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ON EXISTENCE OF CANONICAL NUMBER SYSTEM IN
CERTAIN CLASSES OF PURE ALGEBRAIC NUMBER

FIELDS
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Abstract. Canonical Number System can be considered as natural gen-
eralization of radix representation of rational integers to algebraic integers.
We determine the existence of Canonical Number System in two classes of
pure algebraic number fields of degree 2n and n.
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1. Introduction

1.1. Introduction and Motivation. To discover an algebraic number field
whose ring of integers has a power basis is a classical problem in Algebraic
Number Theory [4].

Let L be an algebraic number field, ZL be the ring of integers in L and N
be the norm function with respect to L/Q. The pair (α,N0), where N0 =
{0, 1, 2, · · · , |N(α)| − 1} is called a canonical number system in ZL for an
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algebraic integer α if each algebraic integer α in L can be represented uniquely
as

α = a0 + a1α + · · ·+ alα
l, ±ai ∈ N0, al 6= 0

According to B. Kovács [1], the existence of a power integral basis in an exten-
sion field is equivalent to the existence of a canonical number system (CNS) for
its maximal order. B, Kovács also proved that up to parallel translations by
rational integers or algebraic conjugates of a generating integer of CNS there
exist only finite many CNSes in the ring of integers of an algebraic number
field [1].

The increased difficulty of theoretical attacks on the problem, and accom-
panying complexity of computational work due to increase in the degree of
field extension, has opened up research areas in the field. Recent calculations
by Y. Bilu, I. Gaál and K. Győry claim that the totally real sextic field F
whose Galois closure coincides with the symmetric group S6 generated by

f(x) = x6 − 5x5 + 2x4 + 18x3 − 11x2 − 19x + 1
took 4.8 months of total CPU time to enumerate the power bases generators
[13]. The group of mathematicians of the period noted that this work took
more time than all the previous smaller degree fields combined. This just goes
on to show that difficulties of the problem increase multiplicatively with in-
crease in the degree of extension.

CNS can be viewed as a natural generalization of the expression of ra-
tional integers to algebraic integers[11]. Namely, the pair(α,N0) with N0 =
{0, 1, 2, · · · , |N(α)| − 1} of CNS ensures in ZL a |NL(α)|-mal representation
as same phenomena as for 0 < a ∈ Z the decimal representation

a = a0 + a110 + · · ·+ al10l, ai ∈ N0, al 6= 0,

with N0 = {0, 1, 2, · · · , 9}.
There are connections of the theory of CNS to the theories of finite Au-

tomata and Fractal Tiling [5, 6, 8]. Recently S. Akiyama [7] put CNS into
a more general framework theory opening links to other areas, e.g. to long-
standing problem on Salem Numbers [3].

1.2. Notations, Terminologies and Known Results.
1.2.1. Monogeneity. Let L = Q(θ) be an algebraic number field of degree
n over the field Q of rational numbers, where θ is a root of an irreducible
polynomial f(x) of degree n over Q. The ring of integers of L is denoted by
ZL. The field L is said to be monogenic if ZL is generated by a single element,
that is, there exists η in ZL such that ZL = Z[η][cf. 4, 9]. The discriminant
of algebraic number θ denoted by D(θ) is defined by
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D(θ) =
∏

15i<j5n

(θi − θj)2 (1)

=
∏

15i5n

f ′(θi)

where f ′(x) denotes the derivative df(x)
dx and θi denote the conjugates of θ with

respect to the field extension L/Q [9]
Let L be an algebraic number field Q(θ) of degree n, where θ = n

√
m and

m 6= 1 is a square free integer, then

D(θ) = (−1)
n(n−1)

2 nn(−m)(n−1) = (−1)
(n+2)(n−1)

2 nnm(n−1) (2)

Discriminant of an algebraic number θ can also be calculated directly by
using any excellent computer programme like PARI/GP, GAP, MAGMA,
MAPLE and so on. Let dL denotes the field discriminant of L/Q, then we
have the relation

D(θ) = Ind(θ)2dL, (3)
where Ind(θ) denotes the module index [ZL : Z[θ]] of a submodule Z[θ] of ZL

for an integer θ.

Lemma 1.1[12]. Let L be an algebraic number field Q(θ) of degree n for some
algebraic number θ ∈ ZL. Then {1, θ, θ2, ..., θn−1} is an integral basis for L if
and only if Ind(θ) = 1.

1.2.2 Canonical Number System. Let L be an algebraic number field
and N be the norm function with respect to L/Q. The pair (α,N0), where
N0 = {0, 1, 2, ..., | N(α) | −1} is called a canonical number system (CNS) in
ZL for an algebraic integer α if each algebraic integer in L can be represented
uniquely as

a0 + a1α + · · ·+ alα
l, ai ∈ N0, al 6= 0.

The most important relation of CNS to monogeneity of an algebraic number
field is due to B. Kovács who claims

Theorem 1.2[2]. In the ring ZL of integers in a number field L of degree
n = 3, there exists a CNS if and only if L is monogenic, that is ZL = Z[θ] for
some θ in L.

1.3. Strategy to determine the existence of CNS. The general strategy
to determine the existence of CNS in an algebraic number field L is to find
some η in ZL such that Ind(η) = 1. This is satisfied by (3) when D(η) is a
square free rational integer. However, this is not the case for pure extension
fields of degree = 3 by (2). Sometimes L. Sticklberger’s Theorem can be useful
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in this regard, which claims that DL ≡ 0, 1 (mod 4). But, this still may not be
very helpful in pure algebraic number fields of degree = 3. Then the following
result is useful in determining the existence of CNS.

Lemma 1.3 [12]. Let θ be an algebraic integer, and let L = Q(θ) be the field
generated by it. If the minimal polynomial of θ over Q is Eisensteinian with
respect to the prime p, that is, it has the form xn +an−1x

n−1 + · · ·+a0, where
a0, · · · , an−1 are divisible by p and a0 is not divisible by p2, then the Ind(θ)
in L is not divisible by p.

The equality D(θ) = D(θ + k) for k ∈ Z, will also be used, which follows
directly from (1.1).

2. Family of Infinitely Many Pure Extension Fields of Degree 2n.

Theorem 2.1 A canonical number system exists in pure algebraic number
fields L = Q(θ), where θ is a root of the polynomial f(x) = x2n −m, with a
square free integer m 6= ±1 and m ≡ 2, 3 (mod 4).

Proof. For a square free integer m 6= ±1 , the polynomial f(x) = x2n −m is
p-Eisenstein for every prime p dividing m. Thus f(x) is irreducible over Q.
Therefore L = Q(θ) for f(θ) = 0 is a pure algebraic number field of degree 2n.

From (1.2), by D(θ) = (−1)
2n(2n−1)

2 NL(2nθ2n−1)
= (−1)(2

n−1)(2n−1)(2n)2
n
NL(θ2n−1) = (−1)(2

n−1)(2n−1)(2n)2
n
(−m)2

n−1

= (−1)2
n−1

(2n)2
n
m2n−1.

Thus we have
D(θ) = (−1)2

n−1
(2n)2

n
m2n−1. (4)

Case-I: Given m ≡ 2 (mod 4) implies that m = 2(2k + 1), k ∈ Z, so that
prime factorization of m in Z is m = 2p1p2 · · · pl with pi odd primes for
1 5 i 5 l. Therefore

D(θ) = ±(2n)2
n
(2p1p2 · · · pl)2

n−1 = Ind(θ)2dL (5)

By Lemma 1.3 Ind(θ) is not divisible by 2 as well as pi for 1 5 i 5 l. Thus we
obtain Ind(θ) = 1 and D(θ) = dL, and hence ZL = Z[θ], i.e L is monogenic.
Hence CNS exists in L by Theorem 1.2.

Case-II: Given m ≡ 3 (mod 4) implies that m = 4k + 3, k ∈ Z.
The next parallel transformation for f(x) gives

g(x) = f(x− 1) = (x− 1)2
n −m = x2n

+ a2n−1x
2n−1 + · · ·+ (1−m),
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where each ai, 1 5 i 5 2n − 1 is divisible by 2 and by 1−m = 1− (4k + 3) =
−4k − 2 = −2(2k + 1), (1 − m) is exactly divisible by 2. Thus g(x) is 2-
Eisenstein. Then g(x) is irreducible over Q, and so is f(x) = x2n −m. Thus
again as in Case-I, none of the prime factors of D(θ) = D(θ−1) divides Ind(θ).
Therefore Ind(θ) = 1 and D(θ) = dL, and hence ZL = Z[θ] holds, i.e L is
monogenic. Hence CNS exists in L. ¤

Example 2.2 Monogeneity of pure quartic fields L = Q(θ), θ = 4
√

m with a
square free integer m ≡ 2, 3 (mod 4) is evident from the above theorem for
n = 2. The same result can be verified from [10].

Example 2.3 Canonical Number System exists in pure octic fields L = Q(θ),
θ = 8

√
m with a square free integer m ≡ 2, 3 (mod 4). This is an immediate

consequence from the above theorem for n = 3.

3. Family of Infinitely Many Pure Extension Fields of Degree n.

Here we call an irreducible polynomial f(x) over the field Q a CNS poly-
nomial, if a root of f(x) gives a CNS.

Theorem 3.1 Let L = Q(θ), where θ = n
√

m, with a square free integer
m 6= ±1. If all the prime factors of n divide m then L is monogenic and the
minimal polynomial of θ is a CNS polynomial.

Proof. Let f(x) = xn −m be the minimal polynomial of θ. As m 6= ±1 is a
square free integer, f(x) is irreducible over Q. From the equation (2)

D(θ) = (−1)
(n+2)(n−1)

2 nnmn−1. (6)

Let n = p1
α1p2

α2 · · · pk
αk and m = q1q2 · · · ql be the prime factorizations

of n and m respectively. Since each prime divisor of n divides m, for each
i ∈ {1, 2, · · · , k} there exists j ∈ {1, 2, · · · , l} such that pi = qj . We re-index
the qj if it is necessary,such that,

p1 = q1, p2 = q2, · · · , pk = qk; n = q1
α1q2

α2 · · · qk
αk ,

so that from the equation (6)

D(θ) = (−1)
(n+2)(n−1)

2 (q1
α1q2

α2 · · · qk
αk)n(q1q2 · · · ql)n−1

= (−1)
(n+2)(n−1)

2 q1
nα1+n−1q2

nα2+n−1 · · · qk
nαk+n−1qn−1

k+1qn−1
k+2 · · · qn−1

l

= Ind(θ)2dL.

But f(x) = xn −m is qj-Eisenstein for each 1 5 j 5 l. Therefore by Lemma
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1.3, none of qj divides Ind(θ)(1 5 j 5 l). Hence Ind(θ) = 1 implies that
D(θ) = dL. Therefore L is monogenic and a CNS exists in L. ¤

Example 3.2 Consider f(x) = x12 − 6. The polynomial is 2 as well as 3-
Eisenstein, hence is irreducible over Q and L = Q(θ), with a root θ of f(x)
is an algebraic number field of degree 12. D(θ) = −1212611 = −235323 =
(Ind(θ))2dL. But Ind(θ) is not divisible by 2 and 3. Therefore Ind(θ) = 1.
Hence f(x) = x12 − 6 is a CNS polynomial.
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