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BOYD INDICES FOR QUASI-NORMED REARRANGEMENT
INVARIANT SPACES

G. E. KARADZHOV1

Abstract. We calculate the Boyd indices for the sum and intersection
of two quasi-normed rearrangement invariant spaces. An application to
Lorentz type spaces is also given.
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1. Introduction

Let Lloc be the space of all locally integrable functions f on Rn with the
Lebesgue measure and let L be the cone of all locally integrable functions
g ≥ 0 on (0,∞) with the Lebesgue measure.

Let f∗ be the decreasing rearrangement of f, given by

f∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t > 0,

where µf is the distribution function of f, defined by

µf (λ) = |{x ∈ Rn : |f(x)| > λ}|n ,

and |·|n denotes Lebesgue’s n−measure. If g ∈ L we define g∗ analogously. We
use the notations a1 ¹ a2 or a2 º a1 for nonnegative functions or functionals
to mean that the quotient a1/a2 is bounded; also, a1 ≈ a2 means that a1 ¹ a2

and a1 º a2. We say that a1 is equivalent to a2 if a1 ≈ a2.
We consider rearrangement invariant quasi-normed spaces E, consisting of

all f ∈ Lloc, such that ‖f‖E := ρE(f∗) < ∞, where ρE is a quasi-norm,
defined on L with values in [0,∞]. In this way equivalent quasi-norms ρE give
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the same space E. We suppose that L1 ∩ L∞ ↪→ E ↪→ L1 + L∞, i.e. E is an
intermediate space for the couple (L1, L∞). There is an equivalent quasi-norm
ρp ≈ ρE that satisfies the triangle inequality ρp

p(g1 + g2) ≤ ρp
p(g1) + ρp

p(g2),
g1, g2 ∈ L, for some p ∈ (0, 1] that depends only on the space E (see [9]). We
say that the quasi-norm ρE is K−monotone (cf. [4], Definition 1.16, p. 305)
if

g∗∗1 ≤ g∗∗2 implies ρE(g∗1) ¹ ρE(g∗2), g1 ∈ L, g2 ∈ L, (1)

where g∗∗(t) = 1
t

∫ t
0 g∗(s)ds, and we say that ρE is monotone if g1 ≤ g2 implies

ρE(g∗1) ≤ ρE(g∗2).
We say that the quasi-norm ρE satisfies Minkowski’s inequality if for the

equivalent quasi-norm ρp,

ρp
p

(∑
gj

)
¹

∑
ρp

p(gj), gj ∈ L. (2)

For example, if E is a rearrangement invariant Banach function space as in
[4], then by the Luxemburg representation theorem ‖f‖E = ρE(f∗) for some
norm ρE satisfying (1), (2). More general example is given by the Riesz-Fischer
monotone spaces as in [4], p. 304, 305.

We recall some basic definitions of the real interpolation for quasi-normed
spaces [5]. Let (A1, A2) be a couple of two quasi-normed spaces, such that
both are continuously embedded in some quasi-normed space (see [5]) and let

K(t, f) = K(t, f ; A1, A2) = inf
f=f1+f2

{‖f0‖A1
+ t ‖f2‖A2

}, f ∈ A1 + A2,

be the K−functional of Peetre (see [5]). By definition, the K−interpolation
space AΦ = (A1, A2)Φ has a quasi-norm

‖f‖AΦ
= ‖K(., f)‖Φ ,

where Φ is a quasi-normed function space with a monotone quasi-norm on
(0,∞) with the Lebesgue measure and such that min{1, t} ∈ Φ. Then (see [5])

A1 ∩A2 ↪→ AΦ ↪→ A1 + A2.

where by X ↪→ Y we mean that X is continuously embedded in Y. If

‖g‖Φ =
(∫ ∞

0
[w(t)t−θg(t)]qdt/t

)1/q

, 0 ≤ θ ≤ 1, 0 < q ≤ ∞, w ∈ L,

we write (A1, A2)wt−θ,q instead of (A1, A2)Φ (see [5]).
By definition,

‖f‖A1∩A2 = ‖f‖A1 + ‖f‖A2 , ‖f‖A1+A2 = K(1, f ; A1, A2).

Denote by Int(L1, L∞) the class of all quasi-normed interpolation spaces E
for the couple (L1, L∞). This means that E is an intermediate space for the
couple (L1, L∞) and if T is a bounded linear operator in both L1 and L∞,
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then T is also bounded in E. Note that if E is an intermediate space, ρE is
K−monotone and f∗∗1 ≤ f∗∗2 , f2 ∈ E implies f1 ∈ E, then E ∈ Int(L1, L∞).

For example, consider the Gamma spaces Γq(w), 0 < q ≤ ∞, w - positive
weight, i.e. a positive function from L, with a quasi-norm ‖f‖Γq(w) := ρw,q(f∗),
where

ρw,q(g) :=
(∫ ∞

0
[g∗∗(t)w(t)]qdt/t

)1/q

, g ∈ L, 0 < q < ∞;

ρw,∞(g) := vraisupt>0g
∗∗(t)w(t)

and ∫ ∞

0
min(1, t−q)wq(t)dt/t < ∞, 0 < q < ∞;

vraisupt>0 min(1, t−1)w(t) < ∞, q = ∞.

Then Γq(w) = (L1, L∞)w(t)/t,q. The space E = Γq(w) with ρE = ρw,q satisfies
the conditions (1), (2).

The Lorentz spaces Λq(w), 0 < q ≤ ∞, w - positive weight, w(2t) ≈ w(t),
are defined with a quasi-norm

‖f‖Λq(w) :=
(∫ ∞

0
[w(t)f∗(t)]qdt/t

)1/q

, 0 < q < ∞

and
‖f‖Λ∞(w) := vraisupt>0w(t)f∗(t).

We suppose that they are not trivial.
Recall the definition of the lower and upper Boyd indices αE and βE . Let

hE(u) = sup
{

ρE(g∗u)
ρE(g∗)

: g ∈ L

}
, gu(t) := g(t/u)

be the dilation function generated by ρE . Then

αE := sup
0<t<1

log hE(t)
log t

and βE := inf
1<t<∞

log hE(t)
log t

.

The function hE is submultiplicative, increasing, hE(1) = 1, hE(u)hE(1/u) ≥
1, hence 0 ≤ αE ≤ βE and if E ∈ Int(L1, L∞) then by interpolation, (analo-
gously to [4], p. 148) we see that hE(s) ≤ max(1, s). Hence βE ≤ 1.

Using Minkowski’s inequality for the equivalent quasi-norm ρp and mono-
tonicity of f∗, we see that

ρE(f∗) ≈ ρE(f∗∗) if βE < 1. (3)
In particular, Λq(w) = Γq(w) if βE < 1 for E = Γq(w).

We need also the modified Boyd indices α̃E and β̃E , defined as follows. Let

h̃E(u) = sup
{

ρE((χg)∗u)
ρE((χg)∗)

: g ∈ L

}
, (χg)u(t) := (χg)(t/u)
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be the modified dilation function, generated by ρE . Here χ is the characteristic
function of the interval (0, 1). Then

α̃E := sup
0<t<1

log h̃E(t)
log t

and β̃E := inf
1<t<∞

log h̃E(t)
log t

.

Since h̃E ≤ hE , it follows 0 ≤ αE ≤ α̃E ≤ β̃E ≤ βE . For example, if E =
L1 + L∞, then αE = 0, βE = 1, α̃E = β̃E = 1.

The Boyd indices are useful in various problems concerning continuity of
operators acting in rearrangement invariant spaces [4] or in optimal couples
of rearrangement invariant spaces [7], [2], [8], and in the problems of optimal
embeddings [1], [3], [10]. The main goal of this paper is to provide formulas
for the Boyd indices for intersection or sum of two quasi-normed spaces and
to apply these results to the case of Lorentz type spaces.

2. Boyd Indices for the Sum of Two Quasi-normed Spaces

First we characterize the sum E1 + E2 via the quasi-norm ρE1+E2 .

Theorem 1. Let E1 and E2 be intermediate spaces for the couple (L1, L∞)
and let ρE1, ρE2 be K−monotone. Then

‖f‖E1+E2 ≈ ρE1+E2(f
∗), (4)

where for g ∈ L,

ρE1+E2(g) := inf{ρE1(g
∗
1) + ρE2(g

∗
2) : g = g1 + g2, g1, g2 ∈ L}, (5)

where g∗ for g ∈ L is taken with respect to the Lebesgue measure on (0,∞).

Proof. If f = f1 + f2, f ∈ Lloc, then f∗(t) ≤ f∗1 (t/2) + f∗2 (t/2), whence

ρE1+E2(f
∗) ¹ ρE1(f

∗
1 ) + ρE2(f

∗
2 ),

therefore the right-hand side in (4) is majorized by the left-hand side. For
the reverse, suppose that f ∈ Lloc and f∗ = g1 + g2, g1, g2 ∈ L. Then by the
Hardy-Littlwood inequality,

f∗∗(t) ≤ 1
t

∫ t

0
g∗1(u)du +

1
t

∫ t

0
g∗2(u)du,

hence by the divisibility theorem (see [6]), there exist f1, f2 ∈ Lloc such that
f = f1 + f2 and

f∗∗j (t) ¹ 1
t

∫ t

0
g∗j (u)du, j = 1, 2.

Using K−monotonicity of ρE1 and ρE2 , we get ρEj (f
∗
j ) ¹ ρEj (g

∗
j ), j = 1, 2.

Hence
‖f‖E1+E2 ¹ ρE1(g

∗
1) + ρE2(g

∗
2).

Taking the infimum, we obtain ‖f‖E1+E2 ¹ ρE1+E2(f
∗).
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¤
Now we calculate the Boyd indices of the sum of two quasi-normed spaces.

Theorem 2. Let E1 and E2 be intermediate spaces for the couple (L1, L∞)
and let ρE1, ρE2 be K−monotone. Then

αE1+E2 ≥ min(αE1 , αE2), βE1+E2 ≤ max(βE1 , βE2). (6)

Proof. Since

ρE1+E2(g) := inf{ρE1(g
∗
1) + ρE2(g

∗
2) : g = g1 + g2, g1, g2 ∈ L}, g ∈ L

and g∗u(t) ≤ g∗1u(t/2) + g∗u(t/2), it follows

ρE1+E2(g
∗
u) ≤ hE1(2u)ρE1(g

∗
1) + hE2(2u)ρE2(g

∗
2).

Therefore,

hE1+E2(u) ¹ hE1(u) + hE2(u), u > 0. (7)
Then for u > 1 and any ε > 0,

hE1+E2(u) ¹ uβE1
+ε + uβE2

+ε ¹ umax(βE1
,βE2

)+ε,

whence the second inequality in (6) follows. The proof of the first inequality
is analogous.

¤
Theorem 3. Let ρE1 , ρE2 satisfy

ρE1(χ(0,1)g
∗) ¹ ρE2(g

∗), ρE2(χ(1,∞)g
∗) ¹ ρE1(g

∗), g ∈ L. (8)

Then
‖f‖E1+E2 ≈ ρE1(χ(0,1)f

∗) + ρE2(χ(1,∞)f
∗). (9)

Moreover, the left-hand side in (9) is always dominated by the right-hand side,
even without the condition (8).

Proof. If f = f1 + f2, then f∗(t) ≤ f∗1 (t/2) + f∗2 (t/2) and

ρE1(χ(0,1)f
∗) ¹ ρE1(χ(0,1)f

∗
1 ) + ρE1(χ(0,1)f

∗
2 ),

whence by (8)
ρE1(χ(0,1)f

∗) ¹ ρE1(f
∗
1 ) + ρE2(f

∗
2 ),

and taking the infimum, we get

ρE1(χ(0,1)f
∗) ¹ ‖f‖E1+E2 .

We have
ρE2(χ(1,∞)f

∗) ¹ ρE2(χ(1/2,∞)f
∗
1 ) + ρE2(χ(1/2,∞)f

∗
2 ),

whence by (8)

ρE2(χ(1,∞)f
∗) ¹ ρE2(χ(1/2,1))f

∗
1 (1/2) + ρE1(f

∗
1 ) + ρE2(f

∗
2 ),
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hence, using also ρE1(f
∗
1 ) ≥ ρE1(χ(0,1/2)f

∗
1 ) º f∗1 (1/2), we obtain

ρE2(χ(1,∞)f
∗) ¹ ‖f‖E1+E2 .

Thus one inequality in the equivalence (9) is proved. For the reverse, let
f ∈ L1 + L∞. Define f1(x) = signf(x)|f(x)|χe(x), e = {x : |f(x)| > f∗(1)}
and f2 = f − f1. Then

f∗1 (u) ≤ χ(0,1)(u)f∗(u), f∗2 (u) ≤ min(f∗(u), f∗(1)).

Therefore, ρE1(f
∗
1 ) ≤ ρE1(χ(0,1)f

∗) and ρE2(f
∗
2 ) ≤ ρE2(χ(0,1))f∗(1)+ρE2(χ(1,∞)f

∗).
Since f∗(1) ¹ ρE1(χ(0,1)f

∗), it follows

‖f1‖E1 + ‖f2‖E2 ¹ ρE1(χ(0,1)f
∗) + ρE2(χ(1,∞)f

∗).

Thus the second inequality in (9) is proved without the condition (8).
¤

Theorem 4. Let E1 and E2 be intermediate spaces for the couple (L1, L∞)
and let ρE1, ρE2 be K−monotone, satisfying (8). If αE1 ≥ αE2 , βE1 ≥ βE2

and
ρE1(χ(0,1)(t)t

ε−βE1 ) < ∞, ρE2(χ(1,∞)(t)t
−ε−αE2 ) < ∞, (10)

for some small ε ∈ (0, βE1), then

αE1+E2 = αE2 , βE1+E2 = βE1 . (11)

Proof. We have for g(t) = χ(1,∞)(t)t−ε−αE2 ,

hE1+E2(u) º ρE2(χ(1,∞)(t)g
∗
u(t)) º uαE2

+ε,

whence αE1+E2 ≤ αE2 . Analogously βE1+E2 ≥ βE1 . It remains to use (6).
¤

Theorem 5. Let E1 and E2 be intermediate spaces for the couple (L1, L∞)
and let ρE1, ρE2 be K−monotone, satisfying (8). Then

α̃E1+E2 = α̃E1 , β̃E1+E2 = β̃E1 . (12)

Proof. We have ρE1+E2(f
∗) ≈ ρE1(χ(0,1)f

∗) + ρE2(χ(1,∞)f
∗), whence

ρE1+E2(g
∗
u) ≈ ρE1(χ(0,1)g

∗
u) + ρE2(χ(1,∞)g

∗
u), g ∈ L.

Since (χ(0,1)g)∗ ≤ χ(0,1)g
∗, g ∈ L, we have

ρE1+E2((χ(0,1)g)∗u) ≈ ρE1(χ(0,1)(χ(0,1)g)∗u) ≈ ρE1((χ(0,1)g)∗u),

whence h̃E1+E2 ≈ h̃E1 . Therefore α̃E1+E2 = α̃E1 , β̃E1+E2 = β̃E1 .
¤
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Recall that the positive weight w is slowly varying on (1,∞) (in the sense
of Karamata [11]), if for all ε > 0 the function tεw(t) is equivalent to a non-
decreasing function, and the function t−εw(t) is equivalent to a non-increasing
function. By symmetry, we say that w is slowly varying on (0, 1) if the function
t 7→ w(1/t) is slowly varying on (1,∞). Finally, w is slowly varying if it is slowly
varying on (0, 1) and (1,∞).

Now we give examples.

Example 1. If E = Λq(taw) or E = Γq(taw), 0 ≤ a ≤ 1, 0 < q ≤ ∞, where
w is slowly varying, then αE = βE = α̃E = β̃E = a.

Proof. We give a proof for E = Λq(taw) and 0 < q < ∞, the other cases being
analogous. We have

ρE(g∗u) =
(∫ ∞

0
[g∗(t/u)taw(t)]qdt/t

)1/q

and by a change of variables,

ρE(g∗u) =
(∫ ∞

0
[g∗(t)(tu)aw(tu)]qdt/t

)1/q

. (13)

It follows from the definition of a slowly varying function that for every ε > 0,
we have t−εw(t) ≈ d(t), where d is a decreasing function. If u > 1, then
d(tu) ≤ d(t), thus

t−εw(t) º d(tu)
≈ u−εt−εw(tu),

which gives
w(tu) ¹ uεw(t). (14)

Inserting this estimate in (13), we arrive at

ρE(g∗u) ¹ ua+ερE(g∗), u > 1,

which yields hE(u) ¹ ua+ε, u > 1. Then it follows βE ≤ a + ε. Analogously,
αE ≥ a− ε. Since ε > 0 is arbitrary, we obtain αE = βE = a.

Further,

ρE((χg)∗u) =
(∫ ∞

0
[(χg)∗(t/u)taw(t)]qdt/t

)1/q

and by a change of variables,

ρE((χg)∗u) =
(∫ ∞

0
[(χg)∗(t)(tu)aw(tu)]qdt/t

)1/q

, (15)

or
ρE((χg)∗u) ¹ ua+ερE((χg)∗), u > 1,



Boyd indices for quasi-normed rearrangement invariant spaces 43

which yields h̃E(u) ¹ ua+ε, u > 1. Then it follows β̃E ≤ a+ε and analogously
α̃E ≥ a− ε. Since ε > 0 is arbitrary, we obtain α̃E = β̃E = a.

¤

Example 2. If E = E1 + E2, Ej = Γqj (tajwj), 1 ≥ a1 > a2 ≥ 0, 0 < qj ≤ ∞,
j = 1, 2, where w1 and w2 are slowly varying, then applying Theorem 4 and
Theorem 5, and the results of the previous example, we obtain αE = a2, βE =
β̃E = α̃E = a1.

3. Boyd Indices for Intersection of Two Quasi-normed Spaces

Theorem 6. Let Ej ∈ Int(L1, L∞), j = 1, 2. Then

αE1∩E2 ≥ min(αE1 , αE2), βE1∩E2 ≤ max(βE1 , βE2). (16)

Also,
hE1∩E2(u) º ρE1(χ(0,u)) + ρE2(χ(0,u)). (17)

Proof. We have ‖f‖E1∩E2 = ρE1∩E2(f
∗), where by definition,

ρE1∩E2(g) = ρE1(g) + ρE2(g), g ∈ L.

Since ρE1∩E2(g
∗
u) ≤ hE1(u)ρE1(g

∗) + hE2(u)ρE2(g
∗), it follows

hE1∩E2(u) ≤ hE1(u) + hE2(u), u > 0. (18)

Then for u > 1 and any ε > 0,

hE1∩E2(u) ¹ uβE1
+ε + uβE2

+ε ¹ umax(βE1
,βE2

)+ε,

whence the second inequality in (16) follows. The proof of the first inequality
is analogous.

For (17) we use the test function g = χ(0,1). Then hE1∩E2(u) º ρE1(g
∗
u) +

ρE2(g
∗
u) and (17) follows.

¤

Theorem 7. Let Ej ∈ Int(L1, L∞), j = 1, 2 satisfy

ρE1(χ(0,1)g
∗) ¹ ρE2(χ(0,1)g

∗), ρE2(χ(1,∞)g
∗) ¹ ρE1(χ(1/2,∞)g

∗). (19)

Then
‖f‖E1∩E2 ≈ ρE1(χ(1,∞)f

∗) + ρE2(χ(0,1)f
∗). (20)

The proof follows immediately from the definitions.

Theorem 8. If Ej ∈ Int(L1, L∞), j = 1, 2 satisfy (19), then

α̃E1∩E2 = α̃E2 , β̃E1∩E2 = β̃E2 . (21)
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Proof. Since the condition (19) is satisfied, it follows

ρE1∩E2(g
∗) ≈ ρE2(χ(0,1)g

∗) + ρE1(χ(1,∞)g
∗)

and since (χ(0,1)g)∗ ≤ χ(0,1)g
∗, g ∈ L, we have

ρE1∩E2((χ(0,1)g)∗u) ≈ ρE2(χ(0,1)(χ(0,1)g)∗u) ≈ ρE2((χ(0,1)g)∗u),

whence h̃E1∩E2 ≈ h̃E2 . Therefore α̃E1∩E2 = α̃E2 , β̃E1∩E2 = β̃E2 .
¤

Example 3. If E = E1 ∩ E2, Ej = Γqj (tajwj), 1 ≥ a1 > a2 ≥ 0, 0 < qj ≤ ∞,
j = 1, 2, where w1 and w2 are slowly varying, then applying Theorem 6 and
Theorem 8 we obtain βE = a1, αE = β̃E = α̃E = a2.
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