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A COMMON UNIQUE RANDOM FIXED POINT

THEOREMS IN S-METRIC SPACES

SHABAN SEDGHI1, NABI SHOBE2

Abstract. In this paper, we present some new definitions of S-metric
spaces and prove some random fixed point theorem for two random func-
tions in complete S-metric spaces. We get some improved versions of
several fixed point theorems in S-metric spaces.
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1. Introduction

In 1922, the Polish mathematician, Banach, proved a theorem which en-
sures, under appropriate conditions, the existence and uniqueness of a fixed
point. His result is called Banach’s fixed point theorem or the Banach con-
traction principle. This theorem provides a technique for solving a variety
of applied problems in mathematical science and engineering. Many authors
have extended, generalized and improved Banach’s fixed point theorem in dif-
ferent ways. In [8] Jungck introduced more generalized commuting mappings,
called compatible mappings, which are more general than commuting and
weakly commuting mappings. This concept has been useful for obtaining more
comprehensive fixed point theorems(see, e.g.,[1, 3, 4, 5, , 9, 11, 16, 19, 20, 22, 23].
One such generalization is generalized metric space or D-metric space initiated
by Dhage [6] in 1992. He proved some results on fixed points for a self-map
satisfying a contraction for complete and bounded D-metric spaces. Rhoades
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[17] generalized Dhage’s contractive condition by increasing the number of fac-
tors and proved the existence of unique fixed point of a self-map in D-metric
space. Recently, motivated by the concept of compatibility for metric space,
Singh and Sharma [22] introduced the concept of D-compatibility of maps in
D-metric space and proved some fixed point theorems using a contractive con-
dition.Naidu et.al.[12, 13, 14] observed that almost all fixed point theorems in
D-metric space are not valid or of doubtful validity. Also, Sedghi and Shobe
[18, 19, 20] introduced D∗-metric space by modifying the tetrahedral inequal-
ity in D-metric space and proved some basic result in it. In this paper, we
introduce D∗-metric which is a probable modification of the definition of D-
metric introduced by Dhage [6] and prove some basic properties in D∗-metric
spaces. We also prove a common fixed point theorem for six mappings under
the condition of weakly compatible mappings in D∗-metric spaces.

In what follows (X,D∗) will denote a D∗-metric space, N the set of all
natural numbers, and R+ the set of all positive real numbers.

The definition of D*-metric as follows:

Definition 1. Let X be a nonempty set. A generalized metric (or D∗-metric)
on X is a function: D∗ : X3 −→ [0.∞) that satisfies the following conditions
for each x, y, z, a ∈ X.

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}),(symmetry) where p is a permutation func-

tion,
(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

The pair (X,D∗) is called a generalized metric (or D∗-metric) space.

In this paper we introduce new concept of a generalized metric space which
is more generalized than D*-metric space, that is S- metric space and prove
some basic properties and some fixed point theorems in S-metric spaces.

Definition 2. Let X be a nonempty set. A generalized metric (or S-metric)
on X is a function: S : X3 −→ [0,∞) that satisfies the following conditions
for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(a, y, z) + S(a, x, x).

The pair (X,S) is called a generalized metric (or S-metric) space.

Immediate examples of such a function are
(a) If X = Rn then we define

S(x, y, z) = ||y + x− 2z||+ ||y − z||.
(b) S(x, y, z) = d(x, y) + d(x, z) here, d is the ordinary metric on X.
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(c) If X = Rn then we define

S(x, y, z) = ||x− z||+ ||y − z||
(d) If X = R then we define

S(x, y, z) = |ay+z − a2x|+ |y − z|,
for every x, y, x ∈ R, a > 0 and a ̸= 1.

(e)

S(x, y, z) = |ad(x,y) − ad(y,z)|+ d(y, z),

for every x, y, z ∈ X, a > 0 and a ̸= 1. Here, d is an ordinary metric on X.

Remark 1. In a S-metric space, we prove that S(x, y, y) = S(y, x, x). Because
by (3) and (2) of Definition 2 we have:

(i) S(x, y, y) ≤ S(y, y, y) + S(y, x, x) = S(y, x, x) and similarly
(ii)S(y, x, x) ≤ S(x, x, x) + S(x, y, y) = S(x, y, y).

Hence by (i),(ii) we get S(x, y, y) = S(y, x, x).

Remark 2. Let (X,S) be a S-metric space. If we define f : X2 −→ [0,∞) as
f(x, y) = S(x, y, y) for all x, y ∈ X then f is an ordinary metric on X.

Proof. Clearly f(x, y) ≥ 0 for all x, y ∈ X and f(x, y) = 0 iff x = y.
f(x, y) = S(x, y, y) = S(y, x, x) = f(y, x) from Remark 1.
From Definition 2 we have

f(x, y) = S(x, y, y)

≤ S(z, y, y) + S(z, x, x) = f(z, y) + f(z, x).

Thus f is a metric on X. �
Let (X,S) be a S-metric space. For r > 0 define

BS(x, r) = {y ∈ X : S(x, y, y) < r}.
Example 1. Let X = R. Denote S(x, y, z) = |3y+z − 32x| + |y − z| for all
x, y, z ∈ R. Thus

BS(1, 2) = {y ∈ R : S(1, y, y) < 2} =
{
y ∈ R : |32y − 32| < 2

}
=

{
y ∈ R :

lg73
2 < y <

lg113
2

}
= (

lg73
2 ,

lg113
2 ).

Definition 3. Let (X,S) be a S-metric space and A ⊂ X.
(1) If for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A, then subset

A is called open subset of X.
(2) Subset A of X is said to be S-bounded if there exists r > 0 such that

S(x, y, y) < r for all x, y ∈ A.
(3)A sequence {xn} in X converges to x if and only if S(xn, x, x) =

S(x, xn, xn) → 0 as n → ∞.That is for each ϵ > 0 there exists n0 ∈ N such
that

∀n ≥ n0 =⇒ S(x, xn, xn) < ϵ.
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(4) Sequence {xn} in X is called a Cauchy sequence if for each ϵ > 0 , there
exists n0 ∈ N such that S(xn, xm, xm) < ϵ for each n,m ≥ n0. The S-metric
space (X,S) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0
such that BS(x, r) ⊂ A. Then τ is a topology on X (induced by the S-metric
S).

Lemma 1. Let (X,S) be a S-metric space. If r > 0, then ball BS(x, r) with
center x ∈ X and radius r is open ball.

Proof. Let z ∈ BS(x, r) , hence S(x, z, z) < r. If set S(x, z, z) = δ and r′ =
r− δ then we prove that BS(z, r

′) ⊆ BS(x, r). Let y ∈ BS(z, r
′), by triangular

inequality we have S(x, y, y) = S(y, x, x) ≤ S(z, x, x) +S(z, y, y) < r′ + δ = r.
Hence BS(z, r

′) ⊆ BS(x, r). That is ball BS(x, r) is open ball. �
Lemma 2. Let (X,S) be a S- metric space. If there exist sequences {xn} and
{yn} such that xn −→ x and yn −→ y, then S(xn, yn, yn) −→ S(x, y, y).

Proof. Since sequence {(xn, yn, yn)} in X3 converges to a point
(x, y, y) ∈ X3 i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y,

for each ϵ > 0 there exist
n1 ∈ N such that for every n ≥ n1 =⇒ S(x, xn, xn) <

ϵ
2

and
n2 ∈ N such that for every n ≥ n2 =⇒ S(y, yn, yn) <

ϵ
2 .

If n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we have

S(xn, yn, yn) ≤ S(x, yn, yn) + S(x, xn, xn)

≤ S(y, yn, yn) + S(y, x, x) + S(x, xn, xn)

<
ϵ

2
+

ϵ

2
+ S(y, x, x) = S(y, x, x) + ϵ.

Hence we have
S(xn, yn, yn)− S(y, x, x) < ϵ.

On the other hand

S(y, x, x) ≤ S(xn, x, x) + S(xn, y, y)

≤ S(xn, x, x) + S(yn, y, y) + S(yn, xn, xn)

<
ϵ

2
+

ϵ

2
+ S(xn, yn, yn) = S(xn, yn, yn) + ϵ.

That is,
S(y, x, x)− S(xn, yn, yn) < ϵ.

Therefore we have |S(xn, yn, yn)− S(x, y, y)| < ϵ, i.e.

lim
n→∞

S(xn, yn, yn) = S(x, y, y)
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�

Lemma 3. Let (X,S) be a S-metric space. If sequence {xn} in X converges
to x, then x is unique.

Proof. Let xn −→ y and y ̸= x. Since {xn} converges to x and y, for each
ϵ > 0 there exist
n1 ∈ N such that for every n ≥ n1 =⇒ S(xn, x, x) <

ϵ
2

and
n2 ∈ N such that for every n ≥ n2 =⇒ S(xn, y, y) <

ϵ
2 .

If n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we have

S(x, y, y) ≤ S(xn, x, x) + S(xn, y, y) <
ϵ

2
+

ϵ

2
= ε.

Hence S(x, y, y) = 0 is a contradiction. So, x = y. �

Lemma 4. Let (X,S) be a S-metric space. If sequence {xn} in X is converges
to x, then sequence {xn} is a Cauchy sequence.

Proof. Since xn −→ x for each ϵ > 0 there exists
n1 ∈ N such that for every n ≥ n1 =⇒ S(x, xn, xn) <

ϵ
2

and
n2 ∈ N such that for every m ≥ n2 =⇒ S(x, xm, xm) < ϵ

2 .
If n0 = max{n1, n2}, then for every n,m ≥ n0 by triangular inequality we
have

S(xn, xm, xm) ≤ S(x, xn, xn) + S(x, xm, xm) <
ϵ

2
+

ϵ

2
= ϵ.

Hence sequence {xn} is a Cauchy sequence. �

2. Main Results

Definition 4. Let F : R×X −→ X be a function, where X is a nonempty set.
Then function g : R −→ X is said to be a random fixed point of the function
F if F (t, g(t)) = g(t) for all t in R.

We shall prove the following theorem.

Theorem 5. Let (X,S) be a complete S- metric space and let
F,G : R×X −→ X be two functions satisfying the following condition:

(i) S(F (t, x), G(t, y), G(t, y))

≤ k1.S(x, F (t, x), F (t, x)) + k2.S(y,G(t, y), G(t, y)) + k3.S(x, y, y),

for every x, y ∈ X , t ∈ R where ki ≥ 0 for i = 1, 2, 3 and 0 < k1+k2+k3 < 1.
Then F and G have a unique common random fixed point.
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Proof. We define a sequence of functions {gn} as gn : R −→ X is abitrary
function for t ∈ R, and n = 0, 1, 2, 3, · · ·

g2n+1(t) = F (t, g2n(t)), g2n+2(t) = G(t, g2n+1(t)).

If g2n(t) = g2n+1(t) = g2n+2(t) for t ∈ R, for some n then we set that g2n(t) is a
random fixed point of F and G. Therefore, we suppose that no two consecutive
terms of sequence {gn} are equal. Now by using (i) for all t ∈ R we have

S(g2n+1(t), g2n+2(t), g2n+2(t))

= S(F (t, g2n(t)), G(t, g2n+1(t)), G(t, g2n+1(t)))

≤ k1S(g2n(t), F (t, g2n(t)), F (t, g2n(t)))

+ k2S(g2n+1(t), G(t, g2n+1(t)), G(t, g2n+1(t)))

+ k3S(g2n(t), g2n+1(t), g2n+1(t)).

Therefore,

S(g2n+1(t), g2n+2(t), g2n+2(t)) ≤ k1 + k3
1− k2

S(g2n(t), g2n+1(t), g2n+1(t))

...

≤ (
k1 + k3
1− k2

)
2n+1

S(g0(t), g1(t), g1(t)).

Similarly we have

S(g2n(t), g2n+1(t), g2n+1(t)) ≤ (
k1 + k3
1− k2

)
2n

S(g0(t), g1(t), g1(t)).

Thus for every n ∈ N we get,

S(gn(t), gn+1(t), gn+1(t)) ≤ (
k1 + k3
1− k2

)
n

S(g0(t), g1(t), g1(t)).

Now we show that {gn(t)} is Cauchy sequence.

S(gn(t), gm(t), gm(t))

≤ S(gn+1(t), gm(t), gm(t)) + S(gn+1(t), gn(t), gn(t))

≤ S(gn+2(t), gm(t), gm(t)) + S(gn+2(t), gn+1(t), gn+1(t))

+ S(gn+1(t), gn(t), gn(t))

...

≤ S(gm−1(t), gm(t), gm(t)) + · · ·+ S(gn+2(t), gn+1(t), gn+1(t))

+ S(gn+1(t), gn(t), gn(t))

= S(gm−1(t), gm(t), gm(t)) + · · ·+ S(gn+1(t), gn+2(t), gn+2(t))

+ S(gn(t), gn+1(t), gn+1(t)).
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If q = k1+k3
1−k2

then

S(gn(t), gm(t), gm(t))

≤ qm−1S(g0(t), g1(t), g1(t)) + qm−2S(g0(t), g1(t), g1(t))

+ · · ·+ qnS(g0(t), g1(t), g1(t))

=
qn − qm

1− q
S(g0(t), g1(t), g1(t))

≤ qn

1− q
S(g0(t), g1(t), g1(t)) −→ 0.

Thus, {gn(t)} is Cauchy and by the completeness of X, {gn(t)} converges
to g(t) in X. Now we prove that F (t, g(t)) = g(t). Replace x = g(t) and
y = g2n+1(t) in inequality (i) we have

S(F (t, g(t)), G(t, g2n(t)), G(t, g2n(t)))

≤ k1S(g(t), F (t, g(t)), F (t, g(t))) + k2S(g2n(t), G(t, g2n(t)), G(t, g2n(t)))

+ k3S(g(t), g2n(t), g2n(t)).

On making n → ∞ in the above inequality we get

S(F (t, g(t)), g(t), g(t))

≤ k1S(g(t), F (t, g(t)), F (t, g(t))) + k2S(g(t), g(t), g(t)) + k3S(g(t), g(t), g(t))

= k1S(g(t), F (t, g(t)), F (t, g(t))).

Therefore S(g(t), F (t, g(t)), F (t, g(t))) = 0 that is F (t, g(t)) = g(t). Replace
x = g(t) and y = g(t) in inequality (i) we have

S(F (t, g(t)), G(t, g(t)), G(t, g(t)))

≤ k1S(g(t), F (t, g(t)), F (t, g(t))) + k2S(g(t), G(t, g(t)), G(t, g(t)))

+ k3S(g(t), g(t), g(t)) = k2S(g(t), G(t, g(t)), G(t, g(t))).

Therefore S(F (t, g(t)), G(t, g(t)), G(t, g(t)) = 0 that is F (t, g(t)) = G(t, g(t)) =
g(t) Thus g(t) is a common random fixed point of F and G.

Now to prove uniqueness let if possible h(t) ̸= g(t) be another common
random fixed point of F and G. Then by inequality (i) we have

S(g(t), h(t), h(t)) = S(F (t, g(t)), G(t, h(t)), G(t, h(t))

≤ k1S(g(t), F (t, g(t)), F (t, g(t))) + k2S(h(t), G(t, h(t)), G(t, h(t)))

+ k3S(g(t), h(t), h(t))

= k3S(g(t), h(t), h(t)).

Therefore S(g(t), h(t), h(t)) = 0 that is g(t) = h(t). Thus g(t) is a unique
common random fixed point of F and G. �
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Corollary 6. Let (X,S) be a complete S- metric space and let
F : R×X −→ X be a function satisfying the following condition:

S(F (t, x), F (t, y), F (t, y))

≤ k1.S(x, F (t, x), F (t, x)) + k2.S(y, F (t, y), F (t, y)) + k3.S(x, y, y),

for every x, y ∈ X , t ∈ R where ki ≥ 0 for i = 1, 2, 3 and 0 < k1+k2+k3 < 1.
Then F have a unique common random fixed point.

Proof. By Theorem 5, it is enough set F (t, y) = G(t, y). �

Corollary 7. Let (X,S) be a complete S- metric space and let
F : R×X −→ X be a function satisfying the following condition:

S(F (t, x), F (t, y), F (t, y)) ≤ kS(x, y, y),

for every x, y ∈ X , t ∈ R where 0 < k < 1.
Then F have a unique common random fixed point.

Proof. By Corollary 6, it is enough set k1 = k2 = 0. �

Now we give an example to support our Corollary 7.

Example 2. Let X = R and let S be the S-metric on X ×X ×X defined as
follows:

S(x, y, z) = |x+ y − 2z|+ |x− z|,

for all x, y, z ∈ X. Then (X,S) is a S- metric space. Define F (t, x) = x sin t−1
4 .

Then

S(F (t, x), F (t, y), F (t, y)) =
1

2
| sin t||x− y|,

and

S(x, y, y) = 2|x− y|.

Hence for 1
4 ≤ k < 1, all the conditions of Corollary 7 are satisfied and

g(t) = 1
sin t−4 is a common random fixed point of F .
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