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EXACT ANALYTIC SOLUTIONS FOR THE FLOW OF
SECOND GRADE FLUID BETWEEN TWO

LONGITUDINALLY OSCILLATING CYLINDERS

AMIR MAHMOOD1, NAJEEB ALAM KHAN2, CORINA FETECAU3,
MUHAMMAD JAMIL4, QAMMAR RUBBAB5

Abstract. The velocity field and associated shear stress corresponding
to the longitudinal oscillatory flow of a second grade fluid, between two
infinite coaxial circular cylinders, are determined by means of Laplace and
Hankel transforms. The flow is due to both of the cylinders that at t = 0+

suddenly begin to oscillate along their common axis with different angular
frequencies of their respective velocities. The solutions for the motion
between the cylinders, when one of them is at rest, can be obtained from
our general solutions. Furthermore, the corresponding solutions for the
similar flow of Newtonian fluid are also obtained as limiting case. The
flows of second grade and Newtonian fluids are compared graphically by
plotting their velocity profiles.
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1. Introduction

From the engineering and industrial point of view, the flows in the neighbor-
hood of spinning or oscillating bodies are of interest to both academic workers
and industry. Among them, the flows between oscillating cylinders are some
of the most important and interesting problems of motion. As early as 1886,
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Stokes [1] established an exact solution for the rotational oscillations of an
infinite rod immersed in a classical linearly viscous fluid. Casarella and Laura
[2] obtained an exact solution for the motion of the same fluid due to both
longitudinal and torsional oscillations of the rod. Later, Rajagopal [3] found
two simple but elegant solutions for the flow of a second grade fluid induced by
the longitudinal and torsional oscillations of an infinite rod. These solutions
have been already extended to Oldroyd-B fluids by Rajagopal and Bhatnagar
[4]. More interesting results have been obtained by Hayat et al [5].

Recently, Erdogan [6] provided two starting solutions for the motion of a
linearly viscous fluid due to the cosine and sine oscillations of a flat plate.
He used the Laplace transform and found that the steady-state flows are set
up with the same frequency as the boundary velocity. The extension of these
solutions to non-Newtonian fluids has been achieved by Fetecau and Fetecau
[7], Hayat et al [8] and Aksel et al [9]. Exact solutions for the motion of
second grade fluid and a Maxwell fluid due to the longitudinal and torsional
oscillations of a single circular cylinder have been recently obtained by Fetecau
and Fetecau [10] and Vieru et al [11], while exact analytic solutions of velocity
field and associated shear stress for the motion of fractional Maxwell fluid
between two cylinders, when both of them are oscillating longitudinally, have
been obtained by Mahmood at al [16].

As far as the knowledge of author is concerned, no attempt is made to
achieve exact analytic solutions corresponding to the longitudinal oscillatory
flow of second grade fluid in the annular region between two cylinders, when
both of them are oscillating sinusoidally along their common axis. So the aim
of this note is to consider the longitudinal oscillatory motion of second grade
fluid between two infinite coaxial circular cylinders, oscillating along their
common axis with given constant angular frequencies Ω1 and Ω2. Velocity field
and associated tangential stress of the motion are determined by using Laplace
and Hankel transforms. The solutions that have been obtained satisfy the
governing differential equation and all imposed initial and boundary conditions
as well. The solutions corresponding to the Newtonian fluid, performing the
same motion, are also determined as special case of our general solutions.
The respective solutions for the oscillatory motion of the second grade fluid
between cylinders, when one of them is at rest, are also obtained from our
general solutions. Furthermore, at the end of this note, the velocity profiles
as well as the time variation of velocity corresponding to the oscillatory flow
of second grade fluid and that of Newtonian fluid are plotted and discussed.

2. Longitudinal Oscillatory Flow between Two Coaxial
Cylinders

Among the many constitutive assumptions that have been employed to
study non-Newtonian fluid behavior, one class that has gained support from
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both the experimentalists and the theoreticians is that of Rivlin-Ericksen fluids
of second grade. The Cauchy stress tensor T for such fluids is given by [12,
13].

T = −pI + µA1 + α1A2 + α2A2
1 , (1)

where −p is the pressure, I is the unit tensor, µ is the coefficient of viscosity,
α1 and α2 are the normal stress moduli and A1 and A2 are the kinematic
tensors defined through

A1 = gradv + (gradv)T , A2 =
dA1

dt
+ A1(gradv) + (gradv)TA1 . (2)

In the above relations, v is the velocity, d/dt denotes the material time deriva-
tive and grad denotes the gradient operator. Since the fluid is incompressible,
it can undergo only isochoric motions and hence

div v = trA1 = 0 . (3)

If this model is required to be compatible with thermodynamics, then the
material moduli must meet the following restrictions

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0 . (4)

The sign of the material moduli α1 and α2 has been the subject of much
controversy. A comprehensive discussion on the restrictions given in (4), as
well as a critical review on the fluids of differential type, can be found in the
extensive work of Dunn and Rajagopal [14].

2.1. Mathematical Formulation and Governing Equation of Problem.
Suppose that an incompressible second grade fluid is situated in the annular
region of two infinite coaxial circular cylinders of radii R1 and R2(> R1). At
time t = 0, the fluid and cylinders are at rest. At time t = 0+, the cylinders
suddenly begin to oscillate along their common axis (r = 0) with the velocities
V1 sin(Ω1t) and V2 sin(Ω2t), where Ω1 is angular frequency of velocity of the
inner cylinder and Ω2 is that of the outer cylinder. Owing to the shear, the
fluid between cylinders is gradually moved, its velocity being of the form

v = v(r, t) = v(r, t) ez , (5)

where ez is the unit vector along z-axis. For such flows the constraint of
incompressibility is automatically satisfied.

Introducing (5) into the constitutive equation (1), we find that

τ(r, t) = (µ + α1
∂

∂t
)
∂v(r, t)

∂r
, (6)
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where τ(r, t) = Srz(r, t) is the shear stress. In the absence of body forces and
a pressure gradient in the axial direction, the balance of the linear momentum
leads to the relevant equation

ρ
∂v(r, t)

∂t
=

(
∂

∂r
+

1
r

)
τ(r, t) . (7)

Eliminating τ(r, t) between Eqs. (6) and (7), we get the governing differential
equation of our problem, as follows

∂v(r, t)
∂t

= (ν + α
∂

∂t
)
(

∂2

∂r2
+

1
r

∂

∂r

)
v(r, t) ; r ∈ (R1, R2) , t > 0 , (8)

where α = α1/ρ and ν = µ/ρ is the kinematic viscosity of the fluid (ρ being
its constant density).

The appropriate initial and boundary conditions are

v(r, 0) = 0 ; r ∈ (R1, R2) , (9)

v(R1, t) = V1 sin(Ω1t) , v(R2, t) = V2 sin(Ω2t) for t > 0 , (10)

where V1, V2, Ω1 and Ω2 are constants. To solve this problem, we shall use as
in [16 - 18], the Laplace and Hankel transforms.

2.2. Calculation of the Velocity Field. Applying the Laplace transform
to Eqs. (8) - (10), we obtain the ordinary differential equation

∂2v(r, q)
∂r2

+
1
r

∂v(r, q)
∂r

− q

αq + ν
v(r, q) = 0 ; r ∈ (R1, R2) , (11)

where q is the parameter of Laplace transform and the image function v(r, q)
of v(r, t) has to satisfy the conditions

v(R1, q) =
V1Ω1

q2 + Ω2
1

, v(R2, q) =
V2Ω2

q2 + Ω2
2

. (12)

In the following, let us denote by

vn(q) =
∫ R2

R1

rv(r, q)B0(r rn)dr ; n = 1, 2, 3, · · · , (13)

the finite Hankel transforms of v(r, q), where rn are the positive roots of the
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transcendental equation B0(R1 r) = 0 and

B0(r rn) = J0(r rn)Y0(R2 rn)− J0(R2 rn)Y0(r rn) . (14)

In the above relation, J0(·) and Y0(·) are the Bessel functions of order zero of
first and second kind, respectively. Applying the finite Hankel transform (13)
to Eq. (11) and taking into account the conditions (12), we find that

2V2Ω2

π(q2 + Ω2
2)
− 2V1Ω1

π(q2 + Ω2
1)

J0(R2rn)
J0(R1rn)

− r2
nvn(q)− q

αq + ν
vn(q) = 0 , (15)

or equivalently,

vn(q) =
2V2Ω2(αq + ν)

π(q2 + Ω2
2)(αr2

nq + q + νr2
n)

− 2V1Ω1(αq + ν)
π(q2 + Ω2

1)(αr2
nq + q + νr2

n)
J0(R2rn)
J0(R1rn)

. (16)

In order to determine v(r, q), we firstly write vn(q) under the suitable form

vn(q) =
2V2Ω2

πr2
n(q2 + Ω2

2)
− 2V1Ω1

πr2
n(q2 + Ω2

1)
J0(R2rn)
J0(R1rn)

− 2V2Ω2q

πr2
n(q2 + Ω2

2)(αr2
nq + q + νr2

n)

+
2V1Ω1q

πr2
n(q2 + Ω2

1)(αr2
nq + q + νr2

n)
J0(R2rn)
J0(R1rn)

, (17)

and use the inverse Hankel transform formula [15]

v(r, q) =
π2

2

∞∑

n=1

r2
nJ2

0 (R1 rn)B0(r rn)
J2

0 (R1 rn)− J2
0 (R2 rn)

vn(q) , (18)

and (A1) from appendix, we get v(r, q) in the following form

v(r, q) =
V1Ω1

q2+Ω2
1
ln(R2/r) + V2Ω2

q2+Ω2
2
ln(r/R1)

ln(R2/R1)
− π

∞∑

n=1

J0(R1rn)B0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)

×
[
V2Ω2J0(R1rn)

q

(q2 + Ω2
2)(αr2

nq + q + νr2
n)

−V1Ω1J0(R2rn)
q

(q2 + Ω2
1)(αr2

nq + q + νr2
n)

]
. (19)

Finally, by applying inverse Laplace transform to v(r, q) and using (A2), we
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get the velocity field in the following form

v(r, t) =
V1 ln(R2/r) sin(Ω1t) + V2 ln(r/R1) sin(Ω2t)

ln(R2/R1)

−π
∞∑

n=1

J0(R1rn)B0(rrn)
(1 + αr2

n)[J2
0 (R1rn)− J2

0 (R2rn)]

×
[
V2Ω2J0(R1rn)

∫ t

0
cosΩ2(t− τ) exp

( −νr2
nτ

1 + αr2
n

)
dτ

−V1Ω1J0(R2rn)
∫ t

0
cosΩ1(t− τ) exp

( −νr2
nτ

1 + αr2
n

)
dτ

]
, (20)

or equivalently,

v(r, t) =
V1 ln(R2/r) sin(Ω1t) + V2 ln(r/R1) sin(Ω2t)

ln(R2/R1)

−π
∞∑

n=1

J0(R1rn)B0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)

×
[

V2Ω2J0(R1rn)
ν2r4

n + Ω2
2(1 + αr2

n)2

×
{

νr2
n

(
cos(Ω2t)− exp(

−νr2
nt

1 + αr2
n

)
)

+ Ω2(1 + αr2
n) sin(Ω2t)

}

− V1Ω1J0(R2rn)
ν2r4

n + Ω2
1(1 + αr2

n)2

×
{

νr2
n

(
cos(Ω1t)− exp(

−νr2
nt

1 + αr2
n

)
)

+ Ω1(1 + αr2
n) sin(Ω1t)

}]
. (21)

2.3. Shear Stress Distribution. Applying the Laplace transform to Eq.
(6), we find that

τ(r, q) = (µ + α1q)
∂v(r, q)

∂r
, (22)

where,

∂v(r, q)
∂r

=
1

r ln(R2/R1)

(
V2Ω2

q2 + Ω2
2

− V1Ω1

q2 + Ω2
1

)

+π
∞∑

n=1

rnJ0(R1rn)B̃0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)
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×
[

V2Ω2J0(R1rn)
ν2r4

n + Ω2
2(1 + αr2

n)2

{
νr2

n

(
Ω2

q2 + Ω2
2

− 1

q + νr2
n

1+αr2
n

)
+

Ω2
2(1 + αr2

n)
q2 + Ω2

2

}

− V1Ω1J0(R2rn)
ν2r4

n + Ω2
1(1 + αr2

n)2

{
νr2

n

(
Ω1

q2 + Ω2
1

− 1

q + νr2
n

1+αr2
n

)
+

Ω2
1(1 + αr2

n)
q2 + Ω2

1

}]
. (23)

has been obtained from (21) and (A3), where in above relation

B̃0(rrn) = J1(rrn)Y0(R2rn)− J0(R2rn)Y1(rrn) .

Introducing (23) into (22), applying again the inverse Laplace transform to
the obtained result, we find for the shear stress the expression

τ(r, t) =
1

r ln(R2/R1)

{
µ
[
V2 sin(Ω2t)− V1 sin(Ω1t)

]

+α1

[
V2Ω2 cos(Ω2t)− V1Ω1 cos(Ω1t)

]}

+π
∞∑

n=1

rnJ0(R1rn)B̃0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)

(
J0(R1rn)g2 − J0(R2rn)g1

)
, (24)

where, in above Eq. (24)

gm =
VmΩm

ν2r4
n + Ω2

m(1 + αr2
n)2

{[
µνr2

n + α1Ω2
m(1 + αr2

n)
]
cos(Ωmt)

+
[
µΩm(1 + αr2

n)− α1νΩmr2
n

]
sin(Ωmt)

+
[ α1ν

2r4
n

1 + αr2
n

− µνr2
n

]
exp(

−νr2
nt

1 + αr2
n

)
}

; m = 1, 2.

3. Limiting Case

Making α → 0 (equivalently α1 → 0) into Eqs. (21) and (24), we obtain
the velocity field

vN (r, t) =
V1 ln(R2/r) sin(Ω1t) + V2 ln(r/R1) sin(Ω2t)

ln(R2/R1)

−π
∞∑

n=1

J0(R1rn)B0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)
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×
[
V2Ω2J0(R1rn)

ν2r4
n + Ω2

2

{
νr2

n

(
cos(Ω2t)− exp(−νr2

nt)
)

+ Ω2 sin(Ω2t)
}

− V1Ω1J0(R2rn)
ν2r4

n + Ω2
1

{
νr2

n

(
cos(Ω1t)− exp(−νr2

nt)
)

+ Ω1 sin(Ω1t)
}]

, (25)

and associated shear stress

τN (r, t) =
µ
[
V2 sin(Ω2t)− V1 sin(Ω1t)

]

r ln(R2/R1)

+µπ
∞∑

n=1

rnJ0(R1rn)B̃0(rrn)
J2

0 (R1rn)− J2
0 (R2rn)

×
[
V2Ω2J0(R1rn)

ν2r4
n + Ω2

2

{
νr2

n

(
cos(Ω2t)− exp(−νr2

nt)
)

+ Ω2 sin(Ω2t)
}

− V1Ω1J0(R2rn)
ν2r4

n + Ω2
1

{
νr2

n

(
cos(Ω1t)− exp(−νr2

nt)
)

+ Ω1 sin(Ω1t)
}]

, (26)

corresponding to the Newtonian fluid, performing the same motion.

4. Concluding Remarks

Our purpose, in this paper, was to establish exact solutions for the velocity
field and associated shear stress corresponding to the flow of a second grade
fluid between two infinite coaxial circular cylinders, by using Laplace and
Hankel transforms. The motion of fluid was due to the simple harmonic sine
oscillations of both cylinders along their common axis, with different angular
frequencies Ω1 and Ω2 of their velocities. It is important to point out that
the velocity field and the shear stress for the oscillatory motion between the
cylinders, when one of them is at rest, can be obtained from our general solu-
tions by making V1 = 0, V2 = V and Ω2 = Ω (when inner cylinder is at rest)
or V1 = V , V2 = 0 and Ω1 = Ω (when outer cylinder is at rest). For instance,
the velocity field for the flow of second grade fluid, when inner cylinder is at
rest and outer cylinder is oscillating longitudinally, is given by (from Eq. (21))

v(r, t) =
V ln(r/R1) sinΩt

ln(R2/R1)
− πV Ω

∞∑

n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

×
νr2

n

(
cosΩt− exp( −νr2

nt
1+αr2

n
)
)

+ Ω(1 + αr2
n) sinΩt

ν2r4
n + Ω2(1 + αr2

n)2
, (27)

The solutions, that have been obtained, satisfy the governing equation and
all imposed initial and boundary conditions and for α → 0 (equivalently α1 →
0) reduce to the similar solutions for Newtonian fluid.
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Figure 1. Velocity profiles for different values of time
t. vSG1(r) for α = 0.005, vSG2(r) for α = 0.001 and
vSG3(r) for α = 0.0002.
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Figure 2. Time variation of velocity at different positions.
vSG1(t) for α = 0.005 and vSG2(t) for α = 0.001.
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Figure 3. Time variation of velocity at different positions.
vSG1(t) for α = 0.005 and vSG2(t) for α = 0.001.

Finally the graphical illustrations are given to show the comparison between
the flow of second grade fluid and that of Newtonian fluid. These graphs also
shows the influence of the parameter α on the velocity v(r, t). In all figures
we have considered R1 = 1, R2 = 4, V1 = 1, V2 = 4, Ω1 = 5, Ω2 = 7 and
ν = 1.1746 × 10−3, while SI units for all the parameters have been chosen.
The roots rn have been approximated by nπ/(R2 −R1) [19].

In Fig. 1, the profiles of the velocity v(r, t), corresponding to the motion of
Newtonian fluid

(
the curves vN(r)

)
and those for second grade fluid

(
the curves

vSG1(r) for α = 0.005, vSG2(r) for α = 0.001 and vSG3(r) for α = 0.0002
)

are
plotted for different values of the time t. Fig. 2 and 3 depict the histories of the
velocity field v(r, t) at the positions r = 1.5, 2, 2.5, 3 and 3.8, for t ∈ [0, 10]
and different values of α. It is clear from all these figures that the curves
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corresponding to the flow of second grade fluid tend to that of Newtonian
fluid, as α become smaller and smaller. This shows the correctness of our
calculi and of the solutions that have been obtained.

Appendix

Some results used in the text:

(A1) The finite Hankel transform of the function

a(r) =
A ln(R2/r) + B ln(r/R1)

ln(R2/R1)

satisfying a(R1) = A and a(R2) = B is

an =
∫ R2

R1

ra(r)B0(rrn)dr =
2B

πr2
n

− 2A

πr2
n

J0(R2rn)
J0(R1rn)

.

In order to prove (A1), we integrate by parts and use the next identities:

∫
J1(u)du = −J0(u), J1(R1rn)Y0(R1rn)− J0(R1rn)Y1(R1rn) =

2
πR1rn

and

J1(R2rn)Y0(R2rn)− J0(R2rn)Y1(R2rn) =
2

πR2rn
if B0(R1rn) = 0 .

(A2) If u1(t) = L−1{u1(q)} and u2(t) = L−1{u2(q)} then

L−1{u1(q)u2(q)} = (u1 ∗ u2)(t) =
∫ t
0 u1(t− s)u2(s)ds =

∫ t
0 u1(s)u2(t− s)ds .

(A3)
d

du
[Y0(u)] = −Y1(u) and

d

du
[J0(u)] = −J1(u) .
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