, if D_F is both right and left F-derivation, then it is said that D_F is an F-derivation of X.

Definition 11. An F-derivation D_F of a BCI-algebra X is said to be regular if $D_F(o) = o$. If $D_F(o) \neq o$, we call D_F an irregular F-derivation.

3.3 Examples

Example 1

Let $X = \{o, a, b, c, d, e, f\}$ be a BCI-algebra with Hasse diagram and Cayley table defined as follows:

Table 1							
*	О	a	b	c	d	е	f
О	О	О	b	b	d	d	f
a	a	О	b	b	d	d	f
b	b	b	О	О	f	f	d
c	С	b	a	О	f	f	d
d	d	d	f	f	О	О	b
е	е	d	f	f	a	О	b
f	f	f	d	d	b	b	О

Define a self map $D_F : \to X$ as follows:

$$D_F(x) = \begin{cases} b & x = 0, a \\ o & x = b, c \\ f & x = d, e \\ d & x = f \end{cases}$$

Define an endomorphism $F: X \to X$ as follows:

$$F(x) = \begin{cases} o & x = 0, a \\ b & x = b, c \\ d & x = d, e \\ f & x = f \end{cases}$$

It is easily checked that D_F is an irregular derivation, f-derivation and F-derivation of X.

Example 2 Let $X = \{o, a, b, c, d, e, f\}$ be a BCI-algebra in which * is defined as in Table 1. Define a self map $D_F : X \to X$ as follows:

$$D_F(x) = \begin{cases} b & x = 0, a \\ o & x = b, c \\ f & x = d, e \\ d & x = f \end{cases}$$

Define an endomorphism $F: X \to X$ as F(x) = o, for all $x \in X$.

Note that the self map D_F is a derivation of X but not a f-derivation of X as

$$D_F(b*d) = D_F(f) = d$$

but

$$(D_F(b)*F(d)) \wedge (F(b)*D_F(d)) = (o*o) \wedge (o*f) = o \wedge f = f*(f*o) = f*f = o$$

Thus it follows $(D_F(a*b) = ((D_F(a)*b) \wedge ((D_F(b)*a)).$

Also note that the self map D_F is a regular f-derivation of X but not an F-derivation of X as $D_F(a) = (D_F(a * o) = a)$ but

$$(D_F(a) * F(o) \land (D_F(o) * F(a)) = (a * o) \land (o * a) = a \land o = o$$
 Thus it follows $D_F(a) = D_F(a * o) = (D_F(a) * F(o) \land (D_F(o) * F(a))$

In squeal, we will denote $o * (o * F(x)) = F_x$ and $x \wedge y = y * (y * x)$.

Theorem 1. Let D_F be a F-derivation of a BCI-algebra X. Then

- (i) $D_F(o) \in I_x$
- (ii) $D_F(x) \in I_x$, for all $x \in I_x$.

Proof (i) Let D_F be a F-derivation a BCK-algebra X. Since D_F is a F-derivation, therefore it is right F-derivation as well as left F-derivation of X. When D_F is a right F-derivation, then

$$D_F(o) = D_F(o * o) = (F(o) * D_F(o)) \land (F(o) * D_F(o)) = F(o) * D_F(o)$$
 (1)

When D_F is a left F-derivation, then

$$D_F(o) = D_F(o*o) = (D_F(o)*F(o)) \land (D_F(o)*F(o)) = D_F(o)*F(o)$$
 (2)

Since D_F is a F-derivation, therefore from (1) and (2) it follows that $F(o)*D_F(o) = D_F(o)*F(o) \Rightarrow o*D_F(o) = D_F(o)*o \Rightarrow o*D_F(o) = D_F(o)$

As D_F is a self map, so for $o \in X$, $D_F(o) \in X$ and because of 1.15, for $D_F(o) \in X$, $o * D_F(o) \in I_x$. Hence, $D_F(o) \in I_x$.

(ii) Let $x \in I_x$. Then x = o * (o * x). Since D_F is a F-derivation of X, therefore it is both right as well as left F-derivation of X. When D_F is a right F-derivation, then

$$(D_F(x) = D_F(o*(o*x)) = (F(o)*D_F(o*x)) \land (F(o*x)*D_F(o))))$$

= $(F(o*x)*D_F(o)))*((F(o*x)*D_F(o)))*(o*D_F(o*x))$

$$(since F(o) = oandx \land y = y * (y * x))$$

$$\leq o * D_F(o * x)$$

$$(using 1.2)$$

As D_F is a self map, so for $x \in I_x \subseteq X$, $D_F(x)$ and $D_F(o * x) \in X$. Because of 1.15, for $D_F(o * x) \in X$, $o * D_F(o * x) \in I_x$. So, $o * D_F(o * x)$ is an initial point. Thus $D_F(x) \leq o * D_F(o * x) \Rightarrow D_F(x) = o * D_F(o * x)$. Hence for $x \in I_x$, $D_F(x) \in I_x$.

When D_F is a left F-derivation, then

$$D_{F}(x) = D_{F}(o*(o*x)) = (D_{F}(o)*F(o*x)) \land (D_{F}(o*x)*F(o))$$

$$= (D_{F}(o)*F(o*x)) \land D_{F}(o*x)$$

$$= (D_{F}(o*x)*((D_{F}(o*x)*(((D_{F}(o)*F(o*x))))$$
(since $F(o) = o$ and $x \land y = y * (y * x)$)

$$= D_F(o) * (o*F(x))$$

Using (i), $D_F(o) \in I_x$ and by 1.15, for $F(x) \in X$, $o * F(x) \in I_x$. As I_x is p-semisimple, so for $D_F(o)$, $o * F(x) \in I_x$, $D_F(o) * (o * F(x)) \in I_x$. So, $D_F(o) * (o * F(x))$ is an initial point. Thus above inequality implies $D_F(x) = D_F(o) * (o * F(x))$. Which implies $D_F(x) \in I_x$. This completes the proof.

Theorem 2. Let D_F be a right F-derivation of a BCI-algebra X. Then $D_F(x) \in G(X)$, for all $x \in G(X)$.

Proof: Let $x \in G(X)$. Then x = o * x. So,

$$D_F(x) = D_F(o * x) = (F(o) * D_F(x)) \land (F(x) * D_F(o)))$$

= $(F(x)*D_F(o))*((F(x)*D_F(o)))*(o*D_F(x)))$

$$(since \ F(o) = oand \ x \land y = y * (y * x))$$

$$\leq o * D_F(x)$$

$$(using \ 1.2)$$

As D_F is a self map, so for $x \in G(X) \subseteq X$, $D_F(x) \in X$. Because of 1.15, for $D_F(x) \in X$, $o * D_F(x) \in I_x$. So, $o * D_F(x)$ is an initial point. Thus $D_F(x) \le o * D_F(x) \Rightarrow D_F(x) = o * D_F(x) \Rightarrow D_F(x) \in G(X)$.

4. Irregular F-Ferivations

In this section we investigate some results on irregular F-derivations of BCI-algebras.

Theorem 3. Let D_F be a F-derivation of a BCI-algebra X. If for distinct $x, y \in I_x$, $D_F(x) = F(y) \Rightarrow D_F(y) = F(x)$, then D_F is irregular.

Proof: Assume that for distinct $x, y \in I_x$,

$$D_F(x) = F(y) \Rightarrow D_F(y) = F(x) \tag{1}$$

Since D_F is a F-derivation of X, therefore D_F is a left F-derivation as well as right F-derivation. When D_F is a left F-derivation, then

$$D_{F}(x * y) = (D_{F}(x) * F(y)) \land (D_{F}(y) * F(x))$$

$$= (D_{F}(y) * F(x)) * ((D_{F}(y) * F(x)) * (D_{F}(x) * F(y))) \quad (since \ x \land y = y * (y * x))$$

$$\leq D_{F}(x) * F(y) \qquad (using \ 1.2)$$

$$= F(y) * F(y) = o \qquad (using \ 1 \ and \ 1.3)$$

$$\Rightarrow D_{F}(x * y) = o \qquad (using \ 1.5)$$

Since for $x, y \in I_x$, $x * y \in I_x$ and $x * y \neq o$, otherwise by 1.10, (iii), $x * y = o \Rightarrow x = y$, a contradiction, therefore by our assumption

$$D_F(x * y) = o = F(o) \Rightarrow D_F(o) = F(x * y)$$

Thus it follows that $D_F(o) \neq o$ as $x * y \neq o$, so D_F is irregular.

Also, when D_F is a right F-derivation, then

$$D_F(x * y) = (F(x) * D_F(y)) \wedge (F(y) * D_F(y))$$

=
$$(F(y) * D_F(y)) * ((F(y) * D_F(y)) * (F(x) * D_F(y)))$$
 (since $x \land y = y * (y * x)$)

$$\leq F(x)*D_F(y)$$
 (using 1.2)

$$= F(x) * F(x) = 0$$
 (using $D_F(x) = F(y)$ and 1.3)

$$\Rightarrow D_F(x*y) = o (using 1.5)$$

Since for $x, y \in I_x$, $x * y \in I_x$ and $x * y \neq o$, otherwise by 1.10, (ii), $x * y = o \Rightarrow x = y$, a contradiction, therefore by our assumption

$$D_F(x * y) = o = F(o) \Rightarrow D_F(o) = F(x * y)$$

Thus it follows that $D_F(o) \neq o$ as $x * y \neq o$, so D_F is irregular. This completes the proof.

Theorem 4. Let D_F be a F-derivation of a BCI-algebra X. If for all $x \in A(x_o)$, $F(x) \in A(x_o)$ and for $y \in A(y_o)$, $F(y) \in A(y_o)$, then $D_F(x) = y_o \Rightarrow D_F(y) \in A(x_o)$.

Proof Assume that for all $x \in A(x_o)$, $D_F(x) = y_o$. Since D_F is a F-derivation of BCI-algebra X, therefore D_F is a left as well as right F-derivation. When D_F is a left F-derivation, then for all $x \in A(x_o)$, $y \in A(y_o)$,

$$D_F(x * y) = (D_F(x) * F(y)) \wedge (D_F(y) * F(x))$$

Since F(o) = o and $x \wedge y = y * (y * x)$

$$D_F(x * y) = (D_F(y) * F(x)) * ((D_F(y) * F(x)) * (D_F(x) * F(y)))$$

$$\leq D_F(x) * F(y) \tag{using 1.2}$$

$$\Rightarrow D_F(x*y) \le y_o * F(y)$$
 (since $D_F(x) = y_o$)

According to given condition for $y \in A(y_o)$, $F(y) \in A(y_o)$ and by definition 2.4, $y \in A(y_o) \Rightarrow y_o \leq y$ which implies $F(y_o) \leq F(y)$.

And $F(y) \in A(y_o) \Rightarrow y_o \leq F(y) \Rightarrow y_o * F(y) = o$. So above inequality becomes $D_F(x * y) \leq o \Rightarrow D_F(x * y) = o$ (1). As D_F is also a right F-derivation, So for all $x \in A(x_o)$, $y \in A(y_o)$,

$$D_F(x * y) = (F(x) * D_F(y)) \land (F(y) * D_F(x))$$

$$D_F(x * y) = (F(y) * D_F(x)) * ((F(y) * D_F(x)) * (F(x) * D_F(y)))$$

(since $x \land y = y * (y * x)$)

$$\leq F(x) * D_F(y) \tag{2} (using 1.2)$$

Since D_F is both right and left F-derivation. So from (1) and (2), it follows that

$$o \leq F(x) * D_F(y)$$

$$\Rightarrow o * F(x) \le (F(x) * D_F(y)) * F(x)$$
 (using 1.8)

$$\Rightarrow o * F(x) \le (F(x) * F(x)) * D_F(y)$$
 (using 1.7)

$$\Rightarrow o * F(x) \le o * D_F(y)$$
 (using 1.3)

$$\Rightarrow o * (o * D_F(y)) \le o * (o * F(x)) = F(x_o)$$
 (using 1.8 and 1.18)

Since $F(x_o) \in I_x$, therefore $F(x_o)$ is an initial point. Thus above inequality becomes

$$o*(o*D_F(y)) = F(x_o) \Rightarrow F(x_o) \le D_F(y)$$
 (using 1.2)

By 1.11 both $D_F(y)$ and $F(x_o)$ belong to the same branch of X. Since $F(x_o) \in A(x_o)$, therefore $D_F(y) \in A(x_o)$. This completes the proof.

5. Regular F-Derivations

In this section we characterize regular F-derivations of BCI-algebras.

Proposition 5. Every F-derivation of a BCK-algebra is regular, where F is an endomorphism of X.

Proof: Let D_F be a F-derivation a BCK-algebra X. Since D_F is a F-derivation of X, therefore D_F is a left F-derivation as well as right F-derivation. When D_F is a right F-derivation, then

$$D_F(o) = D_F(o * o) = (F(o) * D_F(o)) \wedge (F(o) * D_F(o)) = F(o) * D_F(o)$$

$$When \ D_F is \ a \ left \ F\text{-}derivation, \ then$$
(1)

$$D_F(o) = D_F(o * o) = (D_F(o) * F(o)) \wedge (D_F(o) * F(o)) = D_F(o) * F(o)$$
Since D_F is a F-derivation, therefore from (1) and (2) it follows that

$$F(o) * D_F(o) = D_F(o) = D_F(o) * F(o) \Rightarrow o * DF(o) = D_F(o) * o \Rightarrow o = D_F(o)$$

which implies D_F is regular. This completes the proof.

Theorem 6. Let D_F be a regular F-derivation of a BCI-algebra X. Then $D_F(x)$ and F(x) belong to the same branch of X and $D_F(x) = F(x)$. **Proof:** Since D_F be a regular F-derivation, therefore $D_F(o) = o$. Since D_F is a F-derivation of X, therefore D_F is a left F-derivation as well as right F-derivation. When D_F is a right F-derivation,

$$o = D_F(o) = D_F(x*x) = (F(x)*D_F(x)) \land (F(x)*D_F(x)) = F(x)*D_F(x)$$

$$\Rightarrow F(x) \le D_F(x)$$
(1)

Also when D_F is a left F-derivation,

$$o = D_F(o) = D_F(x*x) = (D_F(x)*F(x)) \land (D_F(x)*F(x)) = D_F(x)*F(x)$$

$$\Rightarrow D_F(x) \le F(x) \tag{2}$$

Because of 1.11, from inequalities (1) and (2), it follows $D_F(x)$ and F(x) belong to the same branch of X. Since D_F is F-derivation, therefore it is left as well as right F-derivation, therefore by property 1.4, from (1) and (2), it follows: $D_F(x) = F(x)$.

Note that the converse of above theorem is not true (see example 3).

Theorem 7. Let D_F be a self map and $A(x_o)$ be any branch of a BCI-algebra X. If for any $x \in A(x_o)$, $D_F(x) = F(x_o)$, then D_F is a regular left F-derivation.

Proof Let D_F be a self map and $A(x_o)$ be any branch of a BCI-algebra X. According to given condition for any $x \in A(x_o)$, $D_F(x) = F(x_o)$ (1)

For $x \in A(x_o)$, $x_o \le x \Rightarrow x_o * x = o$. By 1.12 for x_o , $x \in A(x_o)$, $x_o * x = o$ and $x * x_o \in M$. So, for some $m \ne o \in M = A(o)$, $x * x_o = m$, otherwise, $x_o * x = o = x * x_o \Rightarrow x = x_o$, a contradiction. Also by 1.14 for $x_o \in A(o)$, $x_o \in A(o)$, x

Now for $x, y \in X$ following two cases arise:

Case 1:Both x and y belongs to the same branch of X.

Case 2:x and y belongs to different branches of X.

Case 1: Let $x, y \in A(x_o)$. So, $x_o \le x$ and $x_o \le y$. Then by 1.13, $x * y \in A(o * o) = A(o) = M$. So using (1),

$$D_{F}(x * y) = F(o) = o$$

$$Also x_{o} \leq y \Rightarrow x_{o} * y = o$$

$$Further o = F(o) = F(x_{o} * x) = F(x_{o}) * F(x)$$

$$And o = F(o) = F(x_{o} * y) = F(x_{o}) * F(y)$$

$$Now$$

$$(D_{F}(x) * F(y)) \wedge (D_{F}(y) * F(x)) = (F(x_{o}) * F(y)) \wedge (F(x_{o}) * F(x)) \text{ (using 1)}$$

$$= o \wedge o = o$$

$$i.e$$

$$(D_{F}(x) * F(y)) \wedge (D_{F}(y) * F(x)) = o = D_{F}(x * y)(x_{o} * y_{o})$$

$$(using 2)$$

$$which implies D_{F} \text{ is a left derivation.}$$

Case 2:Let $x \in A(x_o)$ and $y \in A(y_o)$. Then by 1.15, $x * y \in A(x_o * y_o)$. So, using (1)

$$D_F(x*y) = F(x_o*y_o)$$

$$Now$$
(4)

$$(D_{F}(x) * F(y)) \wedge (D_{F}(y) * F(x)) = (F(x_{o}) * F(y)) \wedge (F(y_{o}) * F(x))$$

$$= (F(y_{o}) * F(x)) * ((F(y_{o}) * F(x)) * (F(x_{o}) * F(y)))$$

$$\leq F(x_{o}) * F(y) = F(xo * y) \qquad (Since F is an endomorphism)$$

$$= F(x_{o} * y_{o}) \qquad (using 1.14)$$

Since for $x_o, y_o \in I_x, x_o * y_o \in I_x$, therefore by 1.16, $F(x_o, y_o) \in I_x$. So $F(x_o, y_o)$ is an initial element. Thus it follows that

$$(D_F(x) * F(y)) \wedge (D_F(y) * F(x)) = F(xo * yo)$$

$$\Rightarrow (D_F(x)*F(y)) \land (D_F(y)*F(x)) = D_F(x*y)$$
 (using 4)

which implies D_F is a left F-derivation. Obviously D_F is regular. This completes the proof.

Proposition 8. Let D_F be a self map of a BCI-algebra X. Then the following hold:

- (i) If D_F is a right F-derivation, then $F(x) * D_F(x) = F(y) * D_F(y)$
- (ii) If D_F is a left F-derivation, then $D_F(x) * F(x) = D_F(y) \wedge F(y)$.

Proof: (i) Let $x, y \in X$. Then

$$D_F(o) = DF(x * x) = (F(x) * DF(x)) \land (F(x) * D_F(x)) = F(x) * D_F(x)$$

Similarly, $D_F(o) = F(y) * D_F(y)$. Thus it follows $F(x) * D_F(x) = F(y) * D_F(y)$.

(ii) Let $x, y \in X$. Then

$$D_F(o) = D_F(x * x) = (D_F(x) * F(x)) \wedge (D_F(x) * F(x)) = D_F(x) * F(x)$$

Similarly, $D_F(o) = D_F(y) * F(y)$. Thus it follows $D_F(x) * F(x) = D_F(y) \wedge F(y)$.

Proposition 9. Let D_F be a self map of a BCI-algebra X. Then the following hold:

- (i) If D_F is a right F-derivation, then $D_F(x) = D_F(x) \wedge F(x)$.
- (ii) If D_F is a left F-derivation, then $D_F(x) = D_F(x) \wedge D_F(o)$.

Proof: (i) Let $x \in X$. Then

$$D_F(x) = D_F(x*o) = (F(x)*D_F(o)) \land (F(o)*D_F(x))$$

$$= (F(o)*D_F(x))*((F(o)*D_F(x))*(F(x)*D_F(o)))$$

$$\leq F(x)*D_F(o) = F(x)*(F(x)*D_F(x)) \leq D_F(x)$$

Because of property 1.4, $D_F(x) = F(x) * (F(x) * D_F(x))$ which implies that $D_F(x) = D_F(x)$.

(ii) Let
$$x \in X$$
. Then

$$D_{F}(x) = D_{F}(x*o) = (D_{F}(x)*F(o)) \land (D_{F}(o)*F(x))$$

$$= D_{F}(x) \land (D_{F}(o)*F(x))$$

$$= (D_{F}(o)*F(x))*((D_{F}(o)*F(x))*D_{F}(x))$$

$$= (D_{F}(o)*F(x))*((D_{F}(o)*D_{F}(x)))*F(x))$$

$$\leq D_{F}(o)*(D_{F}(o)*D_{F}(x)) \leq D_{F}(x) \qquad (using 1.9)$$

Because of property (4), $D_F(x) = D_F(o) * (D_F(o) * D_F(x))$ which implies that $D_F(x) = D_F(x) \wedge D_F(o)$.

Proposition 10. Let D_F be a right F-derivation of a BCI-algebra X. Then the following hold:

- (i) If D_F is a right F-derivation, then $D_F(x) = F(x)$.
- (ii) If D_F is a regular left F-derivation, then $D_F(x) \in I_x$.

Proof: (i) Using proposition 9,(i),

$$D_F((x) = D_F((x) \land F(x) = F(x) * (F(x) * D_F((x)) = F(x) * D_F(o) = F(x)$$

(ii) Using proposition 9, (ii),

$$D_F(x) = D_F(x) \land D_F(o) = D_F(x) \land o = o * (o * D_F(x)) \Rightarrow D_F(x) \in I_x$$

Theorem 11. Let D_F be a right F-derivation of a BCI-algebra X. Then the following hold:

- (i) $D_F(x) \in I_x$, for all $x \in X$.
- (ii) $F(y) * (F(y) * D_F(x)) = D_F(x)$, for all $x \in X$.
- (iii) $D_F(x) * F(y) = o * (F(y) * D_F(x)), \text{ for all } x, y \in X.$
- (iv) $D_F(x) * F(y) \in I_x$, for all $x, y \in X$.

Proof: (i) Let $x \in X$. Then

is an initial point so above inequality becomes $D_F(x) = o*(o*(F(x)*D_F(o)))$.

Thus it follows $D_F(x) \in I_x$.

(ii) Because of property (1.2), $F(y) * (F(y) * D_F(x)) \le D_F(x)$. From (i), it follows $D_F(x) \in I_x$, therefore $D_F(x)$ is an initial element. So, above inequality implies $F(y) * (F(y) * D_F(x)) = D_F(x)$. (iii) Using (ii),

$$F(y) * (F(y) * D_F(x)) = D_F(x)$$

$$\Rightarrow (F(y) * (F(y) * D_F(x)) * F(y) = D_F(x) * F(y)$$

$$\Rightarrow (F(y) * F(y)) * (F(y) * D_F(x)) = D_F(x) * F(y)$$

$$\Rightarrow o * (F(y) * D_F(x)) = D_F(x) * F(y)$$
(using 1.7)

(iv) Since $F(y) * D_F(x) \in X$, therefore by 1.15, $o * (F(y) * D_F(x)) \in I_x$. Hence $D_F(x) * F(y) \in I_x$.

Theorem 12. A self map D_F of a BCI-algebra X defined as $D_F(x) = o * (o * F(x)) = F_x$, for all $x \in X$, is a left F- derivation of X, where F is an endomorphism of X.

Proof: Let D_F be a self map of a BCI-algebra X, where F is an endomorphism of X. defined as follows:

$$D_F(x) = o*(o*F(x)) = F_x \tag{1}$$

for all $x \in X$. As for $x, y \in X$, $x * y \in X$, therefore $D_F(x * y) = o * (o * F(x * y)) = F_{x*y}$ which implies that

$$D_F(x*y) = Fx*Fy \tag{2}$$

Now

$$(D_{F}(x) * F(y)) \wedge (D_{F}(y) * F(x))$$

$$= (F_{x} * F(y)) \wedge (F_{y} * F(x)) \qquad (using 1)$$

$$= (F_{y} * F(x)) * ((F_{y} * F(x)) * (F_{x} * F(y)) \qquad (since x \wedge y = y * (y * x))$$

$$\leq F_{x} * F(y) \qquad (using 1.2)$$

$$\Rightarrow (F_{x} * F(y)) \wedge (F_{y} * F(x)) * (F_{x} * Fy) \leq (F_{x} * F(y)) * (F_{x} * Fy) \qquad (using 1.8)$$

$$\leq F_{y} * F(y) \qquad (using 1.1)$$

$$\Rightarrow (F_{x} * F(y)) \wedge (F_{y} * F(x)) * (F_{x} * F_{y}) \leq o \qquad (since Fy * F(y) = o)$$

$$\Rightarrow (F_{x} * F(y)) \wedge (F_{y} * F(x)) * (F_{x} * Fy) = o \qquad (using 1.5)$$

$$\Rightarrow (F_{x} * F(y)) \wedge (F_{y} * F(x)) * (F_{x} * F_{y}) \leq o \qquad (using 1.5)$$

Because of 1.17, (i) $F_x * F_y \in I_x$, therefore $F_x * F_y$ is an initial element. Thus it follows that

$$(F_x * F(y)) \wedge (F_y * F(x)) = F_x * F_y$$

$$\Rightarrow (D_F(x) * F(y)) \wedge (D_F(y) * F(x)) = F_x * F_y = D_F(x * y) \qquad (using 2)$$
 which implies that D_F is a left F-derivation.

Theorem 13. Let D_F be a F-derivation of a commutative BCI-algebra X, where F is an endomorphism of X. Then $x \leq y$ implies $D_F(x)$ and $D_F(y)$ belong to the same branch of X.

Proof:Let D_F be a F-derivation of a commutative BCI-algebra X, where F is an endomorphism of X. Since X is a commutative BCI-algebra, therefore $x \leq y \Rightarrow y * (y * x) = x$. So, when D_F is a left F-derivation,

$$D_{F}(x) = D_{F}(y * (y * x)) = (D_{F}(y) * F(y * x)) \land (D_{F}(y * x) * F(y))$$

$$= (D_{F}(y * x) * F(y)) * ((D_{F}(y * x) * F(y)) * (D_{F}(y) * F(y * x))$$

$$\leq (D_{F}(y) * F(y * x)) \Rightarrow D_{F}(x) \leq D_{F}(y) * (F(y) * F(x))$$
(since F is an endomorphism)

Since $x \leq y \Rightarrow x * y = o$, therefore $o = F(o) = F(x * y) = F(x) * F(y) \Rightarrow F(x) \leq F(y)$. By 1.12 F(x) * F(y) and $F(y) * F(x) \in M$. As F(x) * F(y) = o, so $F(y) * F(x) \neq o$, otherwise because of property 1.4, $F(x) * F(y) = o = F(y) * F(x) \Rightarrow F(x) = F(y)$, a contradiction. Thus there exists some $m \neq o \in M$ such that F(y) * F(x) = m. Hence inequality (A) becomes

$$D_{F}(x) \leq D_{F}(y) * m \Rightarrow D_{F}(x) * D_{F}(y) \leq (D_{F}(y) * m) * D_{F}(y) \quad (using 1.8)$$

$$\Rightarrow D_{F}(x) * D_{F}(y) \leq (D_{F}(y) * D_{F}(y)) * m \quad (using 1.7)$$

$$\Rightarrow D_{F}(x) * D_{F}(y) \leq o * m \quad (using 1.3)$$

$$\Rightarrow D_{F}(x) * D_{F}(y) \leq o \quad (since m \in M)$$

$$\Rightarrow D_{F}(x) * D_{F}(y) = o \quad (using 1.5)$$

which shows that $D_F(x) \leq D_F(y)$. Because of 1.11, it follows $D_F(x)$ and $D_F(y)$ belong to the same branch of X. This completes the proof.

Definition: Let X be a BCI-algebra. Define Ker $D_F = \{x \in X : D_F(x) = o, forall F - derivations D_F\}.$

Proposition 14. Let D_F be a F-derivation of a BCI-algebra X, where F is an endomorphism of X. Then $Ker\ D_F$ is a subalgebra of X.

Proof: Let $x, y \in KerD_F$. Then $D_F(x) = o$ and $D_F(y) = o$. As D_F is a F-derivation of a BCI-algebra X. Therefore D_F is both right as well as left F-derivation of X. When D_F is a right F-derivation of X, then

$$D_F(x * y) = (F(x) * D_F(y)) \land (F(y) * D_F(x)) = (F(x) * o) \land (F(y) * o)$$

$$= F(x) \land (F(y) = F(y) * ((F(y) * F(x)) \le F(x)$$

As D_F is a regular F-derivation therefore by theorem 6, $F(x) = D_F(x)$. But $D_F(x) = o$. So above inequality becomes $D_F(x * y) \leq o$. So $D_F(x * y) = o$. Thus it follows $x * y \in KerD_F$. Also when D_F is a left F-derivation of X, then

$$D_F(x * y) = (D_F(x) * F(y)) \land (D_F(y) * F(x)) = (o * F(y)) \land (o * F(x))$$

= $(o * F(x)) * (o * F(x)) * (o * F(y))) \le o * F(y)$

As D_F is a regular F-derivation therefore by theorem 5.1, $F(y) = D_F(y)$. But $D_F(y) = o$. So above inequality becomes $D_F(x * y) \le o$. So $D_F(x * y) = o$. Thus it follows $x * y \in KerD_F$. Hence $KerD_F$ is a subalgebra of X. This completes the proof.

Proposition 15. The left-right F-derivation (briefly (l, r)-F-derivation) of a p-semisimple BCI-algebra is a left F-derivation of X, where F is an endomorphism of X.

Proof: Let $x, y \in X$ and D_F be its left-right f-derivation. Then

$$D_{F}(x * y) = (D_{F}(x) * F(y)) \wedge (F(y) * D_{F}(y))$$

$$= (F(y)*D_{F}(y))*((F(y)*D_{F}(y))*(D_{F}(x)*F(y)))$$

$$\leq D_{F}(x)*F(y)$$

$$D_{F}(x * y) = D_{F}(x) * F(y) \qquad (using 1.10, iii)$$

$$= (D_{F}(y) * F(x)) * ((D_{F}(y) * F(x)) * (D_{F}(x) * F(y))) \qquad (using 1.10, iv)$$

$$= (D_{F}(x)*F(y)) \wedge (D_{F}(y)*F(x))$$

which implies D_F is a left F-derivation of X.

Proposition 16. The right-left F-derivation (briefly (r, l)-F-derivation) of a p-semisimple BCI-algebra is a right F-derivation of X, where F is an endomorphism of X.

Proof: Let $x, y \in X$ and D_F be its right-left f-derivation. Then

$$D_{F}(x*y) = (F(x)*D_{F}(y)) \wedge (D_{F}(x)*F(y))$$

$$= (D_{F}(x)*F(y))*((D_{F}(x)*F(y))*(F(x)*D_{F}(y)))$$

$$\leq F(x)*D_{F}(y) \qquad (using 1.2)$$

$$D_F(x*y) = F(x)*D_F(y)$$
 (using 1.10, iii)
= $(F(y)*D_F(x))*((F(y)*D_F(x))*(F(x)*D_F(y)))$ (using 1.10, iv)
= $(F(x)*D_F(y))\land(F(y)*D_F(x))$
which implies D_F is a right F-derivation of X.

References

- [1] H.E.Bell and L.C.Kappe: Rings ion which derivations satisfy certain algebraic Conditions, Acta Math. Hungar, **53**(3-4), 1989, 339-346.
- [2] H.E. Bell and G.Mason: On derivation in near rings and near fields, North Holland, Math. Studies 137(1987), 31-35.
- [3] S.A. Bhatti, M.A. Chaudhry and B. Ahmad: On classification of BCI- algebras, Math. Japonica, **34**(1989), 865-876.
- [4] S.A. Bhatti, M.A. Chaudhry: Ideals in BCI algebras, INT. J. MATH. EDUC.SCI.TECHNOL, 1990, Vol. 21, No. 4, 637-643.
- [5] M. Daoje: BCI-algebras and abelian groups, Math. Japonica, 32, No. 5 (1987), 693-696.
- [6] Q.P. Hu and K. Isèki: On BCI-algebras satisfying $(x^*y)^*z = x^*(y^*z)$, Math. Seminar Notes, Vol. 8, (1980), 553-555.
- [7] Farhat Nisar and S.A. Bhatti: A note on BCI-algebras of order 5, PUJM, Vol. 38(2006), pp 15-37.
- [8] Farhat Nisar: Characterization of f-derivations of BCI-algebras, EAMJ, Vol 25, March 2009,pp 69-87. in EAMJ, Vol 25, March 2009, Korea)
- [9] K. Isèki and S. Tanaka: An introduction to the theory of BCK- algebras, Math.Japonica, 23(1978), 1-26.
- [10] K. Isèki: On BCI-algebras, Math. Seminar notes, 8 (1980), 125-130.
- [11] K.Kaya: Prime rings with a-derivations Hacettepe Bull. Master. Sci. Eng 16-17, (1987-1988).
- [12] J. Meng and X.L. Xin: Commutative BCI-algebras, Math. Japonica, 37, No. 3 (1992), 569-572, 569-572.
- [13] Y. B. Jun and X.L. Xin: On derivations of BCI-algebras, Information Sciences 159, (2004), 167-176.
- [14] E. Posner: Derivations in prime rings, Proc. An. Math. Soc. 8, (1957), 1093-1100.
- [15] L. Tiande and X. Changchung: p-radical in BCI-algebras, Math. Japonica, 30(1985), 511-517
- [16] J. Zhan and Y.L. Liu: On f-derivations of BCI-algebras, IJMMS, 2005:11(2005) 1675-1684.