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FORCING EDGE DETOUR NUMBER OF AN EDGE

DETOUR GRAPH

A. P. SANTHAKUMARAN1, S. ATHISAYANATHAN1

Abstract. For two vertices u and v in a graph G = (V, E), the detour

distance D(u, v) is the length of a longest u–v path in G. A u–v path
of length D(u, v) is called a u–v detour. A set S ⊆ V is called an edge

detour set if every edge in G lies on a detour joining a pair of vertices of
S. The edge detour number dn1(G) of G is the minimum order of its edge
detour sets and any edge detour set of order dn1(G) is an edge detour basis

of G. A connected graph G is called an edge detour graph if it has an
edge detour set. A subset T of an edge detour basis S of an edge detour
graph G is called a forcing subset for S if S is the unique edge detour basis
containing T . A forcing subset for S of minimum cardinality is a minimum

forcing subset of S. The forcing edge detour number fdn1(S) of S, is the
minimum cardinality of a forcing subset for S. The forcing edge detour

number fdn1(G) of G, is min{fdn1(S)}, where the minimum is taken over
all edge detour bases S in G. The general properties satisfied by these
forcing subsets are discussed and the forcing edge detour numbers of certain
classes of standard edge detour graphs are determined. The parameters
dn1(G) and fdn1(G) satisfy the relation 0 ≤ fdn1(G) ≤ dn1(G) and it is
proved that for each pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there
is an edge detour graph G with fdn1(G) = a and dn1(G) = b.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively.
For basic definitions and terminologies, we refer to [1, 8].
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For vertices u and v in a connected graph G, the detour distance D(u, v) is
the length of a longest u–v path in G. A u–v path of length D(u, v) is called a
u–v detour. It is known that the detour distance is a metric on the vertex set
V . Detour distance and detour center of a graph were studied by Chartrand
et al. in [2, 7].

A vertex x is said to lie on a u–v detour P if x is a vertex of P including
the vertices u and v. A set S ⊆ V is called a detour set if every vertex v in G
lies on a detour joining a pair of vertices of S. The detour number dn(G) of
G is the minimum order of a detour set and any detour set of order dn(G) is
called a detour basis of G. A vertex v that belongs to every detour basis of G
is a detour vertex in G. If G has a unique detour basis S, then every vertex
in S is a detour vertex in G. These concepts were studied by Chartrand et
al. in [3] and have interesting applications in Channel Assignment Problem in
radio technologies [4, 9].

An edge e of G is said to lie on a u–v detour P if e is an edge of the path P .
In general, there are graphs G for which there exist edges which do not lie on
a detour joining any pair of vertices of V . For the graph G given in Figure 1,
the edge v1v2 does not lie on a detour joining any pair of vertices of V . This
motivated us to introduce the concepts of weak edge detour set of a graph [10]
and edge detour graphs [11].
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Figure 1. G

A set S ⊆ V is called a weak edge detour set of G if every edge in G has
both its ends in S or it lies on a detour joining a pair of vertices of S. The
weak edge detour number dnw(G) of G is the minimum order of its weak edge
detour sets and any weak edge detour set of order dnw(G) is called a weak edge
detour basis of G. Weak edge detour sets and weak edge detour number of
a graph were introduced and studied by Santhakumaran and Athisayanathan
in [10].

A set S ⊆ V is called an edge detour set of G if every edge in G lies on
a detour joining a pair of vertices of S. The edge detour number dn1(G) of
G is the minimum order of its edge detour sets and any edge detour set of
order dn1(G) is an edge detour basis of G. A graph G is called an edge detour
graph if it has an edge detour set. A vertex v in an edge detour graph G is
an edge detour vertex if v belongs to every edge detour basis of G. If G has
a unique edge detour basis S, then every vertex in S is an edge detour vertex
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of G. Edge detour graphs were introduced in [11] and further studied in [12]
by Santhakumaran and Athisayanathan.

For the graph G given in Figure 2 (a), the sets S1 = {u, x}, S2= {u,
w, x} and S3= {u, v, x, y} are detour basis, weak edge detour basis and
edge detour basis of G respectively and hence dn(G) = 2, dnw(G) = 3 and
dn1(G) = 4. For the graph G given in Figure 2 (b), the set S ={u1, u2} is a
detour basis, weak edge detour basis and an edge detour basis for G so that
dn(G) = dnw(G) = dn1(G) = 2. The graphs G given in Figure 2 are edge
detour graphs.
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Figure 2. G

For the graph G given in Figure 1, the set S ={v1, v2} is a detour basis and
also a weak edge detour basis. However, it does not contain an edge detour
set and so the graph G in Figure 1 is not an edge detour graph.

The following theorems are used in the sequel.

Theorem 1 ([11]). For any edge detour graph G of order p ≥ 2, 2 ≤ dn1(G) ≤
p.

Theorem 2 ([11]). If G is an edge detour graph of order p ≥ 3 such that
{u, v} is an edge detour basis of G, then u and v are not adjacent.

A vertex of degree 1 is an end-vertex of G.

Theorem 3 ([11]). Every end-vertex of an edge detour graph G belongs to
every edge detour set of G. Also if the set S of all end-vertices of G is an edge
detour set, then S is the unique edge detour basis for G.

Theorem 4 ([11]). If T is a tree with k ≥ 2 end-vertices, then dn1(T ) = k.

Theorem 5 ([11]). Let G be an edge detour graph with cut-vertices and S
an edge detour set of G. Then for any cut-vertex v of G, every component of
G − v contains an element of S.

Throughout this paper G denotes a connected graph with at least two ver-
tices.
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2. Forcing Edge Detour Sets in a Graph

Forcing geodetic number and forcing dimension of a graph was introduced
and studied in [5, 6].
In this section we introduce the forcing edge detour number of an edge detour
graph and determine the same for some standard classes of edge detour graphs.

Definition 1. Let G be an edge detour graph and S an edge detour basis of
G. A subset T ⊆ S is called a forcing subset for S if S is the unique edge
detour basis containing T . A forcing subset for S of minimum cardinality is a
minimum forcing subset of S. The forcing edge detour number of S, denoted
by fdn1(S), is the cardinality of a minimum forcing subset for S. The forcing
edge detour number of G, denoted by fdn1(G), is fdn1(G) = min {fdn1(S)},
where the minimum is taken over all edge detour bases S in G.

Example 1. For the graph G given in Figure 2(a), S = {u, v, x, y} is the
unique edge detour basis of G so that fdn1(G) = 0. For the graph G given in
Figure 3 (a), S1 = {u, v, x}, S2 = {u, v, y} and S3 = {u, v,w} are the only edge
detour bases of G and so fdn1(G) = 1. For the graph G given in Figure 3 (b),
S1 = {v1, v2, v4}, S2 = {v1, v2, v5}, S3 = {v1, v3, v4}, S4 = {v1, v3, v5} and
S5 = {v1, v4, v5} are the only five edge detour bases of G so that fdn1(G) = 2.
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The next three theorems are easy consequences of the respective definitions.

Theorem 6. For every edge detour graph G, 0 ≤ fdn1(G) ≤ dn1(G).

Remark 1. The bounds in Theorem 6 are sharp. For the graph G given in Fig-
ure 2(a), fdn1(G) = 0. For the complete graph K4, fdn1(K4) = dn1(K4) = 3.
Also, all the inequalities in Theorem 6 can be strict. For the graph G given in
Figure 3(a), fdn1(G) = 1 and dn1(G) = 3 so that 0 < fdn1(G) < dn1(G).

Theorem 7. Let G be an edge detour graph. Then
i) fdn1(G) = 0 if and only if G has a unique edge detour basis,
ii) fdn1(G) = 1 if and only if G has at least two edge detour bases, one of
which is a unique edge detour basis containing one of its elements, and
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iii) fdn1(G) = dn1(G) if and only if no edge detour basis of G is the unique
edge detour basis containing any of its proper subsets.

Theorem 8. Let G be an edge detour graph and W the set of all edge detour
vertices of G. Then fdn1(G) ≤ dn1(G) − |W |.

Remark 2. The bound in Theorem 8 is sharp. For the graph G given in
Figure 3(a), dn1(G) = 3, |W | = 2 and fdn1(G) = 1 as in Example 1. Also,
the inequality in Theorem 8 can be strict. For the cycle C4, dn1(C4) = 2,
|W | = 0 and fdn1(C4) = 1. Thus fdn1(G) < dn1(G) − |W |.

The following theorems give the forcing edge detour numbers of certain
classes of graphs.

Theorem 9. Let G be a complete graph Kp or an odd cycle Cp of order p ≥ 3.
Then a set S ⊆ V is an edge detour of basis of G if and only if S consists of
any three vertices of G.

Proof. Let G = Kp (p ≥ 3). If {u, v} is any set of two vertices of G, then all
the edges of G other than uv lie on a u– v detour. Hence it follows that no
two element subset of V is an edge detour set of G. Let S = {u, v,w} be any
set of three vertices of G. Then every edge e of G lies on a detour joining a
pair of vertices of S. Hence it follows that S is an edge detour basis of G.
Now, assume that S is an edge detour basis of G. By Theorem 2, |S| ≥ 3.
It follows from the first part of the proof that |S| = 3 and S consists of any
three vertices of G.

Let G be an odd cycle Cp(p ≥ 3). If {u, v} is any set of two vertices of G,
then no edge on the u– v geodesic lies on the u– v detour in G and so no two
element subset of V is an edge detour set of G. Let S = {u, v,w} be any set
of three vertices of G. Then every edge in G lies on any one of the u– v , v– w
or u– w detours so that S is an edge detour basis of G. Now, assume that S
is an edge detour basis of G. Since any set of two vertices of G is not an edge
detour set of G, it follows just as above that |S| = 3 and S consists of any
three vertices of G. �

If u and v are two vertices in a graph G, then the distance d(u, v) is the
length of a shortest u-v path in G. A u-v path of length d(u, v) is a u-
v geodesic. The diameter d(G) of a connected graph G is the length of any
longest geodesic. Two vertices u, v in G are antipodal if d(u, v) = d(G).

Theorem 10. Let G be an even cycle. Then a set S ⊆ V is an edge detour
basis of G if and only if S consists of two antipodal vertices of G.

Proof. It is clear that every set S of two antipodal vertices of G is an edge
detour set and so S is an edge detour basis of G. On the other hand, if u
and v are not antipodal vertices, then the edges of u– v geodesic do not lie
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on the u– v detour in G and so the set {u, v} is not an edge detour set of G.
Therefore, every edge detour basis of G must consist of two antipodal vertices
of G. �

Corollary 11. For a complete graph Kp (p ≥ 3),
i) dn1(K3) = 3 and fdn1(K3) = 0.
ii) dn1(Kp) = fdn1(Kp) = 3 for p ≥ 4.

Proof. i) By Theorem 9, dn1(K3) = 3. Let v1, v2, v3 be the vertices of K3.
Then, by Theorem 9, it is clear that the set {v1, v2, v3} is the unique edge
detour basis of K3 and hence by Theorem 7(i), fdn1(K3) = 0.
ii) Let p ≥ 4. By Theorem 9, dn1(Kp) = 3. Since p ≥ 4, it follows from
Theorem 9 that no subset of V of cardinality at most 2 is a forcing subset
for any edge detour basis of Kp. Therefore, by Theorem 7(iii), fdn1(Kp) =
dn1(Kp) = 3. �

Corollary 12. If G is the cycle Cp (p ≥ 4), then
i) dn1(G) = 2 and fdn1(G) = 1 for p even.
ii) dn1(G) = fdn1(G) = 3 for p odd.

Proof. i) Let p be even. It follows from Theorem 10 that dn1(G) = 2 and that
each vertex in G belongs to exactly only one edge detour basis of G. Hence
every set consisting of a single vertex of G is a forcing subset for an edge
detour basis of G so that fdn1(G) = 1.
ii) Let p be odd. Then the result follows from Theorems 9 and 7(iii) and the
proof is similar to that of Corollary 11(ii). �

A set S of vertices in a graph is independent if no two vertices in S are
adjacent.

Theorem 13. Let G be a complete bipartite graph Km,n (2 ≤ m ≤ n). Then
a set S ⊆ V is an edge detour basis of G if and only if S consists of any two
independent vertices of G.

Proof. Let X and Y be the partite sets of G with |X| = m and |Y | = n. Let
S = {u, v} be any set of two independent vertices in G. Then it is clear that
D(u, v) = 2m− 2 or D(u, v) = 2m according to whether u, v ∈ X or u, v ∈ Y .
First assume that u, v ∈ X. Let xy be an edge such that x ∈ X and y ∈ Y .
If x 6= u, then the edge xy lies on the u– v detour P : u, y, x, . . . , v of length
2m − 2. If x = u, then the edge xy lies on the u– v detour P : u = x, y, . . . , v
of length 2m− 2. Hence S is an edge detour set of G. The case when u, v ∈ Y
is similar.

Now, assume that S is an edge detour basis of G. It follows from the first
part of the proof that |S| = 2. Let S = {u, v}. Then, by Theorem 2, u and v
are not adjacent. Thus S consists of two independent vertices of G. �
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Corollary 14. For a complete bipartite graph G = Km,n (2 ≤ m ≤ n),
i) dn1(G) = 2 and fdn1(G) = 1 for m = 2 and n ≥ 2.
ii) dn1(G) = fdn1(G) = 2 for m,n ≥ 3.

Proof. Let X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn} be the bipartite sets
of Km,n (2 ≤ m ≤ n).
i) If m = 2 and n = 2, then G = C4 and the result follows from Corollary 12(i).
Let m = 2 and n ≥ 3. By Theorem 13, dn1(G) = 2. By Theorem 13, the set
X = {u1, u2} is the unique edge detour basis of G such that {u1} is a forcing
subset for X. Since n ≥ 3, there is more than one edge detour basis and it
follows that fdn1(G) = 1.
ii) By Theorem 13, dn1(G) = 2. Also it follows from Theorem 13 that each
vertex belongs to more than one edge detour basis of G and so fdn1(G) > 1.
Since dn1(G) = 2, it follows that fdn1(G) = 2. �

Theorem 15. If T is a tree with k ≥ 2 end-vertices, then dn1(G) = k and
fdn1(G) = 0.

Proof. By Theorem 4, dn1(G) = k. Since the set of all end-vertices of a tree
is the unique edge detour basis, the result follows from Theorem 7(i). �

In view of Theorem 6, we have the following realization result.

Theorem 16. For each pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there
is an edge detour graph G with fdn1(G) = a and dn1(G) = b.

Proof. Case 1: a = 0. For each b ≥ 2, let G be a tree with b end-vertices.
Then fdn1(G) = 0 and dn1(G) = b by Theorem 15.
Case 2: a ≥ 1. For each i (1 ≤ i ≤ a), let Fi : ui, vi, wi, xi, ui be the cycle
of order 4 and let H = K1,b−a be the star at v whose set of end-vertices is
{z1, z2, . . . , zb−a}. Let G be the graph obtained by joining the central vertex
v of H to the vertices ui and wi of each Fi (1 ≤ i ≤ a). Clearly the graph G
is connected and is shown in Figure 4.

Let W = {z1, z2, . . . , zb−a} be the set of all (b−a) end-vertices of G. First, we
show that dn1(G) = b. By Theorems 3 and 5, every edge detour basis contains
W and at least one vertex from each Fi (1 ≤ i ≤ a). Thus dn1(G) ≥ (b−a)+a=
b. On the other hand, since the set S1 = W ∪{v1, v2, . . . , va} is an edge detour
set of G, it follows that dn1(G) ≤ |S1| = b. Therefore G is an edge detour
graph and dn1(G) = b.

Next we show that fdn1(G) = a. It is clear that W is the set of all edge
detour vertices of G. Hence it follows from Theorem 8 that fdn1(G) ≤
dn1(G) − |W | = b − (b − a) = a. Now, since dn1(G) = b, it is easily seen
that a set S is an edge detour basis of G if and only if S is of the form
S = W ∪ {y1, y2, . . . , ya}, where yi ∈ {vi, xi} ⊆ V (Fi) (1 ≤ i ≤ a). Let T be
a subset of S with |T | < a. Then there is a vertex yj (1 ≤ j ≤ a) such that
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yj /∈ T . Let sj ∈ {vj , xj} ⊆ V (Fj) distinct from yj. Then S ′ = (S−{yj})∪{sj}
is an edge detour basis that contains T . Thus S is not the unique edge detour
basis containing T . Thus fdn1(S) ≥ a. Since this is true for all edge detour
bases of G, it follows that fdn1(G) ≥ a and so fdn1(G) = a. �
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