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DIVISOR PATH DECOMPOSITION NUMBER OF A GRAPH

K. NAGARAJAN1, A. NAGARAJAN2

Abstract. A decomposition of a graph G is a collection Ψ of edge-disjoint
subgraphs H1,H2, . . . , Hn of G such that every edge of G belongs to exactly
one Hi. If each Hi is a path in G, then Ψ is called a path partition or path
cover or path decomposition of G. A divisor path decomposition of a (p, q)-
graph G is a path cover Ψ of G such that the length of all the paths in
Ψ divides q. The minimum cardinality of a divisor path decomposition
of G is called the divisor path decomposition number of G and is denoted
by πD(G). In this paper, we initiate a study of the parameter πD and
determine the value of πD for some standard graphs. Further, we obtain
some bounds for πD and characterize graphs attaining the bounds.

Key words: divisor path, greatest divisor path, divisor path decomposition,
divisor path decomposition number.
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1. Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph
without loops and multiple edges. The order and size of a graph are denoted
by p and q respectively. For terms not defined here we refer to Harary [4].

Let P = (v1, v2, . . . , vn) be a path in a graph G = (V (G), E(G)), with vertex
set V (G) and edge set E(G). The vertices v2, v3, . . . , vn−1 are called internal
vertices of P and v1 and vn are called external vertices of P . The length of a
path is denoted by l(P ). A spider tree is a tree in which it has a unique vertex
of degree 3.

A decomposition of a graph G is a collection of edge-disjoint subgraphs
H1,H2, . . . ,Hr of G such that every edge of G belongs to exactly one Hi. If
each Hi

∼= H, then we say that G has a H-decomposition and we denote it
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by H | G. In this paper we extend this definition to non-isomorphic decom-
position. If each Hi is a path, then it is called a path partition or path cover
or path decomposition of G. The minimum cardinality of a path partition of
G is called the path partition number of G and is denoted by π(G) and any
path partition Ψ of G for which |Ψ| = π(G) is called a minimum path partition
or π-cover of G. The parameter π was studied by Harary and Schwenk [5],
Peroche [9], Stanton et.al., [10] and Arumugam and Suresh Suseela [2].

Various types of path decompositions and corresponding parameters have
been studied by several authors by imposing conditions on the paths in the de-
composition. Some such path decomposition parameters are acyclic graphoidal
covering number [2], simple path covering number [1], 2-graphoidal path cov-
ering number [6] and m-graphoidal path covering number [7]. Another such
decomposition is equiparity path decomposition(EQPPD) which was defined
by K.Nagarajan, A.Nagarajan and I.Sahul hamid [8].

Definition 1.1. [8] An equiparity path decomposition(EQPPD) of a graph
G is a path cover Ψ of G such that the lengths of all the paths in Ψ have the
same parity.

Since for any graph G, the edge set E(G) is an equiparity path decom-
position, the collection PP of all equiparity path decompositions Ψ of G is
non-empty. Let πP (G) = min |Ψ|. Then πP (G) is called the equiparity path
decomposition number of G and any equiparity path decomposition Ψ of G for
which |Ψ| = πP (G) is called a minimum equiparity path decomposition of G or
πP -cover of G. The parameter πP was studied in [8].

If the lengths of all the paths in Ψ are even(odd) then we say that Ψ is an
even (odd) parity path decomposition, shortly EPPD (OPPD).

Remark 1.2. [8] If G is a graph of odd size, then any EQPPD Ψ of a graph
G is an OPPD and consequently πP (G) is odd.

In this paper we define a new path called divisor path of a graph as follows.

Definition 1.3. Let G be a (p, q)-graph with p vertices and q edges and let
P be a path in G. If the length of the path P divides q, then P is called a
divisor path in G.

Note that the edges of a graph are divisor paths. The divisor path of length
l where 1 < l < q is called proper divisor path, otherwise it is called improper
divisor path. So, the edges of a graph are improper divisor paths. Also for a
path, the path itself is a improper divisor path.

Example 1.4. Consider the following graph G.
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Here q = 8. The path (v4, v3, v2, v6, v8) is a divisor path, but the path
(v5, v3, v6, v7) is not a divisor path. Also the path (v1, v2) is an improper divisor
path.

Definition 1.5. If q = d1d2 . . . dk, where di’s are proper divisors of q, then
d = max1≤i≤k{di} is called the greatest divisor of q and is denoted by gd(q).

Definition 1.6. Let {Pi : 1 ≤ i ≤ k} be the family of all the divisor paths of
a graph G. The path of length d = max1≤i≤k l(Pi) is called the greatest divisor
path of G and the length d is denoted by gdpl(G).

Note that the gdpl(G) need not be gd(q).

Example 1.7. Consider the following star graph G.
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Here q = 6. Clearly we see that gd(q) = 3, but gdpl(G) = 2.

Consider the following path decomposition theorems.

Theorem 1.8. [3] For any connected (p, q)-graph G, if q is even, then G has
a P3-decomposition.
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Theorem 1.9. [10] If G is a 3-regular (p, q)-graph, then G is P4 decomposable
and π(G) = q

3 = p
2 .

Theorem 1.10. [10] A complete graph K2n is hamilton path decomposable of
length 2n− 1.

Theorem 1.8 and Theorem 1.9 give path decomposition in which all the
paths are of length 2 and 3 respectively which divide q. Theorem 1.10 gives
path decomposition in which all the paths are of length 2n− 1 which divides
q = n(2n − 1). Thus, we observe that the lengths of all the paths in the
above path decompositions divide q. This observation motivates the following
definition.

Definition 1.11. A divisor path decomposition (DPD) of a graph G is a
path cover Ψ of G such that the lengths of all the paths in Ψ divide q.

Since the edge set E(G) of a graph G is a divisor path decomposition,
the collection PD of all divisor path decompositions of G is non-empty. Let
πD(G) = min{|Ψ| : Ψ ∈ PD}. Then πD(G) is called the divisor path decom-
position number of G and any divisor path decomposition Ψ of G for which
|Ψ| = πD(G) is called a minimum divisor path decomposition of G or πD-cover
of G.

Example 1.12. Consider the following spider tree G.
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Here q = 9 and {(v1, v2, v3, v4), (v4, v5), (v6, v7), (v7, v3), (v3, v8, v9, v10)} forms
a πD-cover so that πD(G) = 5. Note that {(v1, v2, v3, v4, v5), (v6, v7, v3, v8, v9, v10)}
forms a π-cover so that π(G) = 2.

Remark 1.13. Let Ψ = {P1, P2, . . . , Pn} be an DPD of a (p, q)-graph G
such that l(P1) ≤ l(P2) ≤ . . . ≤ l(Pn). Since every edge of G is in exactly

one path Pi, we have
n∑

i=1
l(Pi) = q and hence every DPD of G gives rise to a

partition of a positive integer q into the divisors(not necessarily distinct) of q.
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In this paper we initiate a study of the parameter πD and determine the
value of πD for some standard graphs. Further, we obtain bounds for πD and
characterize graphs attaining the bounds.

2. Main Results

Hereafter, we consider G as a graph, which is not a path. We first present
a general result which is useful in determining the value of πD.

Theorem 2.1. For any DPD Ψ of a graph G, let tΨ =
∑

P∈Ψ

t(P ), where

t(P ) denotes the number of internal vertices of P and let t = max tΨ, where
the maximum is taken over all divisor path decompositions Ψ of G. Then
πD(G) = q − t.

Proof. Let Ψ be any DPD of G.

Then q =
∑

P∈Ψ

|E(P )|

=
∑

P∈Ψ

(t(P ) + 1)

=
∑

P∈Ψ

t(P ) + |Ψ|

= tΨ + |Ψ| .
Hence |Ψ| = q − tΨ so that πD = q − t. ¤

Next we will find some bounds for πD. First, we find a bound for πD in
terms of the size of G.

Theorem 2.2. For any graph G of even size, πD(G) ≤ q
2 .

Proof. It follows from Theorem 1.8 that G has a P3- decomposition, which
is a DPD of G and hence πD(G) ≤ q

2 . ¤
Remark 2.3. The bound given in Theorem 2.2 is sharp. For the cycle C4

and the star K1,n, where n is even, πD = q
2 .

The following problem naturally arises.

Problem 2.4. Characterize graphs of an even size for which πD = q
2 .

Observation 2.5. If G is a graph with odd size q and q ≥ 3, then
πD(G) ≥ 3.

Now, we characterize graphs attaining the extreme bounds.

Theorem 2.6. For a (p, q)-graph G, 1 ≤ πD(G) ≤ q. Also πD(G) = 1 if
and only if G is a path and πD(G) = q if and only if G has no proper divisor
paths.
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Proof. The inequalities are trivial. Further, it is obvious that πD(G) = 1 if
and only if G is a path.

Now, suppose πD(G) = q > 1. Then it follows from Theorem 2.2 that q is
odd. Then G has no proper divisor path of length 2. Suppose G has a proper
divisor path P of length ≥ 3. Then the path P together with the remaining
edges form a DPD(Ψ) of G so that πD(G) ≤ |Ψ| = q− l(P )+1 < q, which is a
contradiction. Thus, G has no proper divisor paths. Converse is obvious. ¤
Corollary 2.7. If q is an odd prime, then πD(G) = q.

Proof. If q is an odd prime, then there is no proper divisor path in G. Hence
the result follows from Theorem 2.6. ¤
Remark 2.8. The converse of the Corollary 2.7 need not be true. For
example, consider the star graph K1,q, where q is an odd composite number.
Note that πD(K1,q) = q .

Theorem 2.9. For any graph G, πD(G) = q − 1 if and only if G ∼= P3.

Proof. Suppose πD(G) = q − 1. If G has a divisor path P with l(P ) ≥ 3,
then the path P together with the remaining edges form a DPD (Ψ) of G so
that πD(G) ≤ |Ψ| = 1 + (q − l(P )) < q − 1, which is a contradiction. Thus,
every divisor path in G is of length 1 or 2. If G has divisor paths of length 1
only, then πD(G) = q, which is a contradiction. So G has at least one divisor
path of length 2. Then q is even and πD(G) ≥ q

2 . From Theorem 2.2 , it
follows that πD(G) = q

2 . By hypothesis, we have q = 2 and hence G ∼= P3.
Converse is obvious. ¤

The following theorems give the lower bound for πD in terms of π and πP .

Theorem 2.10. For any graph G, π(G) ≤ πD(G).

Proof. Since every divisor path decomposition is a path cover, we have
π(G) ≤ πD(G). ¤
Remark 2.11. Equality holds in Theorem 2.10 for the star graph K1,4 in
which π = 2 = πD. However, the inequality is strict. For, consider the
Example 1.12 in which π = 2 < 5 = πD.

Theorem 2.12. For any (p, q)-graph G, πP (G) ≤ πD(G) if q is odd.

Proof. Since q is odd, the divisors of q are odd. If Ψ is a DPD of G, then
the lengths of all the paths in Ψ are odd. Hence Ψ is an OPPD of G. Thus,
every DPD is an OPPD so that πP (G) ≤ πD(G). ¤
Remark 2.13. Equality holds in Theorem 2.12 for the cycle Cp with p odd
and p ∼= 0(mod3) in which πP = 3 = πD. Also the strict inequality holds for
the cycle Cp with p odd prime ≥ 5 in which πP = 3. From Corollary 2.7, it
follows that πD = q ≥ 5 > 3 = πP .
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The following theorem gives the lower bound for πD in terms of the length
of the greatest divisor path.

Theorem 2.14. For any graph G, πD(G) ≥ q
d where d = gdpl(G).

Proof. Let Ψ be a minimum πD-cover of G. Since every edge of G is in
exactly one path in Ψ we have q =

∑
P∈Ψ

|E(P )|. Also |E(P )| ≤ d for each P in

Ψ. Hence q ≤ πDd so that πD(G) ≥ q
d . ¤

Corollary 2.15. If a hamilton path is a divisor path of G, then πD(G) ≥
q

p−1 .

Proof. If a hamilton path is a divisor path, then it is the greatest divisor
path of length p− 1 in G. Then the result follows from Theorem 2.14. ¤

From the above bounds the following problems will naturally arise.

Problem 2.16. Characterize the class of graphs for which (i) πD(G) =
π(G) (ii) πD(G) = q

d (iii) πD(G) = q
p−1 and (iv) πP (G) = πD(G) if q is odd.

Theorem 2.17. Let G be a (p, q)-graph with q = n2 where n is a prime.
Then πD(G) = n2 − kn + k where k is the number of paths of length n.

Proof. Since n is prime, n is the only proper divisor of q. Then we observe
that any DPD Ψ of G contains either divisor paths of length n or edges of
G. Since there are k divisor paths of length n in G, |Ψ| ≥ n2 − kn + k and
so πD(G) ≥ n2 − kn + k. Again, since there are k divisor paths of length n
in G, these k paths and the remaining edges of G form a DPD of G so that
πD(G) ≤ n2 − kn + k and hence πD(G) = n2 − kn + k. ¤

Corollary 2.18. If there are n divisor paths of length n, then πD(G) = n.

In the following theorems, we determine the divisor path decomposition
number of several classes of graphs such as cycles, wheels, stars, cubic graphs
and complete graphs.

Theorem 2.19. For a cycle Cp, πD(Cp) = q
d where d = gdpl(Cp).

Proof. Let Cp = (v1, v2, . . . , vp, v1). Since d divides q, there are q
d divisor

paths of length d in Cp and they form a DPD of Cp. Hence πD(Cp) ≤ q
d . From

Theorem 2.14, it follows that πD(Cp) = q
d . ¤

Theorem 2.20. For the wheel Wp on p vertices, we have

πD(Wp) =





p−1
2 if p is odd,

p
2 if p is even and p ∼= 1(mod3),
p
2 + 1 if p is even and p � 1(mod3).
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Proof. Let V (Wp) = {v1, v2, . . . , vp−1, vp} and
let E(Wp) = {vivi+1 : 1 ≤ i ≤ p− 2}⋃{v1vp−1}

⋃{vpvi : 1 ≤ i ≤ p− 1}. Note
that q = 2(p− 1).
Case (i): p is odd. Then 4 divides q.

Let Ψ =
⋃i= p−3

2
i=1 {(vi+1, vi, vp, v p−1

2
+i, v p+1

2
+i)}

⋃{(v p+1
2

, v p−1
2

, vp, vp−1, v1)}.
Then Ψ is a DPD with |Ψ| = p−1

2 and hence πD(Wp) ≤ p−1
2 . Since every odd

degree vertex of Wp is an end vertex of a path in any path cover of Wp, we
have πD(Wp) ≥ p−1

2 . Thus, πD(Wp) = p−1
2 .

Case (ii): p is even and p ∼= 1(mod3).

Let Ψ = {(v1, v2, . . . , vp−1, vp)}
⋃{(vp−1, v1, vp, v2)}

⋃i= p−2
2

i=1 {(v2i−1, vp, v2i)}.
Then Ψ is a DPD with |Ψ| = p

2 and hence πD(Wp) ≤ p
2 . Since every odd

degree vertex of Wp is an end vertex of a path in any path cover of Wp, we
have πD(Wp) ≥ p

2 . Thus, πD(Wp) = p
2 .

Case (iii): p is even and p � 1(mod3).

Let Ψ = {(v1, v2, . . . , vp−1, vp)}
⋃{(vp−1, v1)}

⋃i= p−2
2

i=1 {(v2i−1, vp, v2i)}. Then Ψ
is a DPD with |Ψ| = p

2 + 1 and hence πD(Wp) ≤ p
2 + 1. Since p is even, 4 does

not divide q and also since p � 1(mod3), 3 does not divide q. So, any DPD
of Wp does not contain the paths of length 3 and 4. It is observed that any
π-cover of Wp must contain at least one path of length either 3 or 4. Thus,
πD(Wp) > π(Wp) = p

2 and so πD(Wp) ≥ p
2 + 1. Hence πD(Wp) = p

2 + 1. ¤
Theorem 2.21. For a 3-regular graph G, πD(G) = p

2 .

Proof. We have q = 3p
2 . It follows from Theorem 1.9 that every 3-regular graph

is P4 decomposable. Also P4’s are divisor paths of G and hence πD(G) ≤ q
3 =

p
2 . Further, since every vertex of G is of odd degree, they are the end vertices of
paths in any path cover of G. So, we have πD(G) ≥ p

2 . Thus, πD(G) = p
2 . ¤

Theorem 2.22. For a star K1,n,

πD(K1,n) =
{

n
2 if n is even,
n if n is odd.

Proof. If n is even, then from Theorem 2.2, it follows that πD(K1,n) ≤ n
2 .

Since the path of length 2 is the greatest divisor path of K1,n, from Theorem
2.14, it follows that πD(K1,n) ≥ n

2 . Hence πD(K1,n) = n
2 . If n is odd, then

there is no proper divisor path in K1,n, and from Theorem 2.6, it follows that
πD(K1,n) = n. ¤
Theorem 2.23. For any n ≥ 1, πD(K2n) = n.

Proof. Since K2n is decomposable into n hamilton paths of length 2n − 1
and q = n(2n − 1), these hamilton paths are greatest divisor paths and they
form a DPD of K2n. It follows that πD(K2n) ≤ n. Further, since every vertex
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of K2n is of odd degree, they are the end vertices of paths in any path cover
of K2n. So, we have πD(K2n) ≥ n and hence πD(K2n) = n. ¤

Theorem 2.24. For a complete graph K2n+1, πD(K2n+1) = 2n+1, if n or
2n + 1 is prime.

Proof. Let V (K2n+1) = {v1, v2, . . . , v2n+1}.
Case (i): n is even. Consider the paths
Pj = (v2n+j , vj+2, v2n+j−1, vj+3, v2n+j−2, vj+4 . . . , v 3n

2
+j)

P ′
j = (vj+1, v1, vn+j+1, vn+j , vn+j+2, vn+j−1, vn+j+3, . . . , v 3n

2
+j) for

j = 1, 2, . . . , n and

2n + i =
{

i i for i ≥ 2,
2n + i otherwise.

and Pn+1 = (v2n+1, v2, v3, v4, v5, . . . , vn−1, vn, vn+1).
Case (ii): n is odd. Consider the paths
Pj = (v2n+j , vj+2, v2n+j−1, vj+3, v2n+j−2, vj+4 . . . , vn+2j+3

2
)

P ′
j = (vj+1, v1, vn+j+1, vn+j , vn+j+2, vn+j−1, vn+j+3, . . . , vn+2j+3

2
) for

j = 1, 2, . . . , n

2n + i =
{

i i for i ≥ 2,
2n + i otherwise.

and Pn+1 = (v2n+1, v2, v3, v4, v5, . . . , vn−1, vn, vn+1).
In both the cases, for the first 2n paths, we select two paths of length n
from each hamilton cycle of length 2n + 1. The last path Pn+1 is obtained
by properly arranging the remaining one edge of each hamilton cycle. Since
q = n(2n + 1), the above paths of length n are divisor paths of K2n+1. Thus,
πD(K2n+1) ≤ 2n + 1.
Claim: gdpl(K2n+1) = n.

We have q = n(2n + 1). If 2n + 1 is prime, then clearly the result follows.
Suppose n is prime and 2n+1 is not a prime. Since 2n+1 is odd, any divisor
of 2n + 1 is less than n. Thus, the claim follows.

Now, from the Theorem 2.14, it follows that πD(K2n+1) ≥ q
n = 2n + 1 and

hence πD(K2n+1) = 2n + 1. ¤

The following examples illustrate the cases considered in the proof of the
Theorem 2.24.

Example 2.25. Consider K5. Note that n = 2 (even), 2n+1 = 5 and q = 10.
Let V (K5) = {v1, v2, v3, v4, v5}.

Consider the following hamilton cycles of K5.
C1 = (v5, v3, v4, v1, v2, v5)
C2 = (v2, v4, v5, v1, v3, v2)
Now, we select two paths of length 2 from each hamilton cycle as follows.
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P1 = (v5, v3, v4), P ′
1 = (v2, v1, v4) and

P2 = (v2, v4, v5), P ′
2 = (v3, v1, v5).

Now, consider the path P3 = (v5, v2, v3) of length 2, which is obtained by
properly arranging the remaining one edge of each hamilton cycle. Thus, we
see that {P1, P

′
1, P2, P

′
2, P3} forms a DPD of K5 so that πD(K5) = 5 = 2n+1.

Example 2.26. Consider K7. Note that n = 3 (odd), 2n+1 = 7 and q = 21.
Let V (K7) = {v1, v2, v3, v4, v5, v6, v7}.

Consider the following hamilton cycles of K7.
C1 = (v7, v3, v6, v4, v5, v1, v2, v7)
C2 = (v2, v4, v7, v5, v6, v1, v3, v2)
C3 = (v3, v5, v2, v6, v7, v1, v4, v3)
Now, we select two paths of length 3 from each hamilton cycle as follows.
P1 = (v7, v3, v6, v4), P ′

1 = (v2, v1, v5, v4),
P2 = (v2, v4, v7, v5), P ′

2 = (v3, v1, v6, v5) and
P3 = (v3, v5, v2, v6), P ′

3 = (v4, v1, v7, v6).
Now, consider the path P4 = (v7, v2, v3, v4) of length 3, which is obtained by

properly arranging the remaining one edge of each hamilton cycle. Thus, we
see that {P1, P

′
1, P2, P

′
2, P3, P

′
3, P4} forms a DPD of K7 so that πD(K7) = 7 =

2n + 1.

Next, we will find πD(K2n+1), if both n and 2n + 1 are composite.

Theorem 2.27. Let d1, d2, . . . , dk and d′1, d
′
2, . . . , d

′
l be the divisors of n and

2n + 1 respectively and let d = max{did
′
j : n ≤ did

′
j < 2n + 1, 1 ≤ i ≤ k, 1 ≤

j ≤ l}. Then πD(K2n+1) = n(2n+1)
d .

Proof. We have q = n(2n+1). Clearly d divides n(2n+1) and by definition
of d, gdpl(K2n+1) = d. Then by Theorem 2.14, it follows that πD(K2n+1) ≥ q

d .
Consider the following hamilton cycle decomposition of K2n+1.

Cj = (v1, vj+1, v2n+j , vj+2, v2n+j−1, vj+3, v2n+j−2, . . . , vn+j−1, vn+j+2, vn+j ,
vn+j+1, v1) for j = 1, 2, . . . , n and

2n + i =
{

i i for i ≥ 2,
2n + i otherwise.

Let P1 be a path such that l(P1) = d in C1 starting from the vertex v1. Let
P2 be a path such that l(P2) = d starting from the end vertex of P1 in C1

and select the appropriate section of the cycle C2. Continuing this process,
we get the paths P1, P2, . . . , P q

d
such that l(Pi) = d, 1 ≤ i ≤ q

d and they form
a DPD of K2n+1. Thus, πD(K2n+1) ≤ q

d so that πD(K2n+1) = q
d . Hence the

theorem. ¤

The Theorem 2.27 is illustrated in the following example.



Divisor path decomposition number of a graph 11

Example 2.28. Consider the complete graph K9. Here q = 4× 9 = 36. The
divisors of 4 and 9 are 1, 2, 4 and 1, 3, 9 respectively. Then di = 2, d′j = 3
and so d = 6. Now consider the hamilton cycle decomposition of K9.
C1 = (v1, v2, v9, v3, v8, v4, v7, v5, v6, v1)
C2 = (v1, v3, v2, v4, v9, v5, v8, v6, v7, v1)
C3 = (v1, v4, v3, v5, v2, v6, v9, v7, v8, v1)
C4 = (v1, v5, v4, v6, v3, v7, v2, v8, v9, v1)

From these cycles, we construct the divisors paths of length 6 as follows.
P1 = (v1, v2, v9, v3, v8, v4, v7)
P2 = (v7, v5, v6, v1, v3, v2, v4)
P3 = (v4, v9, v5, v8, v6, v7, v1)
P4 = (v1, v4, v3, v5, v2, v6, v9)
P5 = (v9, v7, v8, v1, v5, v4, v6)
P6 = (v6, v3, v7, v2, v8, v9, v1)

These paths form a DPD of K9 and hence πD(K9) = 6.

Remark 2.29. The following table gives the value of πD(K2n+1) for some
composite numbers n and 2n + 1.

n 2n + 1 di d′j d q πD

4 9 2 3 6 36 6
10 21 5 3 15 210 14
16 33 8 3 24 528 22
22 45 11 3 33 990 30
25 51 25 1 25 1275 51
27 55 9 5 45 1485 33
28 57 14 3 42 1596 28
32 65 4 13 52 2080 40
34 69 17 3 51 2346 46
38 77 38 1 38 2926 77
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