A COMMON UNIQUE RANDOM FIXED POINT THEOREMS IN S-METRIC SPACES

SHABAN SEDGHI¹, NABI SHOBE²

ABSTRACT. In this paper, we present some new definitions of S-metric spaces and prove some random fixed point theorem for two random functions in complete S-metric spaces. We get some improved versions of several fixed point theorems in S-metric spaces.

Key words: D^* -metric space, S-metric space, common fixed point theorem

AMS SUBJECT CLASSIFICATION 2010: 47H10, 54H25.

1. Introduction

In 1922, the Polish mathematician, Banach, proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. His result is called Banach's fixed point theorem or the Banach contraction principle. This theorem provides a technique for solving a variety of applied problems in mathematical science and engineering. Many authors have extended, generalized and improved Banach's fixed point theorem in different ways. In [8] Jungck introduced more generalized commuting mappings, called *compatible* mappings, which are more general than commuting and weakly commuting mappings. This concept has been useful for obtaining more comprehensive fixed point theorems(see, e.g.,[1,3,4,5,,9,11,16,19,20,22,23]. One such generalization is generalized metric space or D-metric space initiated by Dhage [6] in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades

 $^{^1(\}mbox{The corresponding author})$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. Email: sedghi_gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir

²Department of Mathematics, Islamic Azad University-Babol Branch, Babol, Iran. Email: nabi_shobe@yahoo.com.

[17] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, motivated by the concept of compatibility for metric space, Singh and Sharma [22] introduced the concept of D-compatibility of maps in D-metric space and proved some fixed point theorems using a contractive condition. Naidu et.al. [12, 13, 14] observed that almost all fixed point theorems in D-metric space are not valid or of doubtful validity. Also, Sedghi and Shobe [18, 19, 20] introduced D^* -metric space by modifying the tetrahedral inequality in D-metric space and proved some basic result in it. In this paper, we introduce D^* -metric which is a probable modification of the definition of D-metric introduced by Dhage [6] and prove some basic properties in D^* -metric spaces. We also prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in D^* -metric spaces.

In what follows (X, D^*) will denote a D^* -metric space, \mathbb{N} the set of all natural numbers, and \mathbb{R}^+ the set of all positive real numbers.

The definition of D*-metric as follows:

Definition 1. Let X be a nonempty set. A generalized metric (or D^* -metric) on X is a function: $D^*: X^3 \longrightarrow [0,\infty)$ that satisfies the following conditions for each $x, y, z, a \in X$.

- (1) $D^*(x, y, z) \ge 0$,
- (2) $D^*(x, y, z) = 0$ if and only if x = y = z,
- (3) $D^*(x, y, z) = D^*(p\{x, y, z\}), (symmetry)$ where p is a permutation function,
- (4) $D^*(x, y, z) \leq D^*(x, y, a) + D^*(a, z, z)$. The pair (X, D^*) is called a generalized metric (or D^* -metric) space.

In this paper we introduce new concept of a generalized metric space which is more generalized than D*-metric space, that is S- metric space and prove some basic properties and some fixed point theorems in S-metric spaces.

Definition 2. Let X be a nonempty set. A generalized metric (or S-metric) on X is a function: $S: X^3 \longrightarrow [0, \infty)$ that satisfies the following conditions for each $x, y, z, a \in X$,

- (1) $S(x, y, z) \ge 0$,
- (2) S(x, y, z) = 0 if and only if x = y = z,
- (3) $S(x, y, z) \le S(a, y, z) + S(a, x, x)$.

The pair (X, S) is called a generalized metric (or S-metric) space.

Immediate examples of such a function are

(a) If $X = \mathbb{R}^n$ then we define

$$S(x, y, z) = ||y + x - 2z|| + ||y - z||.$$

(b) S(x, y, z) = d(x, y) + d(x, z) here, d is the ordinary metric on X.

(c) If $X = \mathbb{R}^n$ then we define

$$S(x, y, z) = ||x - z|| + ||y - z||$$

(d) If $X = \mathbb{R}$ then we define

$$S(x, y, z) = |a^{y+z} - a^{2x}| + |y - z|,$$

for every $x, y, x \in \mathbb{R}, a > 0$ and $a \neq 1$.

(e)

$$S(x, y, z) = |a^{d(x,y)} - a^{d(y,z)}| + d(y, z),$$

for every $x, y, z \in X, a > 0$ and $a \neq 1$. Here, d is an ordinary metric on X.

Remark 1. In a S-metric space, we prove that S(x, y, y) = S(y, x, x). Because by (3) and (2) of Definition 2 we have:

- (i) $S(x, y, y) \leq S(y, y, y) + S(y, x, x) = S(y, x, x)$ and similarly
- $(ii) S(y, x, x) \le S(x, x, x) + S(x, y, y) = S(x, y, y).$

Hence by (i),(ii) we get S(x, y, y) = S(y, x, x).

Remark 2. Let (X,S) be a S-metric space. If we define $f: X^2 \longrightarrow [0,\infty)$ as f(x,y) = S(x,y,y) for all $x,y \in X$ then f is an ordinary metric on X.

Proof. Clearly $f(x,y) \ge 0$ for all $x,y \in X$ and f(x,y) = 0 iff x = y. f(x,y) = S(x,y,y) = S(y,x,x) = f(y,x) from Remark 1.

From Definition 2 we have

$$f(x,y) = S(x,y,y) \leq S(z,y,y) + S(z,x,x) = f(z,y) + f(z,x).$$

Thus f is a metric on X.

Let (X, S) be a S-metric space. For r > 0 define

$$B_S(x,r) = \{ y \in X : S(x,y,y) < r \}.$$

Example 1. Let $X = \mathbb{R}$. Denote $S(x, y, z) = |3^{y+z} - 3^{2x}| + |y - z|$ for all $x, y, z \in \mathbb{R}$. Thus

$$B_S(1,2) = \left\{ y \in \mathbb{R} : S(1,y,y) < 2 \right\} = \left\{ y \in \mathbb{R} : |3^{2y} - 3^2| < 2 \right\}$$

= $\left\{ y \in \mathbb{R} : \frac{\lg_3^7}{2} < y < \frac{\lg_3^{11}}{2} \right\} = (\frac{\lg_3^7}{2}, \frac{\lg_3^{11}}{2}).$

Definition 3. Let (X,S) be a S-metric space and $A \subset X$.

- (1) If for every $x \in A$ there exists r > 0 such that $B_S(x,r) \subset A$, then subset A is called open subset of X.
- (2) Subset A of X is said to be S-bounded if there exists r > 0 such that S(x, y, y) < r for all $x, y \in A$.
- (3) A sequence $\{x_n\}$ in X converges to x if and only if $S(x_n, x, x) = S(x, x_n, x_n) \to 0$ as $n \to \infty$. That is for each $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$\forall n \ge n_0 \Longrightarrow S(x, x_n, x_n) < \epsilon.$$

(4) Sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S(x_n, x_m, x_m) < \epsilon$ for each $n, m \geq n_0$. The S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exists r > 0 such that $B_S(x,r) \subset A$. Then τ is a topology on X (induced by the S-metric S).

Lemma 1. Let (X, S) be a S-metric space. If r > 0, then ball $B_S(x, r)$ with center $x \in X$ and radius r is open ball.

Proof. Let $z \in B_S(x,r)$, hence S(x,z,z) < r. If set $S(x,z,z) = \delta$ and $r' = r - \delta$ then we prove that $B_S(z,r') \subseteq B_S(x,r)$. Let $y \in B_S(z,r')$, by triangular inequality we have $S(x,y,y) = S(y,x,x) \le S(z,x,x) + S(z,y,y) < r' + \delta = r$. Hence $B_S(z,r') \subseteq B_S(x,r)$. That is ball $B_S(x,r)$ is open ball.

Lemma 2. Let (X, S) be a S- metric space. If there exist sequences $\{x_n\}$ and $\{y_n\}$ such that $x_n \longrightarrow x$ and $y_n \longrightarrow y$, then $S(x_n, y_n, y_n) \longrightarrow S(x, y, y)$.

Proof. Since sequence $\{(x_n, y_n, y_n)\}$ in X^3 converges to a point $(x, y, y) \in X^3$ i.e.

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y,$$

for each $\epsilon > 0$ there exist

 $n_1 \in \mathbb{N}$ such that for every $n \ge n_1 \Longrightarrow S(x, x_n, x_n) < \frac{\epsilon}{2}$ and

 $n_2 \in \mathbb{N}$ such that for every $n \geq n_2 \Longrightarrow S(y, y_n, y_n) < \frac{\epsilon}{2}$.

If $n_0 = \max\{n_1, n_2\}$, then for every $n \ge n_0$ by triangular inequality we have

$$S(x_n, y_n, y_n) \leq S(x, y_n, y_n) + S(x, x_n, x_n)$$

$$\leq S(y, y_n, y_n) + S(y, x, x) + S(x, x_n, x_n)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} + S(y, x, x) = S(y, x, x) + \epsilon.$$

Hence we have

$$S(x_n, y_n, y_n) - S(y, x, x) < \epsilon.$$

On the other hand

$$\begin{array}{rcl} S(y,x,x) & \leq & S(x_n,x,x) + S(x_n,y,y) \\ & \leq & S(x_n,x,x) + S(y_n,y,y) + S(y_n,x_n,x_n) \\ & < & \frac{\epsilon}{2} + \frac{\epsilon}{2} + S(x_n,y_n,y_n) = S(x_n,y_n,y_n) + \epsilon. \end{array}$$

That is,

$$S(y, x, x) - S(x_n, y_n, y_n) < \epsilon.$$

Therefore we have $|S(x_n, y_n, y_n) - S(x, y, y)| < \epsilon$, i.e.

$$\lim_{n \to \infty} S(x_n, y_n, y_n) = S(x, y, y)$$

Lemma 3. Let (X, S) be a S-metric space. If sequence $\{x_n\}$ in X converges to x, then x is unique.

Proof. Let $x_n \longrightarrow y$ and $y \neq x$. Since $\{x_n\}$ converges to x and y, for each $\epsilon > 0$ there exist

 $n_1 \in \mathbb{N}$ such that for every $n \ge n_1 \Longrightarrow S(x_n, x, x) < \frac{\epsilon}{2}$

 $n_2 \in \mathbb{N}$ such that for every $n \geq n_2 \Longrightarrow S(x_n, y, y) < \frac{\epsilon}{2}$.

If $n_0 = \max\{n_1, n_2\}$, then for every $n \ge n_0$ by triangular inequality we have

$$S(x, y, y) \le S(x_n, x, x) + S(x_n, y, y) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \varepsilon.$$

Hence S(x, y, y) = 0 is a contradiction. So, x = y.

Lemma 4. Let (X, S) be a S-metric space. If sequence $\{x_n\}$ in X is converges to x, then sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Since $x_n \longrightarrow x$ for each $\epsilon > 0$ there exists $n_1 \in \mathbb{N}$ such that for every $n \geq n_1 \Longrightarrow S(x, x_n, x_n) < \frac{\epsilon}{2}$ and

 $n_2 \in \mathbb{N}$ such that for every $m \ge n_2 \Longrightarrow S(x, x_m, x_m) < \frac{\epsilon}{2}$.

If $n_0 = \max\{n_1, n_2\}$, then for every $n, m \ge n_0$ by triangular inequality we have

$$S(x_n, x_m, x_m) \le S(x, x_n, x_n) + S(x, x_m, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence sequence $\{x_n\}$ is a Cauchy sequence.

2. Main Results

Definition 4. Let $F: \mathbb{R} \times X \longrightarrow X$ be a function, where X is a nonempty set. Then function $g: \mathbb{R} \longrightarrow X$ is said to be a random fixed point of the function F if F(t,g(t)) = g(t) for all t in \mathbb{R} .

We shall prove the following theorem.

Theorem 5. Let (X, S) be a complete S- metric space and let $F, G : \mathbb{R} \times X \longrightarrow X$ be two functions satisfying the following condition:

(i)
$$S(F(t,x), G(t,y), G(t,y))$$

 $\leq k_1.S(x, F(t,x), F(t,x)) + k_2.S(y, G(t,y), G(t,y)) + k_3.S(x,y,y),$

for every $x, y \in X$, $t \in \mathbb{R}$ where $k_i \geq 0$ for i = 1, 2, 3 and $0 < k_1 + k_2 + k_3 < 1$. Then F and G have a unique common random fixed point.

Proof. We define a sequence of functions $\{g_n\}$ as $g_n : \mathbb{R} \longrightarrow X$ is abitrary function for $t \in \mathbb{R}$, and $n = 0, 1, 2, 3, \cdots$

$$g_{2n+1}(t) = F(t, g_{2n}(t)), g_{2n+2}(t) = G(t, g_{2n+1}(t)).$$

If $g_{2n}(t) = g_{2n+1}(t) = g_{2n+2}(t)$ for $t \in \mathbb{R}$, for some n then we set that $g_{2n}(t)$ is a random fixed point of F and G. Therefore, we suppose that no two consecutive terms of sequence $\{g_n\}$ are equal. Now by using (i) for all $t \in \mathbb{R}$ we have

$$S(g_{2n+1}(t), g_{2n+2}(t), g_{2n+2}(t))$$

$$= S(F(t, g_{2n}(t)), G(t, g_{2n+1}(t)), G(t, g_{2n+1}(t)))$$

$$\leq k_1 S(g_{2n}(t), F(t, g_{2n}(t)), F(t, g_{2n}(t)))$$

$$+ k_2 S(g_{2n+1}(t), G(t, g_{2n+1}(t)), G(t, g_{2n+1}(t)))$$

$$+ k_3 S(g_{2n}(t), g_{2n+1}(t), g_{2n+1}(t)).$$

Therefore,

$$S(g_{2n+1}(t), g_{2n+2}(t), g_{2n+2}(t)) \leq \frac{k_1 + k_3}{1 - k_2} S(g_{2n}(t), g_{2n+1}(t), g_{2n+1}(t))$$

$$\vdots$$

$$\leq \left(\frac{k_1 + k_3}{1 - k_2}\right)^{2n+1} S(g_0(t), g_1(t), g_1(t)).$$

Similarly we have

$$S(g_{2n}(t), g_{2n+1}(t), g_{2n+1}(t)) \le \left(\frac{k_1 + k_3}{1 - k_2}\right)^{2n} S(g_0(t), g_1(t), g_1(t)).$$

Thus for every $n \in \mathbb{N}$ we get,

$$S(g_n(t), g_{n+1}(t), g_{n+1}(t)) \le \left(\frac{k_1 + k_3}{1 - k_2}\right)^n S(g_0(t), g_1(t), g_1(t)).$$

Now we show that $\{g_n(t)\}$ is Cauchy sequence.

$$\begin{split} &S(g_n(t),g_m(t),g_m(t))\\ &\leq &S(g_{n+1}(t),g_m(t),g_m(t)) + S(g_{n+1}(t),g_n(t),g_n(t))\\ &\leq &S(g_{n+2}(t),g_m(t),g_m(t)) + S(g_{n+2}(t),g_{n+1}(t),g_{n+1}(t))\\ &+ &S(g_{n+1}(t),g_n(t),g_n(t))\\ &\vdots\\ &\leq &S(g_{m-1}(t),g_m(t),g_m(t)) + \cdots + S(g_{n+2}(t),g_{n+1}(t),g_{n+1}(t))\\ &+ &S(g_{n+1}(t),g_n(t),g_n(t))\\ &= &S(g_{m-1}(t),g_m(t),g_m(t)) + \cdots + S(g_{n+1}(t),g_{n+2}(t),g_{n+2}(t))\\ &+ &S(g_n(t),g_{n+1}(t),g_{n+1}(t)). \end{split}$$

If
$$q = \frac{k_1 + k_3}{1 - k_2}$$
 then

$$S(g_n(t), g_m(t), g_m(t))$$

$$\leq q^{m-1}S(g_0(t), g_1(t), g_1(t)) + q^{m-2}S(g_0(t), g_1(t), g_1(t))$$

$$+ \cdots + q^n S(g_0(t), g_1(t), g_1(t))$$

$$= \frac{q^n - q^m}{1 - q}S(g_0(t), g_1(t), g_1(t))$$

$$\leq \frac{q^n}{1 - q}S(g_0(t), g_1(t), g_1(t)) \longrightarrow 0.$$

Thus, $\{g_n(t)\}$ is Cauchy and by the completeness of X, $\{g_n(t)\}$ converges to g(t) in X. Now we prove that F(t, g(t)) = g(t). Replace x = g(t) and $y = g_{2n+1}(t)$ in inequality (i) we have

$$S(F(t,g(t)),G(t,g_{2n}(t)),G(t,g_{2n}(t)))$$

$$\leq k_1S(g(t),F(t,g(t)),F(t,g(t)))+k_2S(g_{2n}(t),G(t,g_{2n}(t)),G(t,g_{2n}(t)))$$

$$+ k_3S(g(t),g_{2n}(t),g_{2n}(t)).$$

On making $n \to \infty$ in the above inequality we get

$$S(F(t,g(t)),g(t),g(t))$$

$$\leq k_1 S(g(t), F(t,g(t)), F(t,g(t))) + k_2 S(g(t),g(t),g(t)) + k_3 S(g(t),g(t),g(t))$$

$$= k_1 S(g(t), F(t,g(t)), F(t,g(t))).$$

Therefore S(g(t), F(t, g(t)), F(t, g(t))) = 0 that is F(t, g(t)) = g(t). Replace x = g(t) and y = g(t) in inequality (i) we have

$$S(F(t,g(t)),G(t,g(t)),G(t,g(t)))$$

$$\leq k_1S(g(t),F(t,g(t)),F(t,g(t)))+k_2S(g(t),G(t,g(t)),G(t,g(t)))$$

$$+ k_3S(g(t),g(t),g(t))=k_2S(g(t),G(t,g(t)),G(t,g(t))).$$

Therefore S(F(t, g(t)), G(t, g(t)), G(t, g(t)) = 0 that is F(t, g(t)) = G(t, g(t)) = g(t) Thus g(t) is a common random fixed point of F and G.

Now to prove uniqueness let if possible $h(t) \neq g(t)$ be another common random fixed point of F and G. Then by inequality (i) we have

$$S(g(t), h(t), h(t)) = S(F(t, g(t)), G(t, h(t)), G(t, h(t))$$

$$\leq k_1 S(g(t), F(t, g(t)), F(t, g(t))) + k_2 S(h(t), G(t, h(t)), G(t, h(t)))$$

$$+ k_3 S(g(t), h(t), h(t))$$

$$= k_3 S(g(t), h(t), h(t)).$$

Therefore S(g(t), h(t), h(t)) = 0 that is g(t) = h(t). Thus g(t) is a unique common random fixed point of F and G.

Corollary 6. Let (X, S) be a complete S- metric space and let $F : \mathbb{R} \times X \longrightarrow X$ be a function satisfying the following condition:

$$S(F(t,x), F(t,y), F(t,y))$$

$$\leq k_1.S(x, F(t,x), F(t,x)) + k_2.S(y, F(t,y), F(t,y)) + k_3.S(x,y,y),$$

for every $x, y \in X$, $t \in \mathbb{R}$ where $k_i \geq 0$ for i = 1, 2, 3 and $0 < k_1 + k_2 + k_3 < 1$. Then F have a unique common random fixed point.

Proof. By Theorem 5, it is enough set
$$F(t,y) = G(t,y)$$
.

Corollary 7. Let (X, S) be a complete S- metric space and let $F : \mathbb{R} \times X \longrightarrow X$ be a function satisfying the following condition:

$$S(F(t,x), F(t,y), F(t,y)) \le kS(x,y,y),$$

for every $x, y \in X$, $t \in \mathbb{R}$ where 0 < k < 1.

Then F have a unique common random fixed point.

Proof. By Corollary 6, it is enough set
$$k_1 = k_2 = 0$$
.

Now we give an example to support our Corollary 7.

Example 2. Let $X = \mathbb{R}$ and let S be the S-metric on $X \times X \times X$ defined as follows:

$$S(x, y, z) = |x + y - 2z| + |x - z|,$$

for all $x, y, z \in X$. Then (X, S) is a S- metric space. Define $F(t, x) = \frac{x \sin t - 1}{4}$. Then

$$S(F(t,x), F(t,y), F(t,y)) = \frac{1}{2} |\sin t| |x - y|,$$

and

$$S(x, y, y) = 2|x - y|.$$

Hence for $\frac{1}{4} \le k < 1$, all the conditions of Corollary 7 are satisfied and $g(t) = \frac{1}{\sin t - 4}$ is a common random fixed point of F.

ACKNOWLEDGMENTS

The authors would like to express their sincere appreciation to the referees for their very helpful suggestions and many kind comments.

References

- N.A.Assad and S.Sessa, Common fixed points for nonself-maps on compacta, SEA Bull. Math. 16 (1992), 1-5.
- [2] I.Altun, H.A. Hancer and D. Turkoglu, A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces, Math. Communications 11(2006), 17-23.
- [3] Y.J.Cho, P.P.Murthy and G.Jungck, A common fixed point theorem of Meir and Keeler type, Internat. J. Math.Sci. 16 (1993), 669-674.
- [4] N.Chandra, S.N.Mishra, S.L.Singh and B.E.Rhoades, Coincidences and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math.26 (1995), 393-401.
- [5] R.O.Davies and S.Sessa, A common fixed point theorem of Gregus type for compatible mappings, Facta Univ. (Nis) Ser. Math. Inform. 7 (1992), 51-58.
- [6] B.C.Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc.84(1992),no.4,329-336.
- [7] M.Imdad, S.Kumar, M.S.Khan, Remarks on some fixed point theorems satisfying implicit relation, Rad. Math.11(2002),135-143.
- [8] G.Jungck, Commuting maps and fixed points. Amer Math Monthly 1976; 83:261-3.
- [9] J.Jachymski, Common fixed point theorems for some families of maps, Indian J.Pure Appl. Math. 55 (1994), 925-937.
- [10] G.Jungck and B.E.Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), no. 3,227-238.
- [11] S.M.Kang, Y.J.Cho and G.Jungck, Common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 13 (1990), 61-66.
- [12] S.V.R.Naidu,K.P.R.Rao and N.Srinivasa Rao,On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat.J.Math. Math.Sci. 2004(2004),No.51,2719-2740.
- [13] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao:-On the concepts of balls in a D-metric space, Internat. J.Math.Math.Sci., 2005, No.1 (2005)133-141.
- [14] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao:-On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J.Math.Math.Sci., 2005:12(2005),1969-1988.
- [15] V.Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math.33(2000),159-164.
- [16] B.E.Rhoades, K.Tiwary and G.N.Singh, A common fixed point theorem for compatible mappings, Indian J.Pure Appl. Math. 26 (5) (1995),403-409.
- [17] B.E.Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Math. Sci. 19(1996), no.1, 145-153.
- [18] S. Sedghi, N. Shobe, and H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed point Theory and Applications. Volume 2007, Article ID 27906, 13 pages.
- [19] S.Sedghi and N.Shobe, Fixed Point Theorem in M-Fuzzy Metric Spaces with property(E), Advances in Fuzzy Mathematics. Vol.1 No.1 (2006), 55-65.
- [20] S.Sedghi, K.P.R.Rao and N.Shobe, Common Fixed Point Theorems for six weakly compatible mappings in D*- Metric Spaces, International Journal of Mathematical Sciences. Vol. 6 No. 2 (2007), 225-237.
- [21] S.Sessa, B.E.Rhoades and M.S.Khan, On common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 11 (1988),375-392.
- [22] S.Sessa and Y.J.Cho, Compatible mappings and a common fixed point theorem of Chang type, Publ. Math. Debrecen 43 (3-4) (1993),289-296.

- [23] S.Sharma, B.Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J.Math. 33(2002), 245-252.
- [24] B.Singh and R.K.Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat.11 (2002), no.1,145-153.
- [25] K.Tas, M.Telci and B. Fisher, Common fixed point theorems for compatible mappings, Internat. J.Math. Math. Sci. 19 (3) (1996), 451-456.