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SOME EXACT SOLUTIONS FOR THE FLOW OF A
NEWTONIAN FLUID WITH HEAT TRANSFER VIA

PRESCRIBED VORTICITY

M. JAMIL1, N. A. KHAN2, A. MAHMOOD3, G. MURTAZA1, Q. DIN1

Abstract. Two-dimensional , steady, laminar equations of motion of an
incompressible fluid with variable viscosity and heat transfer equations are
considered. The problem investigated is the flow for which the vorticity dis-
tribution is proportional to the stream function perturbed by a sinusoidal
stream. Employing transformation variable, the governing Navier-Stokes
Equations are transformed into the ordinary differential equations and ex-
act solutions are obtained. Finally, the influence of different parameters of
interest on the velocity, temperature and pressure profiles are plotted and
discussed.
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1. Introduction

Due to the non-linearity of the Navier-Stokes equations and the inappli-
cability of the superposition principle for non-linear partial differential equa-
tions, exact solutions are difficult to obtain. For this reason, there exist only
a limited number of exact solutions under certain conditions such that a num-
ber of terms in the equations of motion either disappear automatically or
may be neglected, and the resulting equations reduce to a form that can be
readily solved. Exact solutions are very important not only because they are
solutions of some fundamental flows but also because they serve as accuracy
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checks for experimental, numerical or empirical and asymptotic methods. Al-
though computer techniques make the complete integration of the equation
of motion feasible, the accuracy of the results can be established by compar-
ison with an exact solution. Wang [1] has given an excellent review of these
solutions of the Navier-Stokes Equation. These known solutions of viscous in-
compressible Newtonian fluid may be classified into three types from Chandna
and Oku-Ukpong [2]:
(i)- Flows for which the non-linear inertial terms in the linear momentum
equations vanish identically. Parallel flows and flow with uniform suction are
examples of these flows.
(ii)- Flow with similarity properties such that the flow equations reduce to a
set of ordinary differential equations. Stagnation point flow is an example of
such flow.
(iii)- Flow for which the vorticity function is chosen so that the governing
equations in terms of the stream function reduce to a linear equation.

By considering the vorticity distribution directly proportional to the
stream function ∇2ψ = Kψ , Taylor [3] showed that the non-linearities are
self-canceling and obtained an exact solution which represent the decay of the
double array of vortices. Kampe-De-Feriet [4] generalized the Taylor’s idea by
taking the vorticity of the form ∇2ψ = f(ψ). Kovasznay [5] extended Tay-
lor’s idea by taking the vorticity to be proportional to the stream function
perturbed by a uniform stream of the form ∇2ψ = y + (K2 − 4π2)ψ. Ko-
vaszany was able to linearize the Navier-Stokes equation and determine an
exact solution for steady flow, which resembles that the downstream of a two-
dimensional gird. Wang [6] was able to linearize the Navier-Stokes equations
and showed that the result established by Taylor and Kovasznay could be ob-
tained from his finding as special case by taking the vorticity ∇2ψ = Cy +Aψ
. Lin and Tobak [7], Hui [8] and Naeem and Jamil [9] obtained more results
by studing similar flows, taking ∇2ψ = K(ψ − Rz) , ∇2ψ = K(ψ − Ry) and
∇2ψ = K(ψ − Uy). Recently Islam and Zhou [10] obtained some exact solu-
tion for couple stress fluids by taking ∇2ψ = K(ψ − Uy).

By assuming certain form of vorticity distribution or stream function,
solutions for Newtonian and non-Newtonian fluid are obtained by researchers
such as Jeffrey [11], Riabouchinsky [12], Nemenyi [13], Ting [14], Rajagopal
[15], Rajagopal and Gupta [16], Siddiqui and Kaloni [17], Wang [18], Ben-
harbit and Siddiqui [19], Chandna and Oku-Ukpong [20], Oku-Ukpong and
Chandna [21], Scconmandi [22], Labropulu [23], Labropulu [24], Mohyuddin
et al. [25] and more recently Islam et al. [26] and Hayat et al. [27].

The exact solutions of the Navier-Stokes equations when the viscosity is
variable are rare, however the literature in which the viscosity is variable is de-
pendent upon the space, time, temperature, and pressure etc. Martin [28] first
time used an elegant method in the study of the Navier-Stokes equations for
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an incompressible fluid of variable viscosity. Martin reduced the order of the
governing equations from second order to first order by introducing the vor-
ticity function and the generalized energy function. Martin there introduced
the curvilinear coordinates φ, ψ in the plane flow, in which the coordinate
lines ψ equal to constant are the streamlines of the flow and the coordinate
lines φ constant are left arbitrary. Martin discussed some flows and suggested
fifteen different types of flows, which could be studied. Naeem et al. [29]
generalized Martin approach to study the steady-state, plane, variable viscos-
ity, incompressible Navier-Stokes equations. Naeem et al. transformed the
equations to a new system with, viscosity, vorticity, speed, energy function
and the transformation matrices as the unknown functions, and determined
some exact solutions for vortex, radial and parallel flows. Naeem [30], utilizing
one parameter group of transformations, transformed the equations describ-
ing steady plane flow of an incompressible fluid of variable viscosity into a
system of ordinary differential equations of second order. Naeem, utilizing
particular method for finding the solutions of second order differential equa-
tions, determined new exact solutions and indicated that utilizing other one
parameter groups one can determine some other solutions to the flow equa-
tions not determinable through other known methods. Later on the same fluid
applied one-parameter group of transformations, von-Mises variables, Hodo-
graph transformations etc; and obtained exact solution for example see Naeem
et al. [31] and references there in. More recently work appeared on Newtonian
fluid with variable viscosity is given by Hayat et al. [32] and Nadeem et al.
[33].

In this paper, we present some new exact solutions to the equation
governing the steady plane flows of an incompressible fluid with variable
viscosity and heat transfer for which the vorticity distribution is propor-
tional to the stream function perturbed by a sinusoidal stream of the form
∇2ψ = K

(
ψ−U sin(ax+by)

)
. We point out that the exact solutions obtained

by taking this form of vorticity to the best of our knowledge is yet not consider
either in Newtonian or non-Newtonian flows.

The plan of this paper is as follows: In section 2 basic flow equations are
considered and are transformed into a new system of equations. In section
3, some exact solutions of the new system of equations are determined. The
method used in determining the exact solutions to these equations is straight-
forward.

2. Basic Governing Equations

The non-dimensional equations governing the steady plane flow of an in-
compressible fluid of variable viscosity, in the absence of external force and
with no heat addition from Naeem and Jamil [9] are:
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ux + vy = 0, (1)

uux + vuy = −px +
1

Re

[
(2µux)x +

(
µ(uy + vx)

)
y

]
, (2)

uvx + vvy = −py +
1

Re

[
(2µvy)y +

(
µ(uy + vx)

)
x

]
, (3)

uTx + vTy =
1

RePr
(Txx + Tyy) +

Ec

Re
µ
[
2(u2

x + v2
y) + (uy + vx)2

]
, (4)

where u, v are the velocity components, x, y are cartesian coordinates, t is the
time, p the pressure, T the temperature, µ the coefficient of viscosity, Re, Pr
and Ec are Reynolds, Prandtl and Eckert numbers respectively. Equation (1)
implies the existence of the stream function ψ such that

u = ψy, v = −ψx. (5)

The system of Eqs.(1-4) on utilizing Eq.(5), transform into the following sys-
tem of equations:

Jx = −ψxω +
1

Re

[
µ(ψyy − ψxx)

]
y
, (6)

Jy = −ψyω − 4
Re

(µψxy)y +
1

Re

[
µ(ψyy − ψxx)

]
x
, (7)

ψyTx − ψxTy =
1

RePr
(Txx + Tyy) +

Ec

Re
µ
[
4(ψxy)2 + (ψyy − ψxx)2

]
, (8)

where the vorticity function ω and the generalized energy function J are de-
fined by

ω = −(ψxx + ψyy), (9)

J = p +
1
2
(ψ2

x + ψ2
y)−

2µψxy

Re
. (10)

Once a solution of system of Eqs.(6-8) is determined, the pressure p is ob-
tained form Eq.(10). We shall investigate fluid motion for which the vorticity
distribution is proportional to the stream function perturbed by a sinusoidal
stream. This is given by

ψxx + ψyy = K
(
ψ − U sin(ax + by)

)
, (11)

where K, a, b 6= 0 ,a 6= b and U are real constants. On substituting

Ψ = ψ − U sin(ax + by), (12)
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and employing Eq.(11), the Eq.(9) becomes

ω = −KΨ. (13)

Equation(6) and (7), utilizing Eqs.(12) and (13), become

Jx =
(KΨ2

2

)
x
− aUKΨcos(ax + by) +

1
Re

[
µ
(
Ψyy −Ψxx − (b2 − a2)×

×U sin(ax + by)
)]

y
, (14)

Jy =
(KΨ2

2

)
y
− bUKΨcos(ax + by)− 4

Re

[
µ
(
Ψxy − abU sin(ax + by)

)]
y
+

+
1

Re

[
µ
(
Ψyy −Ψxx − (b2 − a2)U sin(ax + by)

)]
x
. (15)

Equation(14) and (15), on using the compatibility condition Jxy = Jyx, provide

Hxx −Hyy + UK(aΨy − bΨx) cos(ax + by)− 4
Re

[
µ
{

Ψxy−

−abU sin(ax + by)
}]

xy
= 0, (16)

where

H =
µ
(
Ψyy −Ψxx − (b2 − a2)U sin(ax + by)

)

Re
.

Equation(16) is the equation that must be satisfied by the function Ψ and the
viscosity µ for the motion of an steady incompressible fluid of variable viscos-
ity in which the vorticity distribution is proportional to the stream function
perturbed by a sinusoidal stream. Equation(8), employing Eq.(12), becomes

(
Ψy + bU cos(ax + by)

)
Tx −

(
Ψx + aU cos(ax + by)

)
Ty =

=
1

RePr
(Txx + Tyy) +

Ec

Re
µ
[
4
{

Ψxy − abU sin(ax + by)
}2

+

+
{

Ψyy −Ψxx − (b2 − a2)U sin(ax + by)
}2]

. (17)

Equation(11), employing equation(12), becomes

Ψxx + Ψyy −KΨ = (a2 + b2)U sin(ax + by). (18)
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Introducing new variable

ξ = ax + by.

Transforming the Equations(16), (17) and (18), into new independent variable
ξ, we get

Ψξξ − ΛΨ = U sin ξ, (19)

where

Λ =
K

a2 + b2
,

and
(
µΨ

)
ξξ

= 0, (20)

Tξξ + EcPrΛ2(a2 + b2)µΨ2 = 0. (21)

3. Exact Solutions

In this section we present some exact solution of the system of equations(19-
21) as follows: We consider the following three cases:
Case-I: Λ = −n2, n > 0
Case-II: Λ = m2, m > 0
Case-III: Λ = 0
We now consider these cases separately and determine the solution of the
equations(19-21). Our strategy is that first we find Ψ from equation(19) and
use this Ψ to determine µ, T, ψ, u, v and p from system of Eqs.(20), (21),
(12), (5) and (10).
Case-I
For this case the solution of Eq.(19) in the physical plane is given by

Ψ = A1 cos(n(ax + by) + A2)− U sin(ax + by)
1− n2

, (22)

where A1 and A2 are real constants. Equation(20), utilizing Eq.(22), gives

µ =
A3(ax + by) + A4

A1 cos(n(ax + by) + A2)− U sin(ax+by)
1−n2

, (23)

where A3 and A4 are real constants. Equation(21), using Eq.(23), becomes

Tξξ + EcPrn4(a2 + b2)Ψ(A3ξ + A4) = 0. (24)



44 M. Jamil, N. A. Khan, A. Mahmood, G. Murtaza, Q. Din

The solution of Eq.(24) is

T = EcPrn4(a2 + b2)

[
A1A4

n2
cos(n(ax + by) + A2) +

A4U

n2 − 1
sin(ax + by)+

+
A1A3

n3

{
n(ax + by) cos(n(ax + by) + A2)− 2 sin(n(ax + by) + A2)

}
+

+
A3U

n2 − 1

{
2 cos(ax + by) + (ax + by) sin(ax + by)

}]
+ A5(ax + by) + A6, (25)

where A5 and A6 are real constants. The stream function ψ for this case is
given by

ψ =
Un2

n2 − 1
sin(ax + by) + A1 cos(n(ax + by) + A2). (26)

It represent a sinusoidal stream Un2

n2−1
sin(ax + by) in the positive x-direction

plus a perturbation that is periodic in x and y. The component of velocity
distribution from Eqs.(5) and (26), and pressure from Eq.(10), are given by

u =
Ubn2

n2 − 1
cos(ax + by)−A1nb sin(n(ax + by) + A2), (27)

v = − Uan2

n2 − 1
cos(ax + by) + A1na sin(n(ax + by) + A2), (28)

p =
U2n4

4(n2 − 1)
cos(2(ax + by) +

A1Un2

2(n− 1)
sin

(
(n− 1)(ax + by) + A2

)
+

+
A1Un2

4(n + 1)
sin

(
(n + 1)(ax + by) + A2

)
+

A3n
2(a2 − b2)
Re

(ay + bx)−

−(a2 + b2)n2

2(n2 − 1)2
{

Un cos(ax + by)−A1(n2 − 1) sin
(
n(ax + by) + A2

)}2
+

+
2abn2

Re

(
A3(ax + by) + A4

)
+ A7, (29)

where A7 is real constant. The compatibility condition Jxy = Jyx, implies
pxy = pyx, which is obviously satisfied for this case.
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Case-II
For this case

Ψ = B1e
m(ax+by) + B2e

−m(ax+by) − U sin(ax + by)
1 + m2

, (30)

where B1 and B2 are real constants. Equation(20), utilizing Eq.(30), gives

µ =
B3(ax + by) + B4

B1em(ax+by) + B2e−m(ax+by) − U sin(ax+by)
1+m2

, (31)

where B3 and B4 are real constants. Equation(21), using Eq.(31), becomes

Tξξ + EcPrm4(a2 + b2)Ψ(B3ξ + B4) = 0. (32)

The solution of Eq.(32) is

T = EcPrm4(a2 + b2)

[
B1B4

m2
em(ax+by) +

B2B4

m2
e−m(ax+by)+

+
B1B3

m3

(
m(ax + by)− 2

)
em(ax+by) +

B2B3

m3

(
m(ax + by) + 2

)
e−m(ax+by)−

− B3U

m2 + 1

{
2 cos(ax + by) + (ax + by) sin(ax + by)

}
− B3U

m2 + 1
sin(ax + by)

]
+

+B5(ax + by) + B6, (33)

where B5 and B6 are real constants. For this case stream function

ψ =
Um2

m2 + 1
sin(ax + by) + B1e

m(ax+by) + B2e
−m(ax+by), (34)

represent a sinusoidal stream Um2

m2+1
sin(ax+by) in the positive x-direction plus

a perturbation that is not periodic in x and y. The components of velocity
distribution and pressure, are given by

u =
Ubm2

m2 + 1
cos(ax + by) + B1mbem(ax+by) −B2mbe−m(ax+by), (35)

v = − Uam2

m2 + 1
cos(ax + by)−B1maem(ax+by) + B2mae−m(ax+by), (36)

p =
B3m

2(b2 − a2)
Re

(ay + bx)− 2abm2

Re

(
B3(ax + by) + B4

)
−
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− U2m2

4(m2 + 1)
cos(2(ax + by))− (a2 + b2)m2e−2m(ax+by)

2(m2 + 1)2
×

×
{

Umem(ax+by) cos(ax + by) + B1(m2 + 1)e2m(ax+by) −B2(m2 + 1)
}2
−

−B2Um2

m2 + 1
e−m(ax+by)

{
sin(ax + by)−m cos(ax + by)

}
−

−B1Um2

m2 + 1
em(ax+by)

{
m cos(ax + by) + sin(ax + by)

}
+ B7, (37)

where B7 is real constant. The compatibility condition is also satisfied for this
case.

Case-III
For this case, we have

Ψ = C1(ax + by) + C2 − U sin(ax + by), (38)

µ =
C3(ax + by) + C4

C1(ax + by) + C2 − U sin(ax + by)
, (39)

T = C5(ax + by) + C6, (40)

where C1, C2,..., C6 are real constants. For this case, we have Λ = 0, which
corresponds to an irrotational flow and it is the following uniform flow

ψ = C1(ax + by) + C2. (41)

The components of velocity distribution and pressure, in this case are given
by

u = C1b, (42)

v = −C1a, (43)

p = −(a2 + b2)C2
1

2
+ C7, (44)

where C7 is real constant.
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4. Results and Discussion

This section deals with the influence of the parameters n, m, a and b on the
velocity, temperature and pressure distribution profiles. Figures(1-8) are for
case-I and figures(9-16) are for case-II. The effect of Prandtl number Pr and
Eckert number Ec on the temperature profile is also included in this section.
Figs.1 and 2 show the velocity profile u in the direction of y for different
values of parameter n and b. It is clear form these figures that velocity has
oscillating behavior and magnitude of velocity or amplitude of the oscillation
increase with increase of parameter n and b. It is noted that increase in these
parameter increase the velocity in the most narrow position. Similar effects
are observed for the velocity component v in the direction of x as shown in
Figs. 3 and 4, and Figs. 5 and 6. shows temperature is increase with increase
of parameter n and b. Figs. 7 and 8 shows the pressure profile p in the direc-
tion of y. In Fig. 7 pressure increase with an increase of parameter n, however
pressure has mixed behavior for parameter b in Fig. 8.
Figs. 9 and 10 shows the velocity profile u increase with increase of the pa-
rameter m and b, however velocity component v have quite opposite behavior
as shown in Figs. 11 and 12. It can be further seen form Figs. 13, 14, 15
and 16 the effect of the parameter m and b on the temperature and pressure
profile are again quite opposite.

The effect of Prandtl and Eckert numbers on the temperature form Eqs.
(25) and (33) are clear that temperature is directly proportional to the Prandtl
and Eckert numbers and temperature increase or decrease with increase or de-
crease of Prandtl and Eckert numbers.

5. Concluding Remarks

Some exact solutions of the equations governing the steady laminar plane
motion of an incompressible fluid with variable viscosity and heat transfer are
determined. These solutions consist of flows for which the vorticity distribu-
tion is proportional to the streamfunction perturbed by a sinusoidal stream.

In order to determine the exact solutions, the flow equations are first written
in terms of the streamfunction ψ, the vorticity function ω and the generalized
energy function J . Employing the compatibility condition on the generalized
energy function J , an equation is determined that must be satisfied by the
function Ψ and the viscosity µ for the flow under consideration.

The solutions are obtained through the procedure described in section 3. All
the solutions satisfy the compatibility condition Jxy = Jyx(⇒ pxy = pyx). The
solutions in case-I represents a sinusoidal stream plus a perturbation that is
periodic in x and y. The solution in case-II, in general, represents a sinusoidal
stream plus a perturbation that is not periodic in x and y. When B1 = 0, in
the solution of case-II, the solution represents a sinusoidal flow in the region
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x > 0 , y > 0 perturbed by a part which decays and grows exponentially as
x , y increase for m > 0 and m < 0 , respectively. Similarly, we can give
description for flow in other regions. Finally the effect of various parameters
of interest on the velocity components, temperature and pressure are plotted
and discussed.
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