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GRAPHS WITH SAME DIAMETER AND METRIC
DIMENSION

IMRANA KOUSAR1, IOAN TOMESCU2, SYED MUHAMMAD HUSNINE1

Abstract. The cardinality of a metric basis of a connected graph G is
called its metric dimension, denoted by dim(G) and the maximum value
of distance between vertices of G is called its diameter. In this paper, the
graphs G with diameter 2 are characterized when dim(G) = 2.
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1. Introduction

For a connected graph G the distance d(u, v) from u to v is the length of
a shortest u-v path in G. The maximum value of d(u, v) for all u, v ∈ G, is
its diameter denoted by diam(G). An ordered subset W = {w1, w2, ....., wk}
of vertices of minimum cardinality in a connected graph is called a basis of
G if for each pair of vertices u, v ∈ V (G), (d(v, w1), d(v, w2), ..., d(v, wk)) =
(d(u,w1), d(u,w2), ..., d(u,wk)) holds exactly when v = u. In this case k is
called the metric dimension dim(G) of G [2], [3], [4], [5], [6] and [8]. If graphs
G and H are isomorphic we denote this by G ∼= H.

We are interested in the classification of graphs of small diameter and lower
dimension. Moon and Moser [1] were first who show that almost all graphs
have diameter two, and discussion of graphs of small diameter includes most
graphs. Thus the classification of graphs of diameter 2 with a given dimension
n could be of help in answering many questions in graph theory. In this paper
we make a humble effort of determining all graphs G of diameter 2 when

1Department of Mathematics, National University of Computer and Emerg-
ing Sciences(Fast), Lahore, Pakistan. Email: imrana.kousar@hotmail.com,
syed.husnine@nu.edu.pk
2Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei,
010014 Bucharest, Romania. Email: ioan@fmi.unibuc.ro.

22



Graphs with same diameter and metric dimension 23

dim(G) = 2. The following general result by G. Chartrand et al. and S.
Khullar et al. are well-known, see [7], [4].

Theorem 1. Let G be a graph with metric dimension 2 and let {a, b} ⊂ V (G)
be a metric basis in G. Then the following are true:
(1) There is a unique shortest path P between a and b.
(2) The degrees of a and b are at most 3.
(3) Every other node on P has degree at most 5.

Theorem 2. Let G be a graph with metric dimension k and |V (G)| = n. Let
d be the diameter of G. Then |V (G)| ≤ dk + k.

Theorem 1 captures a few properties of graphs with metric dimension 2,
whereas Theorem 2 gives an upper bound for the number of vertices of a graph
in terms of its metric dimension and diameter. By this result |V (G)| ≤ 6 for
the graphs of diameter and metric dimension 2.

2. Graphs of Diameter and Metric Dimension 2

The main theorem of this paper is:

Theorem 3. There are exactly 37 non-isomorphic connected graphs whose
diameter as well as metric dimension is 2.

We prove the above theorem in a sequence of lemmas. In the proofs of these
lemmas we shall not consider some subcases yielding isomorphic graphs.

Lemma 4. The number of non-isomorphic 2-dimensional connected graphs of
diameter 2 with 4 or less vertices is exactly 4.

Proof. It is trivial to note that no such graph exist for |V (G)| = 2 or 3.
Now let V (G) = {u, v, w, x}. Without loss of generality we can assume {v, w}
is a basis of G. Also, suppose that d(v, w) = 1 and u is not adjacent to x. In
order to have a path of length 2 between the vertices u and x, it is necessary
that both u and x are adjacent to one of {v, w}. If u and x are adjacent to
v then diam(G) = 2, but u and x have same representations with respect to
{v, w} which contradicts our choice of {v, w}. To overcome this x must be
adjacent to w. We are thus left with the only graph G1 in fig. 1.
Now suppose u is adjacent to x. Then we have the following cases.
(a) There is only one edge between {v, w} and {u, x}. But this yields diam(G) =
3, a contradiction.
(b) There exist two edges between {v, w} and {u, x}. If both the edges are
incident to v or to w, then there is a contradiction to our choice of {v, w} as
a resolving set. It forces that one edge is incident to v and other is incident
to w. Hence there are two graphs G2 and G3 where G3

∼= G1 in fig. 1.
(c) There are three edges between {v, w} and {u, x}. It is not possible that
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deg(v) = 4 or deg(w) = 4, since G has only four vertices. It follows that 2
edges are incident to v(say) and one edge is incident to w. Then, there is only
one graph G4 in fig. 2.
(d) There are four edges between {v, w} and {u, x}. But this yields diam(G) =
1, a contradiction.
Finally, we suppose d(v, w) = 2 and u is a vertex on the path between v and
w. Since G is connected, x must be adjacent to at least one of vertices u, v
and w. If x is adjacent to both v and w, then there exist two shortest paths
between v and w, which contradicts Theorem 1(1). If x is adjacent to one of
{v, w} and not to u, then diam(G) = 3, a contradiction. Hence x must be
adjacent to u. If x is adjacent only to u, then there is only one graph G5 in
fig. 2. Finally, if x is adjacent to one of {v, w} and also to u, then there is
only one graph G6

∼= G1 in fig. 2. ¤
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Lemma 5. There are exactly 8 non-isomorphic connected graphs of order 5
such that their metric dimension as well as diameter is 2.

Proof. Let V (G) = {u, v, w, x, y}. Without loss of generality we can assume
{v, w} is a basis of G. Also, suppose that d(v, w) = 1 and u, x and y are
pairwise nonadjacent. Since G is connected each of u, x, y must be joined by
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at least one edge with vertices v or w. By Theorem 1(2), deg(v), deg(w) ≤ 3.
It follows that v and w are joined to at most two vertices of {u, x, y} which
implies that diam(G) = 3, a contradiction.
Let there be only one edge between two vertices of the subset {u, x, y}, e.g.
uy ∈ E(G). In order to have a path of length two from x to each of u, y such
that deg(v), deg(w) ≤ 3, it is necessary that x is adjacent to both v and w, v
is adjacent to u and w is adjacent to y. Then there is only one graph G1 in
fig. 3.
Suppose there are two edges between the vertices of the subset {u, x, y}, e.g.
uy, yx ∈ E(G). Then we have the following possibilities.
(a) There is only one edge between {v, w} and {u, x, y}. Then diam(G) ≥ 3,
a contradiction.
(b) There exist two edges between {v, w} and {u, x, y}. If both the edges are
incident to v or to w, then diam(G) = 3, a contradiction. It forces that one
edge is incident to v and other is incident to w. When both v and w are
adjacent to one of {u, x}, then again diam(G) = 3, a contradiction. If both v
and w are adjacent to y, then u and x have same representations with respect
to {v, w}, again a contradiction. If v is adjacent to one of {u, x} and w is
adjacent to y, then diam(G) = 3, a contradiction. Finally, if v is adjacent to
one of {u, x} and w is adjacent to the remaining vertex, then there is only one
graph G2 given in fig. 3.
(c) There are three edges between {v, w} and {u, x, y}. If all three edges are
incident to v or to w, then v or w have degree more than 3, a contradiction
to the fact that deg(v), deg(w) ≤ 3. It forces that two edges are incident to
v(say) and one edge is incident to w. If v is adjacent to u and x, and also w is
adjacent to y, then u and x have same representations relatively to {v, w} and
if uv, yv, uw ∈ E(G), then diam(G) = 3, a contradiction. Since diam(G) = 2
and {v, w} is a basis, it follows that there are two graphs G3

∼= G1 and G4 in
fig. 3.
(d) There are four edges between {v, w} and {u, x, y}.
Since deg(v), deg(w) ≤ 3, it follows that two edges are incident to v and other
two are incident to w. Then there are two graphs G5 and G6 in fig. 3 of
diameter as well as metric dimension 2.
Note that if there exist five or six edges between {v, w} and {u, x, y}, then
there exist t ∈ {v, w} such that deg(t) = 4, a contradiction with Theorem
1(2).
We assume there exist three edges between the vertices of the subset {u, x, y},
e.g. ux, xy, uy ∈ E(G). We consider the following cases.
(a) There is only one edge between {v, w} and {u, x, y}. Then diam(G) = 3,
a contradiction.
(b) There exist two edges between {v, w} and {u, x, y}. If both the edges are
incident to v or to w, then diam(G) = 3. It forces that one edge is incident to
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v and other is incident to w. When both v and w are adjacent to exactly one
of u, x, y, there exist two vertices having same representations with respect to
{v, w}, which contradicts our choice of {v, w} as a basis. If both v and w are
adjacent to any two of {u, x, y}, then these graphs are isomorphic. One of
them is G7

∼= G1 given in fig. 4.
(c) There exist three edges between {v, w} and {u, x, y}. Since deg(v), deg(w) ≤
3, it follows that two edges are incident to v(say) and one edge is incident to w.
If v is adjacent to any two of {u, x, y} and w is adjacent to the remaining one,
there exist two vertices having same representations with respect to {v, w}.
However, if v is adjacent to any two of {u, x, y} and w is adjacent to any one
of these two vertices, then we obtain the graph G8

∼= G5 in fig. 4.
(d) There exist four edges between {v, w} and {u, x, y}.
Since deg(v), deg(w) ≤ 3, it follows that two edges are incident to v and two
edges are incident to w. If v is adjacent to any two of {u, x, y} and w is also
adjacent to both the vertices which are adjacent to v, there exist two vertices
having same representations with respect to {v, w}. However, if v and w are
adjacent to any two of {u, x, y}, then these graphs are isomorphic. One of
them is G9 given in fig. 4.
If there exist five or six edges between {v, w} and {u, x, y}, then deg(t) = 4
for t ∈ {v, w}, a contradiction with Theorem 1(2).
Now suppose d(v, w) = 2 and u is the vertex on the shortest path between v
and w. Also, suppose that x and y are nonadjacent. In order to have a path
of length two from y to x, it is necessary that both y and x are adjacent to
at least one vertex from {u, v, w}. If x and y are adjacent to v and w then
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they have same representations relatively to {v, w}, a contradiction. Since
diam(G) = 2 and {v, w} is a basis, it follows that only possibilities are G10

and G11 from fig. 5 and a graph isomorphic to G4 from fig. 3.
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If x is adjacent to y, we shall obtain in a similar way as above graphs isomor-
phic to G2, G3, G4 and G5. ¤
Lemma 6. There are exactly 25 non-isomorphic connected graphs of order 6
such that their diameter as well as metric dimension is 2.

Proof. Let V (G) = {u, v, w, x, y, z}. Without loss of generality we can assume
{v, w} is a basis of G. If W = {v, w} is a metric basis of a graph G, then the
vertices in V (G)\W have distinct representations relative to the ordered set
W of the form (1, 1), (1, 2), (2, 1) or (2, 2). The vertex x having representation
(1, 1), i.e., having d(x, v) = d(x,w) = 1 will be called major vertex and vertices
with representations (1, 2) or (2, 1) minor vertices. We shall consider two cases:
A. d(v, w) = 1 and B. d(v, w) = 2.
A. If d(v, w) = 1, suppose first that u, x, y and z are pairwise nonadjacent. By
the connectedness each of u, x, y, z must be joined by at least one edge with
vertices v or w. Since deg(v), deg(w) ≤ 3, it follows that v and w are joined
to exactly two vertices from {u, x, y, z}, which implies that diam(G) = 3, a
contradiction.
Let there be only one edge between two vertices of the subset {u, x, y, z}, e.g.
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xy ∈ E(G). In order to have a path of length two from z to each of u, x, y
this path must use one of v, w and this uses two edges incident to v, w. Since
deg(v), deg(w) ≤ 3, this is not possible for all u, x, y.
By the similar argument, no graph in each of the following three cases exist.
1) There exist 2 adjacent edges in the subgraph induced by {u, x, y, z};
2) There exist 2 nonadjacent edges in this subgraph;
3) There exist 3 edges inducing K3 in this subgraph.
If there exist 3 edges ux, xy, yz ∈ E(G) inducing P4 in G, since diam(G) = 2
we have two distinct cases: z is major, which implies that u and y are minor
and x has representation (2, 2) or u and x are minor and y has representation
(2, 2). In the first case we get graph G1 and in the second case G2 (fig. 6).
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If three edges ux, xy, xz induce a star, then we also have 2 possibilities: x is
major, u and z are minor and y has representation (2, 2), thus yielding graph
G3 (fig. 6), or u is major, y and z are minor and x(2, 2), then the corresponding
graph is isomorphic to G2.
If in G we have four edges ux, xy, yz, uz inducing C4, then there are two
distinct cases: z is major, u and x are minor and y(2, 2) or z is major, u and
y are minor and x(2, 2). Corresponding graphs are G4 and G5 (fig. 7).
If four edges ux, xy, yu, yz induce a 3-clique {u, x, y} with pendant edge yz, we
have six cases: u is major, x and z are minor and y(2, 2), the resulting graph
is isomorphic to G5; z is major, x and u are minor and y(2, 2), the resulting
graph is G6; z is major, y and u are minor and x(2, 2), the resulting graph is
G7; u is major, y and z are minor and x(2, 2) - G8; y is major, u and z are
minor and x(2, 2) - G9; y is major, u and x are minor and z(2, 2) - graph G10

in fig. 7.
If there exist five edges ux, xy, yz, uz, uy inducing K4 − e, then we obtain
graphs G11 − G14 in fig. 8, when u is major, x and z are minor, y(2, 2); u is
major, y and z are minor, x(2, 2); x is major, u and z are minor, y(2, 2), x is
major, u and y are minor and z(2, 2), respectively.
If there exist six edges ux, xy, yz, uz, uy, xz inducing K4, then a unique graph
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(up to isomorphism) is possible, namely G15, x being a major vertex, u and z
minor and y(2, 2) (fig. 8).
B. Suppose d(v, w) = 2, and u is a vertex on the shortest path between v and
w.This implies that u is a major vertex.
Suppose that the subgraph induced by {x, y, z} has no edge. In this case x
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and z are minor vertices and y(2, 2), yielding graph G16 (fig. 9).
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If this subgraph has one edge, xy ∈ E(G), then we obtain G17 when x and z
are minor vertices and y(2, 2) and a graph isomorphic to G3 when x and y are
minor and z(2, 2).
If there exist two edges xy, yz ∈ E(G), then we have the following cases: x
and y are minor vertices and z(2, 2), - G18, G20, G21 and G22; x and z are
minor and y(2, 2),- G19 and a graph isomorphic to G9 (fig. 10).
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Finally, if there exist three edges xy, yz, xz ∈ E(G) inducing K3 we deduce
that two vertices are minor and the third has representation (2, 2), yielding the
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following non-isomorphic graphs: one is isomorphic to G19, another isomorphic
to G2 and new graphs G23, G24 and G25 (fig. 11), which concludes the proof.
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