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SOME MORE REMARKS ON GROTHENDIECK-LIDSKǏI
TRACE FORMULAS

OLEG REINOV1,∗

Abstract. Theorem: Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u ad-
mits a representation u =

∑
i λix

′
i ⊗ xi,with (λi) ∈ lr, (x′i) bounded and

(xi) ∈ lwp′(X). If 1/r + 1/2 − 1/p = 1, then the system (µk) of all eigen-
values of the corresponding operator ũ (written according to their algebraic
multiplicities) is absolutely summable and trace u =

∑
k µk.

One of the main aim of these notes is not only to give a proof of the
theorem but also to show that it could be obtained by A. Grothendieck in
1955.

Key words: (s, p)-nuclear operators, eigenvalue distributions.
AMS subject: Primary 47B06.

In 1955, A. Grothendieck [4] has shown that if the linear operator T in a
Banach space is 2/3-nuclear then the trace of T is well defined and is equal
to the sum of all eigenvalues {µk(T )} of T. V.B. Lidskǐı [8], in 1959, proved
his famous theorem on the coincidence of the trace of the S1-operator in an
(infinite dimensional) Hilbert space with its spectral trace

∑∞
k=1 µk(T ).

In 1970’s and in early 1980’s, the interest to the trace formulas (and, gen-
erally, to the distribution of eigenvalues of some classes of operators) has been
increased (A. Pietsch, H. König and others). The trace formula was established
for such ideals of operators as L
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(see [12], p. 404). In the book [10] by A. Pietsch, one can find a generaliza-
tion of Grothendieck-Lidskǐi theorem to the case of the quasinormed operator
ideal N1,1,2 of the so called (1,1,2)-nuclear operators (see [10], Th. 27.4.11).
In 1996, M. White [15] has obtained a very general theorem on the spectral
trace for a wide classes of quasi-normed operator ideals. What about concrete
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Banach spaces, it was shown recently by Oleg Reinov and Qaiser Latif [14]
that the Grothendieck-Lidskǐi formula can be ”interpolated” between L∞–L2

(or, between L1–L2) cases. More precisely, they have shown that for p ∈ [1,∞]
and s ∈ (0, 1] with 1/s = 1 + |1/2 − 1/p|, and for every s-nuclear operator T
in every subspace of any Lp(ν)-space the trace of T is well defined and equals
the sum of all eigenvalues of T. The same is true for quotients of Lp(ν)-spaces.
Note that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.

In this note, we are going to give some more examples of such a kind (see
Theorem below). Let us mention that the proof of the theorem consists of
a ”reconsideration” of some Grothendieck’s arguments from [4], Chap. II, of
proving by him his famous trace formula in the case of 2/3-nuclear operators.
In the case where X = H is a Hilbert space and T ∈ S1(H) (nuclear case;
so, p = 2 in the theorem below), our theorem gives the Lidskǐi formula; in
the case where X is any Banach space and T is 2/3-nuclear (so, p = +∞
in the theorem below), we obtain the Grothendieck 2/3-theorem (with an
analogues proof!). If X is any and p = 2 in our theorem, we obtain the above
mentioned N1.1.2-result. We give also (after the proof of the theorem) some
new consequences and make some remarks on Grothendieck’s considerations
in Chapter II of his famous work [4]. Let us note now only that, in particular,
A. Pietsch writes (concerning Lidskǐi’s 1959 formula) in the book [12], p. 404:
”a remark in [GRO1, Chap. II, p. 13] indicates that by 1955, Grothendieck
was aware of this fact”. We will give a citation from [4], which shows that A.
Grothendieck (in 1955) was aware of a more stronger result than the Lidskǐi
theorem (but the result was given there without any proof). Surely, that
work by A. Grothendieck was unknown to V. Lidskǐi, so, the famous Lidskǐi’s
formula is Lidskǐi’s formula forever.

1. Preliminaries and a Theorem

All the terminology and facts (now classical), given here without any ex-
planations, can be found in [1-4, 7, 10, 11].

Let X, Y be Banach spaces. For the Banach dual of X, we use the notation
X∗. If x ∈ X and x′ ∈ X∗, then we use the notation 〈x′, x〉 for x′(x).

Denote by X∗⊗̂Y the completion of the tensor product X∗⊗Y (considered
as a linear space of all finite rank operators from X to Y ) with respect to the
projective norm

||w|| := inf{
(

N∑

k=1

||x′k|| ||yk||
)

: w =
N∑

k=1

x′k ⊗ yk}

(see, e.g., [4], [1]). For X = Y, the natural linear continuous functional ”trace”
on X∗ ⊗X has a unique continuous extension to the space X∗⊗̂X, which we
still will denote by ”trace”.
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Put N(X, Y ) := image of X∗⊗̂Y in the space L(X,Y ) of all bounded lin-
ear transformations under the canonical factor map X∗⊗̂Y → N(X, Y ) ⊂
L(X, Y ). We consider the (Grothendieck) space N(X, Y ) of all nuclear oper-
ators from X to Y with the natural norm, induced from X∗⊗̂Y. For a tensor
element u ∈ X∗⊗̂Y, we denote by ũ the corresponding nuclear operator from
X to Y.

For q ∈ (0, +∞], we denote by lwq (X) the space of all weakly q-summable
sequences (xi) ⊂ X (see, e.g., [9], [10]) with a quasi-norm

εq((xi)) := sup{
(∑

i

|〈x′, xi〉|q
)1/q

: x′ ∈ X∗, ||x′|| ≤ 1}

(in the case where q = ∞, we suppose (xi) to be just bounded and tending to
zero, i.e., ε∞((xi)) = supi ||xi||).

We are going to prove
Theorem. Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u admits a representa-
tion

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, (x′i) bounded and (xi) ∈ lwp′(X). If 1/r + 1/2 − 1/p = 1, then
the system (µk) of all eigenvalues of the operator ũ (written according to their
algebraic multiplicities) is absolutely summable and

trace u =
∑

k

µk.

We obtained this result rather casually, just analyzing the arguments, given
by A. Grothendieck [4, Ch. II] for getting his trace formula for 2/3-nuclear
operators, and noting that Hadamard’s inequality for determinants may be
improved in some Lp situations (this idea appeared after considerations again
of arguments from [14] and the facts that the Hilbert spaces are the best
Banach spaces, but the Banach spaces of type Lp for p ∈ (1,∞) are, maybe,
worse than an H but better that any X (or, the same, in a sence, than L∞)).

In the proof of Theorem, we shall use, in particular, the ”related operators
theorem” [10, p. 375], namely, in the following situation. If u is as in Theorem
then it is easy to see that it admits a factorization

u = AB : X → lp → X,

where B is s-nuclear (is generated by ”un noyau de Fredholm de puissance
s.ème sommable dans X∗⊗̂lp” in terms of [4]), A maps the unit vector basis of
lp to the sequence (xi) (which is weakly p′-summable). Therefore, the set of all
eigenvalues of u is the same as the set of all (with their algebraic multiplicities)
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eigenvalues of the operator BA, which maps lp into lp (so, results of [6] and
[14] may be applied).

2. Proofs

Let u be an element of the projective tensor product X∗⊗̂X. It can be
represented in the form

u =
∑

i

λix
′
i ⊗ xi,

where (λi) ∈ l1 and ||x′i|| ≤ 1, ||xi|| ≤ 1 (see [4], [1]). Recall that the Fredholm
determinant det (1− zu) of u (see [4], [5], [10], [11]) is an entire function

det (1− zu) = 1− z trace u + · · ·+ (−1)nznαn(u) + . . . ,

all zeros of which are exactly (according to their multiplicities) the inverses of
nonzero eigenvalues (µk) of the operator ũ, associated with the tensor element
u. If u has a form u =

∑
i λix

′
i ⊗ xi as above, the coefficients αn(u) in the

previous formula are defined explicitly by

αn =
∑

i1<···<in

λi1 . . . λin det (〈x′iα , xiβ 〉)1≤α,β≤n

(see [4, Chap. II, p.13, (5bis)], [5]).
Suppose now, that u has a representation

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, λi ≥ 0, r ∈ (0, 1], ||x′i|| ≤ 1, (xi) ∈ lwp′(X), εp′((xi)) ≤ 1 (here
1 ≤ p ≤ 2). We have:

f(z) := det (1 + zu) =
∞∑

n=0

αn(u) zn,

where αn(u) are as above; therefore, taking in account that for every α =
1, . . . , n 


n∑

β=1

|〈x′iα , xiβ 〉|p
′




1/p′

≤ 1

and thus 


n∑

β=1

|〈x′iα , xiβ 〉|2



1/2

≤ n1/p−1/2,

by Hadamard’s inequality for determinants (see, e.g., [16], 8.7.4 Problems and
Exercises, Ex. 9c), or [2, p. 1018]), we get

|αn(u)| ≤ nn(1/p−1/2) αn(λ),
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where

αn(λ) =
∑

i1<···<in

λi1 . . . λin .

Since the function g(z) =
∏

i(1 + λiz) is of order ≤ r (see, e.g., [7], p. 30,
Th. 3 (Borel)) and since its coefficients are exactly αn, we obtain for these
coefficients the estimates, for each t > r,

αn(λ) ≤ Mtn
−n/t

(see the same book [7], p. 6). Hence,

|αn(u)| ≤ Mtn
−n(1/t−1/p+1/2) = Mtn

−n/ω,

where 1/ω = 1/t + 1/2− 1/p. By a classical result of Hadamard (see, e.g., [7],
pp. 5-6), the function f(z) is of order ≤ ω and, therefore, of order ≤ ν, where
1/ν = 1/r + 1/2− 1/p (since t > r was arbitrary).

Now, suppose that ν = 1 (that is, 1/r + 1/2− 1/p = 1). By Hadamard (see
[7], p. 26, Th. 1),

det (1− zu) = e−az
∏

i

(1− zµi)ezµi

(recall that (µk) is a sequence of all eigenvalues of ũ, counted according to
their algebraic multiplicities). On the other hand, as was said above,

det (1− zu) = 1− z trace u + · · ·+ (−1)nznαn(u) + . . . ,

and we get (considering the expansion of the entire function e−az
∏

i(1 −
zµi)ezµi) that a = trace u. Therefore,

det (1− zu) = e−z trace u
∏

i

(1− zµi)ezµi .

Now we apply Theorem 2.6 of [6] or results from [14] to get that (µk) ∈ l1,
from which it follows (see, e.g., [7], p. 25-26) that

det (1− zu) = e−αz
∏

i

(1− zµi), where α = trace u−
∑

k

µk

and

the function det (1− zu) is of minimal type

(by the same Hadamard’s theorem; see also [7], pp. 25-26 or the second part of
the proof of Borel theorem in [7], p. 30). Whence, α = 0, i.e. trace u =

∑
k µk.
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3. Corollaries and Remarks

Corollary 1. Let r, p, u be as in Theorem. The operator ũ : X → X is equal
to zero iff the tensor element u is zero.

The same proof as the one of Theorem, with evident changes, gives us
Corollary 2. Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u admits a
representation

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, (xi) bounded and (x′i) ∈ lwp′(X
∗). If 1/r + 1/2 − 1/p = 1, then

the system (µk) of all eigenvalues of the operator ũ (written according to their
algebraic multiplicities) is absolutely summable and

trace u =
∑

k

µk.

Corollary 3. Let r, p, u be as in the previous corollary. The operator
ũ : X → X is equal to zero iff the tensor element u is zero.
Remark. For the case where r = 2/3 and p = ∞, we get 2/3-theorems of
A. Grothendieck ([4]; for a simple proof of the 2/3-theorems, see [13]). For the
case r = 1 and p = 2, we get the N1,1,2-results of [10, p.381]. Also, Corollaries
1 and 3 are valid if we consider the operators ũ from X to Y, for any Banach
X,Y.

As was said above, in our proof we just used the ideas of A. Grothendieck
from [4]. Let us mention that our Theorem could be proved by A. Grothendieck
in 1955, as well as the Lidskǐi’s result. Namely, in [4, Ch. II, Remark 4, p.
21], A. Grothendieck writes:

”Soit 0 < p ≤ 1. Pour tout u..., soit û la suite non ordonnee des valeurs
propres de u ... ... ce qui permet facilement, ..., de se ramener à un résultat
plus fin sur les espaces de Hilbert: Si H est un espace de Hilbert, l’application

u → û de H ′ (p)
⊗ H dans (l’espace) Σ(p) (des suites non ordonnées d’ordre

≤ p) est continue.”

Here
(p)
⊗ denotes the tensor product which corresponds to the space of the

p-nuclear operators. In the case where p = 1, we have the class S1 of Schatten
and von Neumann. Thus, it seems that the S1-trace-formula indeed was known
to A. Grothendieck in 1955, but he (we can only guess, why) did not pay any
more attention to the Hilbert case.

Concluding the paper (on March 28, 2012), I would like to bring my deep
acknowledgments to Alexander Grothendieck for his ideas from [4] (which are
all in these notes) on the day of his Birth.
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