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ON THE POWER MEAN INEQUALITY OF THE
HYPERBOLIC METRIC OF UNIT BALL

BARKAT ALI BHAYO

Abstract. The hyperbolic distances from the origin are changed under
the radial selfmapping x 7→ |x|1/K−1x, K > 1 of the unit ball. Here author
gives the power mean inequality of the hyperbolic metric under the radial
mapping.
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1. Introduction

For the statement of the main results we introduce some notations and
terminologies.

For p ∈ R, the Power Mean Mp of order p of two positive numbers x and y
is define by

Mp(x, y) =





(
xp + yp

2

)1/p

, p 6= 0,
√

x y p = 0 .

For a, b > 0 and x ∈ Rn, we define

Aa,b(x) =
{ |x|a−1x if |x| ≤ 1
|x|b−1x if |x| ≥ 1,

see [4, (1.5)]. For brevity we write A = A1/K,K .
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The hyperbolic metric ρ(x, y) of the unit ball is given by

ρ(x, y) = 2 artanh

(
|x− y|√

|x− y|2 + (1− |x|2)(1− |y|2)

)

= 2arsinh

(
|x− y|√

(1− |x|2)(1− |y|2)

)
,

for all x, y ∈ Bn, n ≥ 2 and n ∈ Z (see [6, 8]).
A decreasing homeomorphism µ : (0, 1) → (0,∞) is defined by

µ(r) =
π

2
K(r′)
K(r)

, K(r) =
∫ 1

0

dx√
(1− x2)(1− r2x2)

, 0 < r < 1 ,

where K(r) is Legendre’s complete elliptic integral of the first kind and r′ =√
1− r2.
The Hersch-Pfluger distortion function is an increasing homeomorphism

ϕK : (0, 1) → (0, 1) defined by setting

ϕK(r) = µ−1(µ(r)/K) , r ∈ (0, 1), K > 0.

The main results of the paper are:

Theorem 1. For K ≥ 1, p ∈ [−2, 0] and x, y ∈ Bn, we have

Mp(ρ(0,A(|x|)), ρ(0,A(|y|))) ≥ ρ(0,A(Mp(|x|, |y|))),
equality holds iff x = y.

Theorem 2. For p ≥ 1, K > 1 and x, y ∈ (0,∞), the following relation holds

gK(Mp(x, y)) ≥ Mp(gK(x), gK(y)),

where gK(r) = artanh(ϕK(tanh(r))), equality holds iff x = y.

2. Proofs

Let f : I → (0,∞) be continuous, where I is a subinterval of (0,∞). Let
M and N be any two mean values. We say that f is MN -convex (concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ I .

Lemma 3. [2, Theorem 2.4(5)] Let I = (0, b), 0 < b < ∞, and let f : I →
(0,∞) be continuous. Then f is GG-convex (concave) on I if and only if
log(f(be−t)) is convex (concave) on (0,∞), where G is the Geometric Mean.

Lemma 4. (1) For m ∈ (0, 2), the function

h1(y) = 1− 1
3

log(1− y)− 1 + m

1 + y + m(1− y)

is increasing from (0, 1) onto (0,∞),
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(2) for K ≥ 1 the function

h2(x) =
(

fK(x)
x

)−(1+m) x1/K−1

K(1− x2/K)

in increasing in x ∈ (0, 1), where fK(x) = log((1 + x1/K)/(1− x1/K)).
(3) the function h3(t) = log(fK(e−t)) is convex in (0,∞).

Proof. Differentiating w.r.t y we get

h′1(y) =
(1 + m + y −my)2 + 3(1−m2)(1− y)

3(1 + m + y −my)2(1− y)
> 0 .

For (2), we get

h′2(x) = ξ[(1 + x2/K + Km(1− x2/K))fK(x)− 2(1 + m)x1/K ]

= 2ξ[(1 + x2/K + Km(1− x2/K))artanh(x1/K)− (1 + m)x1/K ]

> 2x1/Kξ[(1 + x2/K + Km(1− x2/K))(1− 1
3

log(1− x2/K))− (1 + m)]

> 2x1/Kξ[(1 + x2/K + m(1− x2/K))(1− 1
3

log(1− x2/K))− (1 + m)],

by using artanh(x) > 1− 1
3 log(1− x1/K) (see [5, Thm 1.2(2)]). Clearly h′2(x)

is positive by part (1), where

ξ =
x1/K+(m−1)fK(x)1−m

K(1− x2/K)fK(x)3
.

Finally we get,

h′′3(t) =
2 e−t/K(1 + e−2t/K)

K2(e−2t/K − 1)2
> 0,

this completes the proof. ¤

Lemma 5. For K ≥ 1, p ∈ [−2, 0], and r, s ∈ (0, 1), we have

Mp(fK(r), fK(s)) ≥ fK(Mp(r, s)) ,

where fK is same as in Lemma 4, equality holds iff r = s.

Proof. The case p = 0 follows from Lemmas 4(3) and 3. For the case p ∈
[−2, 0), let 0 < x < y < 1, and u =

(
xp+yp

2

)1/p
< x. We define

g(x) = fK(u)p − fK(x) + fK(y)p

2
.
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Differentiating w.r.t x we get du/dx = (1/2)(x/u)p−1, and

g′(x) =
1
2
p fK(u)p−1 d

dx
(fK(u))

(x

u

)
− 1

2
p fK(x)p−1 d

dx
(fK(x))

= p xp−1

[(
fK(u)

u

)p−1 u1/K−1

K(1− u2/K)
−

(
fK(x)

x

)p−1 x1/K−1

K(1− x2/K)

]
.

which is positive by Lemma 4(2), hence g is increasing. This implies that
g(x) < g(y) = 0, and this completes the proof. ¤
1. Proof of Theorem 1.

The proof follows from the formula ρ(0, r) = log((1+r)/(1−r)) and Lemma
5. ¤

The proof of the following lemma follows from the definition of ρ(x, y) and
Theorem 1.

Corollary 6. The following inequalities hold for p ∈ [−2, 0] and r, s ∈ (0, 1),

arsinh
(

r√
1− r2

)p

+ arsinh
(

s√
1− s2

)p

≥ 2 arsinh

(
(rp + sp)1/p

√
22/p − (rp + sp)2/p

)p

,

artanh
(

r√
1− r2

)p

+ artanh
(

s√
1− s2

)p

≥ 2 artanh

(
(rp + sp)1/p

2

)p

,

in both equality holds with r = s.

Corollary 7. For K ≥ 1, p < 0, we have

Mp(A(|x|),A(|y|)) ≥ A(Mp(|x|, |y|)) , x, y ∈ Bn ,

Mp(A(|x|),A(|y|)) ≤ A(Mp(|x|, |y|)) , x, y ∈ Rn \ Bn .

Both inequalities reverse for p > 0, and equality holds iff x = y.

Proof. Let 0 < r < s < 1 or 1 < r < s, and u =
(

rp+sp

2

)1/p
< r. We define

g2(r) = A(u)p − A(r)p +A(s)p

2
.

By differentiating with respect to r we get du/dr = (r/u)p−1, and

g′2(r) =
1
2
pA(u)p−1 d

dr
(A(u))

( r

u

)p−1
− 1

2
pA(r)p−1 d

dr
(A(r))

=
p

2
rp−1 (g3(u)− g3(r)) ,
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where

g3(z) =
(A(z)

z

)p−1 d

dr
(A(z)) .

Case 1. When z ∈ (0, 1), then g3(z) = (1/K)(z1/K−1)p, which is increasing
(decreasing) for p < 0 (p > 0), respectively. This implies that g2(r) < (>
)g2(s) = 0, and the first inequality is obvious. Case 2. When z > 1, then
g3(z) = K(zK−1)p, which is decreasing (increasing) for p > 0 (p < 0), respec-
tively. This implies that g2(r) > (<)g2(s) = 0, and second inequality follows.
This completes the proof. ¤

Lemma 8. [1, Theorem 10.12] For K > 1, the function
gK(r) = artanh(ϕK(tanh(x))) is strictly increasing and concave from (0,∞)
onto (0,∞).

2. Proof of Theorem 2.

Let 0 < x < y < 1 or 1 < x < y, and w =
(

xp+yp

2

)1/p
< x. We define

g4(x) = gK(w)p − gK(x)p + gK(y)p

2
.

By differentiating w.r.t x we get dw/dx = (x/w)p−1, and

g′4(x) =
1
2
p gK(w)p−1 d

dx
(gK(w))

( x

w

)p−1
− 1

2
p gK(x)p−1 d

dx
(gK(x))

=
p

2
xp−1 (g5(w)− g5(x)) ,

where

g5(z) =
(

gK(z)
z

)p−1 d

dx
(gK(z)) .

The function g5 is decreasing by Lemma 8 and [1, Theorem 1.25]. This implies
that g4(x) ≥ g4(y) = 0. This completes the proof. ¤
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