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MULTIVARIABLE AND SCATTERED DATA
INTERPOLATION FOR SOLVING MULTIVARIABLE
INTEGRAL EQUATIONS

F. FATTAHZADEH!, E. GOLPAR RABOKY?

ABSTRACT. In this paper we use radial basis functions in one of the pro-
jection methods to solve integral equations of the second kind with two
or more variables. This method implemented without needing any in-
troductory algorithms. Relatively good error bound and the numerical
experiments show the accuracy of the method.
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1. INTRODUCTION

In many literatures univariable integral equations have been solved with
projection methods as collocation and Galerkin methods and with different
types of basis functions such as wavelets or other (orthogonal) basis functions
[1-7,9,11,13,14,16]. In some projection methods such as collocation method
one can use interpolation scheme; but as we know in the case of two or more
variable cases there is not any natural generalization of interpolation [8,10,12].
Other methods such as finite element which uses (orthogonal) basis functions
actually needs mesh generation for domain of integration. Mesh dependent
methods need some triangulation (or rectangulation) and coding for nodes of
each triangle (or rectangle) therefore some introductory algorithms should be
executed before implementation of the underlying method [1]. Here we solve
multi variable I.LE. with some mesh less methods.
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To simplify the notation we consider only functions of two variables. Gen-
eralizations of functions in more than two variables should be fairly straight-
forward.

2. MULTIVARIABLE I.E. AND SOME KINDS OF INTERPOLATIONS

To simplify the notation and to make more intuitive development we con-
sider only the following I.E. of the second kind with two variables

Mol ) — /R k(e . & mp(e.)dedy = b(z,y), (wy) R (1)

where R, is a bounded region in the plane R%. In this section we apply
(for comparison) two methods, firstly multivariable interpolation and secondly
scattered data interpolation method to the above equation. The second one
need not any triangulation of R.

2.1. Multivariable interpolation and collocation method. Interpola-
tion for functions of more than one variables is large topic with applications
to many areas [18]. One of them is obtaining numerical solution of integral
equations. Applications of multi variable interpolation are generally based
on first breaking up a large planar region R into smaller ones of an espe-
cially simple form and then polynomial interpolation is carried out over these
smaller regions. The two most common shapes for these smaller regions are
the rectangle and triangle.

For polynomial interpolation one can use two dimensional Lagrange’s form

Pm,n = Z Z g(l’i, yj)lz,m($)l],n(y) (2)

i=0 j=0
with
T = - Y—Yi
li,m = H ! 5 lj,n = (3)
P ) o Yi T Wi
J#i i#]

and R = [a,b] X [¢,d], a < 290 < ...xm < b, ¢ < yo < ...yn, < d. This
polynomial P, , interpolates g(z,y) at (z,y) = (2s,y;), ¢ = 0,...,m, j =
0,...,n; it is of degree r = m + n. A popular form of (2) appears by taking
m = n = 1, yielding the bilinear interpolation polynomial.

For interpolation over triangles, firstly denote A a planar triangle in the xy-
plane and let g(x,y) be a continuous function on A. In this case a polynomial
interpolant p(x,y) of degree r, for some r > 0 can be as

plz,y)= Y ciga'y’. (4)
6,320
i+j<r
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To determine coefficients ¢; ; we require

p(xk7yk):g(l‘k7yk)a k:]-)"'afr
for some choice of f, = W interpolation nodes {(xg, yx) |
1<k<fiyCA.
In some literatures to simplify the notation and to lead to a form more readily
adaptable to implementation in computer languages, use a sequential ordering
of the nodes ¢z, ..., qy, for a unit simplex
{(5,) [ 5,6 >0, s+t <1},

and define an 1-1 and onto affine mapping 7' : ¢ — A by

(x,y) =T(s,t) =uvy +tvg +sv3, u=1—s—t, (5)

of a point (z,y) € A with vy, vy, v3 the vertices of A. Now given a function
g € C(A), the unique polynomial of degree < r that interpolate the nodes
v1,...,vp of v; =T(q;), i=1,..., fr is given by

fr fr
pe(zy) = g(T(@)li(s,t) = > gvi)lai(z,y), (6)
i=1 i=1

with Ia i(z,y) = li(s,t), (z,y) =T(s,t). Now the interpolatory operator P,
on C(R) is introducing as

fr

Pup(2,y) = pu(x,y) = Y pu(vri)li(s,t), (2,y) = Th(s,t) € Ap, k=1,...,n.
=1

(7)

v =Tk(qs), i=1,....f, k=1,...,n (8)
Substituting (8) into (1) and then collocating at the node points v, = {v1,...,vp,}
of (8) we obtain the linear system
n f'r
Apn(vi) =2 Area(Lg) Y pu(vr ) / k(vi, Tr(s,8)) (s, t)do = o (v), i =1,...,1n,.

k=1 j=1 g

with

Now the collocation method for (1) can be written symbolically as

Pn()\ - K)pn = Pn¢> Pn € Xn, (10)
where

/sz/Rk(x,y,é,n)p(f,n)dédn-

However if we write the equation (1) symbolically as

(A=K)p =1, (11)
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we will have the error bound as

Theorem 1. Let R be a polygonal region in R%, and let T, be a sequence of
triangulations of R. Assume 6, = maxy—1 ., diameter{A} — 0 as n — oo
and the integral equation (11) is uniquely solvable with K a compact operator
on C(R). Then for all sufficiently large n, n > N, the approrimating equation
(10) is uniquely solvable and we have

lp = pallse SIA IO =Puk) " Il = Pupllos, 7> N. (12)
Proof: See[l].
Also by polynomial interpolation (6) of degree r, we can see ([1]) that,
10— pall < e8H, 0> N, pe CTH(R). (13)

2.2. Scattered data interpolation and collocation method. Given a
region R in plane R?, and a set of data (measurements and locations at which
these measurements were obtained) we want to find a rule which exactly match
the given measurements at the corresponding locations. If the locations at
which the measurements are taken, are not on a uniform or regular grid then
the process is called scattered data interpolation.

A common approach to solving the scattered data problem is to make the
assumption that the function P f is a linear combination of certain basis func-
tions By, i.e.

N
Pf(x) =) ckBir(x), xeR". (14)
k=1

Here we use scattered data interpolation to find the solution of multivariable
integral equation. In the univariate setting it is well known that one can
interpolate to arbitrary data at N distinct data sites using a polynomial of
degree N — 1. For multivariate setting however, there is the following negative
result due to Mairhuber and Curtis in 1956, [15].

Theorem 2. If Q C R®, s > 2 contains an interior point then there exist no
Haar spaces of continuous functions except for one dimensional ones.

Proof: See [15].

Remarks:

1. Note that existence of a Haar space guarantees invertibility of the inter-
polation matrix.

2. The Mairhuber-Curtis theorem implies that in the multivariable setting
we can no longer expect this to be the case, e.g., it is not possible to construct
unique interpolation with multivariate polynomials of degree N to data given
at arbitrary locations in R2.
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Definition 1. A complex valued continuous function ® is called positive def-
inite on R® if

N N
Z Z cicr®(xj — xi) > 0, (15)
Jj=1k=1

for any N pairwise different x1,...,xy € R® andc = [c1,...,cy]t € CN. The
function ® is called strictly positive definite on R®, if the only vector that
turns eq. (15) into an equality is the zero vector.

Definition 1 and the discussion preceding it, suggest that we should use
strictly positive definite functions as basis functions in eq. (14), i.e. Bk(x) =
d(x — xy) or

N
Pnf(x) = chq) X —X), xé€R (16)
k=1

Definition 2. A function ® : R® — R is called Radial provided that there exist
a univariate function ¢ : [0,00) — R, such that ®(x) = ¢(r), where r = ||x||,
and ||.|| is some norm on R® usually the Euclidean norm.

Some radial functions that are useful for interpolation are as bellow
1. ¢(r) = exp(—ar?), a >0, Gaussian(GA)
2. ¢(r)=(2+7r?)P, B>0, B¢N, Multiquadric (MQ)
3. ¢(r)=(2+7r%)P, B<0, Inverse Multiquadric (IM)
4. ¢(r) =r%In(r), Thin plate spline (TPS)
5. ¢(r)sk = (1—r)p(r), Wendland functions, where (.)4 is defined by
z x>0
(@)% = { 0 =<0,
and p(r) is a suitable polynomial of degree at most k [18].
To define the collocation method for solving eq. (1), proceed as follows. Use a

Radial interpolation method over R by introducing the interpolatory operator
Ppn on C(R) as

n

’Pnp(xay) = pn(xay) = chq)(x - Xj)? X = (l’,y), (17)
j=1
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where ®(x) = ¢(||x)||), and ¢ is a radial function as in preceding section and
x;, j=1,...,n, are distinct scattered data of region R. Introduce

Tn(X) = Apn(x) — fR k(x,v)pn(v)dv — (%)

(18)
= Z;LZI {AP(x — x;) — [Rk(x,v)P(v — x;)dv} — ¥ (x),
where v = (§,7) and x = (z,y) € R.
Then for nodes x; € R, j=1,...,n, compose
ro(x;) =0, i=1,...,n. (19)
This leads to determining {cy,...,¢,} as the solution of the linear system

n

D e {Ae(x; — %) — /Rk(xi, V)®(v — x;)dv} = ¥(x;) (20)

j=1
for i =1,...,n. We note that
Pnz=0 if and only if z(x;)=0, i=1,...,n.

The condition (19) can now be rewritten as
Prrn =0,
or equivalently
Pr(A = K)pn =Pntb,  pn € Xn, (21)
where Kp = / k(z,y,& n)p(&,n)dédn, and x, = span{P®(x — x;)}j=1,...n-
We can see inbfl] that the eq. (21) is equivalent to
(A = PuK)pn = Pruih,  pn € X (22)

where x is a Banach space. For the error analysis we compare eq. (22) with
the original equation

(A=K)p=1v (23)
since both are defined on the space x.

3. ERROR ANALYSIS

In this section we give an error bound for approximate solution of (1) by
suggested method of section 2.2 which comparable with those of section 2.1.
First we give some definitions.

Definition 3. The Fourier transform of f € L1(R®) is given by

flw) = 1v/@my [ e (24)
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Now let © be a domain in R*, and X = {z1,...,2p} € Q C R% and a
kernel function

P:OxO—R, Q C R%. (25)
Consider a finite dimensional space
Sx.0 = span{®(z,.) : z € X} (26)
of dimension at most M. The union of these spaces is
So = span{®(x,.) : = € N} (27)

If we want to have a norm structure on the space (27) we can define:

Definition 4. A function (25) on Q C R® that generates an inner product of
the form
(B(2,.), B(y, ))o = B(a,y)  for all w,y e, (28)

on the space Sp will be called a reproducing kernel on Q. Equation (28)
turns Sg into a pre-Hilbert space, and it allows to write

(f(.), @y, ))o = f(y) forall yeQ, [eSs,

because the equation holds for f,(y) := ®(x,y) by eq. (28), therefore that is
true for all functions in Sg. The closure Ng of S under the inner product
(.,.)o will be a Hilbert space [17]. In fact

Definition 5. If ® is a reproducing kernel on § € R®, we call the space

N = clos( y,Ss = clos(_y, span {®(z,.) : x € Q},

BN RXVA 4

the native space for ®.
Definition 6. we define
WH(R®) = {f € Ly(R*) N C(R*) : F()(1 +[[[3)™? € Lo(R*)}.  (29)

With definition (6) if we use a compactly supported function @ (as defi-
nition 2 no. 5 which is zero outside of [0,1]) for interpolating function f by eq.
(16), we have the following error bound, [19]

1f = PnfllLa < Ch2k+1+5||f|\wgk+1+S(Rs) (30)
where f is assumed to lie in the subspace W3FT175(R®) of Ny (R?).

Theorem 3. Assume K : x — x is bounded, with x a Banach space, and
assume A — K : x — x is an onto and 1-1 map. Further assume

I —=PuK|| =0 as n— oo,

then for all sufficiently large n, say n > N, the operator (A — P,K)~! exist as
a bounded operator from x to x. Moreover, it is uniformly bounded:

supnz |3 = Pok) 7| < oc.
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For the solution of (22) and (23),

Al 1
i 1P = Prpll < lp— pnll S A[|(A = PR p — Pnpl|.
o—P.x) <1 < IAIIC ]l |

Proof: See [1].

Therefore we have obtained with assumption of preceding theorem and eq.
(30) that
lp = pull = O(RPFHH).
As we observe, the method of scattered data interpolation for solving multi-
variable equation (1) is more simple than those of section 2.1 also with more
better error bound.

4. NUMERICAL EXPERIMENTS
In our first example we use Gaussian functions i.e. ®(x —x;) = exp(—||x —
x;[?) in eq. (20).
1. Consider eq. (1) with the kernel function and the exact solution as bellow

k(z,y.&m) =2+, pla,y) = exp(xy),
R =[0,1] x [0,1], and the suitable right hand side.

2. In the second example we use Multiquadric functions i.e. ®(x — x;) =

V14 ||x —x;||? in eq. (20).

Consider eq. (1) with the kernel function as example 1 and the exact solution
as bellow

pla,y) =1+a% +y7°,
R =10,1] x [0, 1], and the suitable right hand side.

In our third example we use Inverse Multi quadratic functions i.e. ®(x—x;) =
1/(1 4+ [|x — x;]|?) in eq. (20).
3. Consider eq. (1) with the kernel function and the exact solution as bellow

k(xz,y,8,m) = cos(x€) cos(yn),  plx,y) = sin(z +y),
R =[-1,1] x [-1,1], and the suitable right hand side.

In the last example we use Gaussian functions with a parameter a = 0.5
ie. ®(x —x;) = exp(—0.5]x — x;[|?).

4. Consider eq. (1) with the kernel function and the exact solution as bellow

k(xayaévn) :17 p(l‘ay) :1?2*?/2,
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R =[-0.5,0.5] x [-0.5,0.5], and the suitable right hand side.
The absolute error of |p,(z,y) — p(x,y)| in some points of function domain
for our 4 examples are presented in table 1.

Table 1. Absolute error of exact and approrimated solution of examples 1-
4 in some points of functions domains

(x4, y5) ex.1 exr.2 er.3 ex.4

(0.1,0.2)  0.235e —6 0.524e —5 0.254e —5 0.433e — 7
(0.2,0.3)  0.564e —7 0.547e¢ —6 0.548¢ —6 0.57le —7

(0.2,0.5)  0.987e—7 0.657¢ —6 0.548¢ —6 0.224¢ — 6
(0.7,0.4)  0.654e —7 0.587¢ —6 0.654¢ — 7 -

(0.8,0.9) 0.874e —6 0.524e —5 0.554e —6 -
(0.5,0.7)  0.547¢ —7 0.238¢ —6 0.554e — 6 —

(—0.4,0.1) — — 0.284e — 5 0.226e — 7
(—0.3,-0.1) — — 0.552e — 6 0.332e — 7
(—0.4,-0.2) — — 0.524e — 6 0.245¢ — 7
(—0.9,—0.7) — — 0.547¢ — 5 —
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