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ON THE POWER MEAN INEQUALITY OF THE
HYPERBOLIC METRIC OF UNIT BALL

BARKAT ALI BHAYO

ABSTRACT. The hyperbolic distances from the origin are changed under
the radial selfmapping x — \x|1/K71m, K > 1 of the unit ball. Here author
gives the power mean inequality of the hyperbolic metric under the radial

mapping.
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1. INTRODUCTION

For the statement of the main results we introduce some notations and
terminologies.

For p € R, the Power Mean M), of order p of two positive numbers x and y
is define by

P + P\ P
Mp(&},y) = < 2 ) ’ p#o,

VZY p=0.
For a,b > 0 and x € R", we define

[ e if e <1
Al ={ [T il 5

see [4, (1.5)]. For brevity we write A = Ay i
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The hyperbolic metric p(z,y) of the unit ball is given by

|z — 1y
x, = 2artanh
p(x,y) t <\/|90 —yZ+ (1 [z - !y|2)>

= 2arsinh< ]wz—y] 5 ) ,
V=2~ [yP)

for all z,y € B", n > 2 and n € Z (see [6, §]).

A decreasing homeomorphism g : (0,1) — (0,00) is defined by

T K(r') /1 dx
7’:—77 9(:’]": 5 0<7”<1,
o 2 XK(r) ") 0 \/(1 —22)(1 — r2x?)

where X(r) is Legendre’s complete elliptic integral of the first kind and ' =
V1—r2,

The Hersch-Pfluger distortion function is an increasing homeomorphism
v (0,1) — (0,1) defined by setting

er(r)=p" (u(r)/K), r € (0,1), K > 0.

The main results of the paper are:

Theorem 1. For K > 1, p € [-2,0] and z,y € B", we have
My (p(0, A(lz])), (0, A(ly]))) = p(0, A(My(lzl, |y]))),
equality holds iff x = y.
Theorem 2. Forp>1, K > 1 and x,y € (0,00), the following relation holds

9 (My(z,y)) = My(9x (%), 95 (),
where g (r) = artanh(pk (tanh(r))), equality holds iff x = y.

2. PROOFS

Let f : I — (0,00) be continuous, where [ is a subinterval of (0,00). Let
M and N be any two mean values. We say that f is M N-convex (concave) if

F(M(2,9) < (Z)N(f(2), f(y)) for allz,yel.

Lemma 3. [2, Theorem 2.4(5)] Let I = (0,b),0 < b < o0, and let f : I —
(0,00) be continuous. Then f is GG-convex (concave) on I if and only if
log(f(be™t)) is convex (concave) on (0,00), where G is the Geometric Mean.

Lemma 4. (1) Form € (0,2), the function

1 1+m
hi(y) =1— - log(l —y) —
1(v) slosl =9 — T A =)

is increasing from (0,1) onto (0,00),




On the power mean inequality of the hyperbolic metric of unit ball 47

(2) for K > 1 the function

2)\ ~AFm o 1/K-1
h2(x) = (fKaE )> K(l _ $2/K)

in increasing in x € (0,1), where fx(z) = log((14 z'/5) /(1 — z'/K)).
(3) the function hs(t) = log(fx(e™")) is convex in (0, 00).

Proof. Differentiating w.r.t y we get

(1+m+y—my)?+3(1—m?) (1 —y)

>0.
314+m+y—my)?(1—y)

hi(y) =

For (2), we get
hy(x) = €1+ + Km(1 - a7) fie () = 2(1 + m)a'/¥]
26[(1 4 22K + Km(1 — 2¥))artanh (2 %) — (1 + m)z'/K]
> 2 K1 4+ 2K 4 Km(1 - 2/5))(1 - %log(l — 2K)) — (14 m))

> 2K+ 2K £ m(1 — 2 K)) (1 - %log(l ~22/K)) — (14 m)],

by using artanh(z) > 1 — 1log(1 — 2K (see [5, Thm 1.2(2)]). Clearly hl(z)
is positive by part (1), where

l.l/KJr(mfl)fK(x)lfm

CTRQ ) @
Finally we get,
2¢-t/K( —2t/K
iy = 2 e )
K2(e2t/K —1)2
this completes the proof. ]

Lemma 5. For K > 1, p € [-2,0], and r,s € (0,1), we have
My(fr(r), fr(s)) = fx(Mp(r,s)),
where fx is same as in Lemma 4, equality holds iff r = s.

Proof. The case p = 0 follows from Lemmas 4(3) and 3. For the case p €
1/
[—2,0),let 0 <z <y<1,and u= (#) 8 < x. We define

p  Jr(@)+ fx(y)?
5 .

9(x) = fx(u)
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Differentiating w.r.t = we get du/dx = (1/2)(z/u)P~!, and

g(z) =

which is

i _1d

o Fic ™ () (5) = Sp el L (o))

g[S\ WK (@) \ P et
px < u > K(l_uz/K>_< - ) K(1— 22K |

positive by Lemma 4(2), hence g is increasing. This implies that

g(x) < g(y) =0, and this completes the proof. O

1. Proof of Theorem 1.

The proof follows from the formula p(0,r) = log((147)/(1—7)) and Lemma

5.

g

The proof of the following lemma follows from the definition of p(z,y) and

Theorem

1.

Corollary 6. The following inequalities hold for p € [=2,0] and r,s € (0,1),

- P s P
arsinh + arsinh
<\/1—7“2> <v1—32)

p
> 2 arsinh (r? + Sp)l/p
= \/22/10 — (rp + sP)2/p ’

r P s p
artanh + artanh
(\/17"2) (\/182)
(P + Sp)l/p>p

> 2 artanh
_aran( 5

in both equality holds with r = s.

Corollary 7. For K > 1, p < 0, we have

My(A(lz)), A(ly)) = A(Mp(lzl, [y])), =y € B,
Mp(A(lz]), A(lyl)) < AMp(Jz),[y])), =y eR"\B".

Both inequalities reverse for p > 0, and equality holds iff x = y.

Proof. Let0<r<5<10r1<r<s,andu:(#)1/p<r. We define

A(r)? + A(s)?
() = Ay - ALACE
By differentiating with respect to r we get du/dr = (r/u)P~', and
1 d ryp—1 1 d
- = p—1 7 Z _Z p—1
(1) = gp AW (Aw) (D)~ LAy L (Aw)

= 2 (gs(w) — gu(r).
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w= (2 Ly,

z

where

Case 1. When z € (0,1), then g3(z) = (1/K)(2/%~1)P, which is increasing
(decreasing) for p < 0(p > 0), respectively. This implies that go(r) < (>
)g2(s) = 0, and the first inequality is obvious. Case 2. When z > 1, then
g3(z) = K(2571)P, which is decreasing (increasing) for p > 0 (p < 0), respec-
tively. This implies that ga(r) > (<)g2(s) = 0, and second inequality follows.
This completes the proof. O

Lemma 8. [1, Theorem 10.12] For K > 1, the function
gk (r) = artanh(pk (tanh(z))) is strictly increasing and concave from (0, 00)
onto (0,00).

2. Proof of Theorem 2.
1/p
Let0<x<y<1or1<x<y,andw:<%> < x. We define

gK(x)ergK(y)p'

g4(z) = g (w)? —

2
By differentiating w.r.t z we get dw/dx = (z/w)P~!, and
! _ 1 p-1.4 a1 p-194
h(@) = pox@ (o) ()" = Jpox(@) ! (gx (@)
P o,
= Lo (gs(w) — g5()).
where

2)\? !
()= (ZE) L.

The function g5 is decreasing by Lemma 8 and [1, Theorem 1.25]. This implies
that g4(x) > ga(y) = 0. This completes the proof. O
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