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BOYD INDICES FOR QUASI-NORMED REARRANGEMENT
INVARIANT SPACES

G. E. KARADZHOV!

ABSTRACT. We calculate the Boyd indices for the sum and intersection
of two quasi-normed rearrangement invariant spaces. An application to
Lorentz type spaces is also given.
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1. INTRODUCTION

Let Lj,. be the space of all locally integrable functions f on R™ with the
Lebesgue measure and let L be the cone of all locally integrable functions
g > 0 on (0,00) with the Lebesgue measure.

Let f* be the decreasing rearrangement of f, given by

fr@) =inf{A > 0: pus(X) < t}, t >0,
where py is the distribution function of f, defined by

pr(A) =z e R" : [f(2)[ > A}, ,

and ||, denotes Lebesgue’s n—measure. If g € L we define g* analogously. We
use the notations a; < ag or as = ap for nonnegative functions or functionals
to mean that the quotient a1 /ag is bounded; also, a; ~ ay means that a; < as
and a1 = as. We say that a; is equivalent to as if a1 = as.

We consider rearrangement invariant quasi-normed spaces E, consisting of
all f € Ly, such that ||f||lg := pe(f*) < oo, where pg is a quasi-norm,
defined on L with values in [0, co]. In this way equivalent quasi-norms pg give
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the same space E. We suppose that L' N L™ < FE <« L' 4+ L™ ie. F is an
intermediate space for the couple (L', L°). There is an equivalent quasi-norm
pp ~ pp that satisfies the triangle inequality pb(g1 + g2) < pb(g1) + pbh(g2),
91,92 € L, for some p € (0, 1] that depends only on the space E (see [9]). We
say that the quasi-norm pg is K—monotone (cf. [4], Definition 1.16, p. 305)
if

gi" < g5" implies pr(g7) = pr(93), g1 € L, g2 € L, (1)

where g**(t) = %fg g*(s)ds, and we say that pg is monotone if g; < go implies

pe(97) < pe(95)-
We say that the quasi-norm pg satisfies Minkowski’s inequality if for the
equivalent quasi-norm py,

rp (Z gj) <> rhlgy), g5 € L. (2)

For example, if E is a rearrangement invariant Banach function space as in
[4], then by the Luxemburg representation theorem || f||g = pp(f*) for some
norm pg satisfying (1), (2). More general example is given by the Riesz-Fischer
monotone spaces as in [4], p. 304, 305.

We recall some basic definitions of the real interpolation for quasi-normed
spaces [5]. Let (A1, Az) be a couple of two quasi-normed spaces, such that
both are continuously embedded in some quasi-normed space (see [5]) and let

K(ta f) = K(tmf;AlaA?) = 7i1’lf {”fOHA1 +1 Hf2HA2}7 f €A1+ A?)
f=fi+fa
be the K—functional of Peetre (see [5]). By definition, the K —interpolation
space Ap = (A1, A2)e has a quasi-norm

1fllas = G Pl

where ® is a quasi-normed function space with a monotone quasi-norm on
(0, 00) with the Lebesgue measure and such that min{1,¢} € ®. Then (see [5])

A1 NAy — Ap — A1 + As.
where by X <— Y we mean that X is continuously embedded in Y. If

) 1/q
||g||q>=(/ [w(t)t%(tnth/t) 0<6<1,0<q<o0, weL
0

we write (A, A2),,-0 , instead of (A1, A2)e (see [5]).
By definition,

1l ainaz = [Ifllay + [ Fllazy [[f1[ar 44, = K(1, f; Ar, Az).

Denote by Int(L', L>°) the class of all quasi-normed interpolation spaces F
for the couple (L', L°°). This means that F is an intermediate space for the
couple (L', L) and if T is a bounded linear operator in both L' and L,



38 G. E. Karadzhov

then T is also bounded in E. Note that if F is an intermediate space, pg is
K—monotone and f;* < f3*, fo € E implies f; € E, then E € Int(L', L*°).
For example, consider the Gamma spaces I''(w), 0 < ¢ < oo, w - positive
weight, i.e. a positive function from L, with a quasi-norm || f|lra(w) 1= puw.q(f*),
where
1/q

puala) = ([l Ouate) L g e L 0<q <o

Puw,oo(g) := vraisupisog™ (t)w(t)
and
o0
/ min(1,t" )wi(t)dt/t < oo, 0 < g < o0;
0

vraisupysomin(1,t Hw(t) < oo, ¢ = oco.
Then I'(w) = (L', L) (t)/t,g- The space E = I'(w) with pp = pyq satisfies
the conditions (1), (2).
The Lorentz spaces A4(w), 0 < g < oo, w - positive weight, w(2t) ~ w(t),
are defined with a quasi-norm

o) 1/q
oy = (/0 [w(t)f*<t)]th/t> 0<q<o

and
[f 1| oo () 7= vraisupsow(t) f*(t).
We suppose that they are not trivial.
Recall the definition of the lower and upper Boyd indices ap and fBg. Let

his(u) = sup {pE(gz) e L} | gult) = g(t/u)

pe(g*)
be the dilation function generated by pg. Then
log hg(t log hg(t
ap = sup log s (t) and g := inf LE().
o<t<1 logt 1<t<oo logt

The function hg is submultiplicative, increasing, hg(1) = 1, hg(u)hg(1l/u) >
1, hence 0 < ap < Bg and if E € Int(L', L>) then by interpolation, (analo-
gously to [4], p. 148) we see that hg(s) < max(1,s). Hence g < 1.

Using Minkowski’s inequality for the equivalent quasi-norm p, and mono-
tonicity of f*, we see that

pe(f7) = pe(f™)if Bp < 1. (3)
In particular, A%(w) = I'(w) if Bp <1 for B =T%(w).
We need also the modified Boyd indices ag and (g, defined as follows. Let
(1) = sup {PE((XQ)

ol e
o) =sup { 200 L}, (x9)alt) = (xg) (/)
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be the modified dilation function, generated by pg. Here  is the characteristic
function of the interval (0,1). Then

by e sup OBREQ) g5y lo8hE()
" o<t<1 logt T i<i<oo  logt

Since hg < hg, it follows 0 < ap < ag < Br < Bg. For example, if E =
Ll—l-Loo, then ap =0, B =1, ag :BE =1.

The Boyd indices are useful in various problems concerning continuity of
operators acting in rearrangement invariant spaces [4] or in optimal couples
of rearrangement invariant spaces [7], 2], [8], and in the problems of optimal
embeddings [1], [3], [10]. The main goal of this paper is to provide formulas
for the Boyd indices for intersection or sum of two quasi-normed spaces and
to apply these results to the case of Lorentz type spaces.

2. BoYyD INDICES FOR THE SUM OF TwO (QUASI-NORMED SPACES
First we characterize the sum Ej + E via the quasi-norm pg, 4 g, .

Theorem 1. Let By and Ey be intermediate spaces for the couple (L', L>)
and let pg,, pg, be K—monotone. Then

||f||E1+E2 ~ pE1+E2(f*)’ (4)
where for g € L,
pEv+E(9) = nf{pp, (97) + pE,(92) : 9 =91+ 92, 1,92 € L}, (5)
where g* for g € L is taken with respect to the Lebesgue measure on (0,00).
Proof. If f = fi1 + fa, f € Lioe, then f*(t) < fi(t/2) + f5(t/2), whence

pE+E (f7) 2 e (1) + pEa (f2),

therefore the right-hand side in (4) is majorized by the left-hand side. For
the reverse, suppose that f € L, and f* = g1 + g2, 91,92 € L. Then by the
Hardy-Littlwood inequality,

t t
0 <4 [ siodur g [ g

hence by the divisibility theorem (see [6]), there exist fi, fo € Lo such that
f=/fi+ foand

*% 1 t* .
70 %5 [ g =12

Using K —monotonicity of pg, and pg,, we get pg;(f]) = pE;(9}), 7 = 1,2.
Hence

1fll2+E2 =2 pE(91) + PEL(92)-
Taking the infimum, we obtain || f|| g+ 5, = PE,+8,(f*).
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O
Now we calculate the Boyd indices of the sum of two quasi-normed spaces.

Theorem 2. Let By and Ey be intermediate spaces for the couple (L', L>)
and let pg,, pp, be K—monotone. Then

ap +B, > min(ag,, ar,), Be,+e, < max(8e,, BE,)- (6)
Proof. Since
pEi+E:(9) == inf{pp, (97) + pE,(93) : 9=9g1+ 92, g1,92 € L}, g€ L
and g; (t) < ¢7,(t/2) + gi(t/2), it follows
PE+E;(90) < b, (20)pE, (97) + h, (2u) p, (93)-

Therefore,

hE1+E2 (u) = hE1 (u) + hEQ (U), u > 0. (7)
Then for u > 1 and any € > 0,

hE, 45, (u) < uPE1Te 4 PEate < um2x(Be, ,,GE2)+5’

whence the second inequality in (6) follows. The proof of the first inequality
is analogous.

O
Theorem 3. Let pg,, pr, satisfy
PE:(X(01)97) = PE2(97)s PE:(X(1,00)9") = PEL(97), g € L. (8)
Then
1f 1B+ B2 = 0B (X(0,0) ™) + PE(X(1,00) ) 9)

Moreover, the left-hand side in (9) is always dominated by the right-hand side,
even without the condition (8).

Proof. If f = f1 + fa, then f*(t) < f{(t/2) + f5(t/2) and
PE; (X(0,1)f*) = PE; (X(o,l)ff) + PEy (X(o,1)f2*)a
whence by (8)
PE; (X(D,l)f*) = e, (f1) + pE,(f3),
and taking the infimum, we get
PE (X(O,l)f*) = HfHE1+E2'
We have

PE, (X(l,oo)f*) = PE, (X(1/2,oo)fik) + PEQ(X(l/Q,oo)fék),
whence by (8)

PE (X (1,000 ") 2 P> (X(1/20)) 11 (1/2) + py (1) + P (f2)
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hence, using also pg, (f1) > pE, (X(0,1/2)f1) = f1(1/2), we obtain
PE, (X(l,oo)f*) = Hf||E1+E2'

Thus one inequality in the equivalence (9) is proved. For the reverse, let

f € L' + L™. Define fi(x) = signf(z)|f(2)|xe(2), e = {z : [f(2)| > f*(1)}
and fo = f — f1. Then

fi(w) < xon @) f(w), f3(u) <min(f*(w), f*(1)).

Therefore, pg, (f1) < pE, (X(0,1)f") and pe, (f3) < pE,(X0,0) f* (D +PE, (X (1,00 )
Since f*(1) = pr, (X(0,1)f"), it follows

If1lley + If2lle. 2 P (X0,0) ") + PE2(X(1,00)f7)-

Thus the second inequality in (9) is proved without the condition (8).
O

Theorem 4. Let By and Es be intermediate spaces for the couple (L', L>)
and let pg,, pr, be K—monotone, satisfying (8). If ag, > ag,, Be, > Bg,
and

pEy (X(0,1)()E7P1) < 00, P, (X(1,00) ()E7F2) < o0, (10)
for some small € € (0, BE, ), then
QF 4+ Ey = OF,, ﬁE1+E2 = ﬁEr (11)
Proof. We have for g(t) = X(1,00)(£)t = P2,
hy+ 8, (4) = PEy (X(1,00) ()90 () = utB27T2,

whence ap, +g, < ag,. Analogously Og,+g, > Bg,. It remains to use (6).
O

Theorem 5. Let By and Es be intermediate spaces for the couple (L', L>)
and let pg,, pE, be K—monotone, satisfying (8). Then

dE1+E2 - dEU 6E1+E2 = BE1‘ (12)
Proof. We have pr,+ 2, (F*) = i, (xto.)f*) + s (X(1,00) /), Whenee

PE+E (90) = PE (X (0,1)9u) + PE(X(1,009u): 9 € L.
Since (x(0,119)" < X(0,19" 9 € L, we have

PE+E (X(0,09)%) = PE (X(0,1)(X(0,)9)0) = PE; ((X(0,1)9)0)

whence hE1+E2 ~ hEl- Therefore dE1+E2 = &El, ﬁElJrEQ = ﬁEl'
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Recall that the positive weight w is slowly varying on (1,00) (in the sense
of Karamata [11]), if for all € > 0 the function t°w(t) is equivalent to a non-
decreasing function, and the function ¢ ~“w(t) is equivalent to a non-increasing
function. By symmetry, we say that w is slowly varying on (0, 1) if the function
t — w(1/t) is slowly varying on (1, o). Finally, w is slowly varying if it is slowly
varying on (0,1) and (1, 00).

Now we give examples.

Example 1. If E = A1(t"w) or E = Fq(tazg), 0<a<1,0<q< o0, where
w is slowly varying, then ap = fgp = &g = g = a.

Proof. We give a proof for E = A?(t*w) and 0 < ¢ < 0o, the other cases being
analogous. We have

petaiy = [l @ woparys

and by a change of variables,

1/q

1/q

petat) = [l Owrutosarse) (13)

It follows from the definition of a slowly varying function that for every € > 0,
we have tfw(t) ~ d(t), where d is a decreasing function. If w > 1, then
d(tu) < d(t), thus
tFw(t) = d(tu)
~ u T fw(tu),
which gives
w(tu) < uw(t). (14)

Inserting this estimate in (13), we arrive at

pE(gs) 2 uCpE(g*), u>1,

which yields hg(u) =< u®, u > 1. Then it follows g < a + . Analogously,
ap > a — ¢. Since € > 0 is arbitrary, we obtain ag = G = a.

Further,
1/q

pel(ea)t) = ([T @ utonaryt
and by a change of variables,
1/q

pe((xg)%) = ( / Oo[(xg)*<t><tu>“w<tu>]th/t) , (15)
pe((x9)h) = u*pp((xg)), u>1,
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which yields iLE(u) < u%€, 4 > 1. Then it follows 85 < a+¢ and analogously

ap > a — €. Since € > 0 is arbitrary, we obtain ag = O = a.
O

Example 2. If E = E1 + E», E; =T9% (t%w;), 1 > a1 > a2 >0, 0 < ¢; < o0,
J = 1,2, where w1 and wy are slowly varying, then applying Theorem 4 and
Theorem 5, and the results of the previous example, we obtain ag = a2, fp =
BE = ag = a1.

3. BoYyD INDICES FOR INTERSECTION OF TwO QUASI-NORMED SPACES
Theorem 6. Let E; € Int(L',L>), j = 1,2. Then

aElmEQ Z min(aE17aE2)7 ﬁElmEQ S max(/@E176E2)' (16)
Also,
hiine: (W) = pe (X)) + PE (X(0,0)- (17)

Proof. We have || f||g,nE, = PE,nE,(f*), where by definition,

PEINE, (Q) = PE; (g) + PE, (g)v ge L.
Since PEINE, (92) < hg, (u)pEl (g*) + hg, (u)pEz (g*)a it follows

hgne,(u) < hg, (u) + hg,(u), u> 0. (18)
Then for u > 1 and any € > 0,

hE1ﬂE2 (’LL) < uﬁE1+€ + uﬂE2+€ =< umax(ﬁEl,ﬁEQ)JrE’

whence the second inequality in (16) follows. The proof of the first inequality
is analogous.

For (17) we use the test function g = x(o1). Then hg ng,(u) = pg, (g5) +
pE,(gr) and (17) follows.

[l
Theorem 7. Let E; € Int(L',L>®), j = 1,2 satisfy
PE (X0,1)9") 2 PE(X(0,)97)s PE(X(1,00)97) = PEL(X(1/2,00)97)- (19)
Then
£l EinE = pEy (X (1,00) f ) + P2 (X(0,0) f7)- (20)

The proof follows immediately from the definitions.

Theorem 8. If E; € Int(L', L™), j = 1,2 satisfy (19), then

dElﬂEQ = dE2> BElﬁEQ = BEQ' (21)
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Proof. Since the condition (19) is satisfied, it follows

PENE (9%) & pEy (X(0,)97) + PE (X (1,00)97)

and since (X(0,1)9)" < X(0,1)9", 9 € L, we have

pElﬂEz((X(O,l)g)Z) ~ PE, (X(o,l)(X(o,l)g)Z) ~ pEQ((X(O,l)g)Z)7

whence hg,ng, = hg,. Therefore ap,ng, = &E,, BE.nE, = BE,-

0

Example 3. If E = E\NEy, E; =T%(t%w;), 1 > a1 > a2 >0, 0 < g < oo,
J = 1,2, where wi and wy are slowly varying, then applying Theorem 6 and
Theorem 8 we obtain Pg = a1, ap = Bg = g = as.
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