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SOME RESULTS OF ACCRETIVE OPERATORS AND
CONVEX SETS IN 2-PROBABILISTIC NORMED SPACE
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Abstract. In this paper we introduce the concept of accretive opera-
tors, discuss some properties of resolvents of an accretive operator in 2-
probabilistic normed spaces and focusing on the results of convex sets in
2-probabilistic normed spaces.
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1. Introduction

An interesting and important generalisation of the notion of metric space
was introduced by K.Menger [6] under the name of statistical metric space,
which is now called Probabilistic Metric Space. In the same way, in K.Menger
[6] proposed the probabilistic concept of distance by replacing the number
d(p, q), as the distance between points p, q, by a distribution function Fp,q.
This idea led to development of probabilistic analysis. An important fam-
ily of probabilistic metric spaces is probabilistic normed spaces (briefly, PN-
spaces).The concept of probabilistic normed spaces was introduced by Sertnev
A. N.in 1963 [8] . The theory of probabilistic normed spaces is important as
a generalization of deterministic results of linear normed spaces and also in
the study of random operator equations. PN spaces may also provide us a
tool to study the geometry of nuclear physics and have applications in quan-
tum particle physics particularly in string and ε(∞) theory. The concept of
2-probabilistic normed spaces is introduced by the authors I. Golet [5] and
Kouroush Nourouzi, Fatemeh Lael [2] independently, extended many results
in best approximations and compact operators in linear 2 - normed spaces to
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2 - probabilistic normed spaces. In this paper we are discussing the properties
of accretive operators and convex sets in 2 - probabilistic normed spaces.

2. Preliminaries

Definition 1. [7] A function f : R→ [0, 1) is said to be a distribution function
if it is non decreasing and right continuous with inf

t∈R
f(t) = 0 and sup

t∈R
f(t) = 1.

The set of all distribution functions is denoted by D.

Definition 2. [2] Define the distribution function H(t) by,

H(t) =
{

1, if t > 0
0, if t ≤ 0

Definition 3. [2] A pair (X,N) is called a Menger’s 2- Probabilistic Normed
space (briefly Menger’s 2-PN space) if X is a real vector space of dimX > 1,
N is a mapping from X ×X into D(for each x ∈ D, the distribution function
N(x, y) is denoted by Nx,y and Nx,y(t) is the value of Nx,y at t ∈ R ) satisfying
conditions

A1: Nx,y(0) = 0 for all x, y ∈ X
A2: Nx,y(t) = 1 for all t > 0 iff x and y are linearly dependent.
A3: Nx,y(t) = Ny,x(t) for all x, y ∈ X
A4: Nαx,y(t) = Nx,y( t

|α|) for all α ∈ R− {0} and for all x, y ∈ X

A5: Nx+y,z(s + t) ≥ Min{Nx,y(s), Ny,x(t)} for all x, y, z ∈ X and s, t ∈ R.
We call the mapping (x, y) → Nx,y a 2-probabilistic norm on X.
From the axioms (A1) and (A2) of the above definition, it is clear that

Nx,y(t) = H(t) iff x and y are linearly dependent.

Example 1. [2] Let (X, ‖., .‖) be a 2-normed space. Every 2-norm induces a
2-PN norm on X as follows:

Nx,y(t)) =
{ 1

‖x,y‖ , if t > 0
0, if t < 0

This 2-probabilistic norm is called the standard 2-PN norm.

Example 2. [2] Let (X, ‖., .‖) be a 2-normed space. Define

Nx,y(t) =
{

0, if t ≤ ‖x, y‖
1, if ‖x, y‖

where x, y ∈ X and t ∈ R then (X, N) is a 2-PN space.

Definition 4. [2] Let (X, N) be a 2-PN space, and {xn} be a sequence of X.
Then the sequence {xn} is said to be convergent to x if lim

n→∞Nxn−x,z(t) = 1
for all z ∈ X and t > 0.
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Definition 5. [2] Let (X, N) be a 2-PN space then a sequence {xn} inX is
said to be a Cauchy sequence if lim

n,m→∞Nxm−xn,z(t) = 1 for all z ∈ X, t > 0

and m > n.

Definition 6. [2] A 2-PN space is said to be complete if every Cauchy sequence
in X is convergent to a point of X.

A Complete 2-PN space is called 2-Probabilistic Banach space.

Definition 7. [2] Let (X, N) be a 2-PN space, E be a subset of X then the
closure of E is E = {x ∈ X; there is a sequence {xn} of E such that xn → x}.

We say, E is sequentially closed if E = E.

Definition 8. [1] Let E be a subset of a real vector space X then E is said to
be a convex set if λx + (1− λ)y ∈ E for all x, y ∈ E and 0 < λ < 1.

Definition 9. [2] Let (X, N) be a 2-PN space, for e, x ∈ X, α ∈ (0, 1) and
r > 0 we define the locally ball by,

Be,α [x, r] = {y ∈ X : Nx−y,e(r) ≥ α}
Definition 10. [2] Let (X, N) and (Y, N

′
) be two 2-PN spaces, T : X →

Y then a mapping is said to be sequentially continuous if xn → x implies
T (xn) → T (x).

3. Main Results

3.1. Accretive Operators in 2-PN space. Let (X, N) be a 2-PN space and
A : D(A) ⊂ X → X be an operator with domain D(A) = {x ∈ X; Ax 6= 0}
and range R(A) = ∪{Ax; x ∈ D(A)}. We may identify A with its graph and
the closure of A with the closure of its graph.

Definition 11. : Let (X,N) be a 2-PN space. An operator A : D(A) ⊂ X →
X is said to be accretive if for every z ∈ D(A)

Nx−y,z(t) ≥ N(x−y)+λ(Ax−Ay),z(t) for all x, y ∈ D(A) and λ > 0.

Throughout this article [x, y] ∈ A means x, y ∈ X such that y = Ax.
Let A be an accretive operator in a 2-PN space (X, N). Define the resolvent

of A by Jλ = (1 + λA)−1 and the Yosida approximation Aλ = 1
λ(I − Jλ) for

every λ > 0. Then D(Jλ) = R(I + λA), R(Jλ) = D(A), D(Aλ) = D(Jλ) for
t > 0.

Next we have some properties of Jλ.

Lemma 1. Let A be an accretive operator in a 2-PN space (X, N) ,Jλ is single
valued and

(1) NJλ(x)−Jλ(y),z(t) ≥ Nx−y,z(t)
(2) N 1

n
[Jn

λ (x)−x],z(t) ≥ NJλ(x)−x,z(t)
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for all x, y ∈ D(Jλ), λ > 0, z ∈ X

Proof. Let x, y ∈ D(Jλ), λ > 0, t ∈ R. Suppose y1 = Jλ(x), y2 = Jλ(x)
Since A is accretive,

Ny1−y2,z(t) ≥ N(y1−y2)+λ[ 1
λ
(x−y1)− 1

λ
(x−y2)],z(t)

= N0,z(t) = H(t) for all z ∈ X

implies y1 − y2, z are linearly independent for every z ∈ X
implies y1 − y2 = 0 implies y1 = y2.
Therefore, there exists [x1, y1], [x2, y2] ∈ A such that x1 + λy1 = x2 + λy2

then Jλ(x) = x1, Jλ(y) = x2.
(i) Since A is accretive,

NJλ(x)−Jλ(y),z(t) = Nx1−x2,z(t)
≥ N[(x1−x2)+λ(y1−y2)],z(t)

= N[(x1+λy1)−(x2+λy2)],z(t)
= Nx−y,z(t) for every z ∈ X

(ii)We have,
N 1

n
[Jn

λ (x)−x],z(t)

= NJn
λ (x)−x,z(nt) (1)

= N[Jn
λ (x)−Jn−1

λ (x)+Jn−1
λ (x)−x],z[t + (n− 1)t]

= Min{N[Jn
λ (x)−Jn−1

λ (x)],z(t), N[Jn−1
λ (x)−x],z[(n− 1)t]}

≥ Min{N[Jn
λ (x)−Jn−1

λ (x)],z(t),Min{N[Jn−1
λ (x)−Jn−2

λ (x)],z(t), N[Jn−2
λ (x)−x],z[(n− 2)t]}}

≥ Min{N[Jλ(x)−x,z(t), Min{N[Jλ(x)−x],z(t)...}Min{N[Jλ(x)−x],z(t)...}}} [by (i)]

≥ NJλ(x)−x,z(t) for every z ∈ X

¤

Definition 12. Let (X,N) be a 2-PN space. An operator A : D(A) ⊂ X → X
is said to be m-accretive if R(I + λA) = X for λ > 0.

An operator A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be two operators
then B is said to be an extension of A if D(A) ⊂ D(B) and Ax = Bx for
every x ∈ D(A), denote it by A ⊂ B.

Definition 13. Let (X,N) be a 2-PN space. An operator A : D(A) ⊂ X → X
is said to be a maximal accretive operator in X if A is an accretive operator
in X and for every accretive operator B of X with A ⊂ B then A = B.

Theorem 1. Let (X,N) be a 2-PN space. If A is an m-accretive operator in
X then A is a maximal accretive operator.
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Proof. Let B be an accretive operator with A ⊂ B. Let λ > 0 and [x, y] ∈ B.
Since A is m- accretive we have x + λy ∈ R(I + λA) implies there exists

[x1, y1] ∈ A such that x + λy = x1 + λy1

Since B is accretive and [x1, y1] ∈ B we have,

Nx−x1,z(t) ≥ N(x−x1)+λ(Bx−Bx1),z(t)
= N(x−x1)+λ(y−y1),z(t)

= N(x+λy)−(x1+λy1),z(t) = N0,z(t) for every z ∈ X

= H(t) for every z ∈ X

implies x− x1 = 0 implies x = x1

Therefore y = y1 implies [x, y] ∈ A. So A=B.
Hence A is a maximal accretive operator. ¤

Lemma 2. Let A be an accretive operator in a 2-PN space (X, N) and let
(u, v) ∈ X×X then A is maximal accretive in X iff N(x−u),z(t) ≥ N(x−u)+λ(y−v),z(t)
for every [x, y] ∈ A, z ∈ X and λ > 0 implies [u, v] ∈ A

Proof. Let A be a maximal accretive operator in X. Put T = A ∪ [u, v]
Suppose N(x−u),z(t) ≥ N(x−u)+λ(y−v),z(t) for every [x, y] ∈ A, z ∈ X and

λ > 0
then T is accretive in X and A ⊂ T implies [u, v] ∈ A
Conversly, Suppose that if A is accretive operator in X and
N(x−u),z(t) ≥ N(x−u)+λ(y−v),z(t) for every [x, y] ∈ A, z ∈ X and λ > 0

implies [u, v] ∈ A
Let B be accretive in X with A ⊂ B and [x1, y1] ∈ B
Since Bis accretive in X, we have for every [x, y] ∈ A, z ∈ X and λ > 0 with
Nx−x1,z(t) ≥ N(x−x1)+λ(Bx−Bx1),z(t) = N(x−x1)+λ(y−y1),z

implies [x1, y1] ∈ A. Therefore B ⊂ A. So A = B.
Hence A is maximal accretive in X. ¤

Theorem 2. Let A be an accretive operator in a 2-PN space (X,N) then the
closure A of A is accretive.

Proof. Let [x1, y1], [x2, y2] ∈ A then there exists sequences {[xn, yn]}, {[xm, ym]}
in A such that xn → x1; yn → y1; xm → x2; ym → y2 and λ > 0 .

Since A is accretive we have,

Nxn−xm,z(t) ≥ N(xn−xm)+λ(Axn−Axm),z(t) for every z ∈ X

= N(xn−xm)+λ(yn−ym),z(t) for every z ∈ X

as n →∞, Nx1−x2,z(t) ≥ N(x1−x2)+λ(y1−y2),z(t) for every z ∈ X

implies A is accretive in X. ¤
Theorem 3. Let A be a maximal accretive operator in a 2-PN space (X,N)
then A is sequentially closed.
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Proof. For all xn, yn ∈ D(A), Let {[xn, yn]} in A such that xn → u, yn → v
and λ > 0

Since A is accretive in X and [x, y] ∈ A
implies Nx−xn,z(t) ≥ N(x−xn)+λ(y−yn),z(t) for every z ∈ X
as n →∞ we have Nx−u,z(t) ≥ N(x−u)+λ(y−v),z(t) for every z ∈ X
Therefore,by Lemma (2) [u, v] ∈ A. Hence A is sequentially closed. ¤

Corollary 1. If A is an m-maximal accretive operator in a 2-PN space (X,N)
then A is sequentially closed.

Proof. We have an m-accretive operator A in X is a maximal accretive operator
in X. Hence by Theorem (3), A is sequentially closed. ¤

Theorem 4. Let (X, N) be a complete 2-PN space. Let A be a sequentially
continuous accretive operator on X. If A is closed then R(I +λA) is closed for
λ > 0.

Proof. Let {zn} be a sequence in R(I + λA) with zn → z
′
in X then {zn} is a

Cauchy sequence in X.
{zn} ∈ R(I + λA) implies there exists [xn, yn] ∈ A such that zn = xn + λyn

implies Jλ(zn) = xn

Therefore for every t ∈ R and z ∈ X,
Nxn−xm,z(t) = NJλ(zn)−Jλ(zm),z(t) ≥ Nzn−zm,z(t)
implies limn,m→∞Nxn−xm,z(t) = H(t) = 1 for every t > 0
implies lim

n,m→∞Nxn−xm,z(t) = 1 for every t > 0 and z ∈ X

Therefore {xn} is a Cauchy sequence in X.
Since X is complete, there exists x ∈ X such that xn → x and

yn = 1
λ(zn − xn)

implies yn → 1
λ(z

′ − x) as n →∞
Since Axn = yn and A is sequentially continuous, Ax = 1

λ(z
′ − x)

implies z
′
= x+λAx ∈ R(I +λA). Hence R(I +λA) is closed for λ > 0. ¤

3.2. Convex sets in 2-PN space. In this section we are discussing about
some properties of convex sets in 2-PN spaces.

Theorem 5. Every open ball in a 2-PN space (X, N) is Convex.

Proof. We have the locally ball is Be,α [x, r] = {y ∈ X : Nx−y,e(r) ≥ α}
Let x ∈ X, r ∈ (0, 1), e ∈ X
Choose z, y ∈ and 0 ≤ λ ≤ 1 then Nx−z,e(r) ≥ α, Nx−y,e(r) ≥ α
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We have,

Nx−[λy+(1−λ)z],e(r) = Nx−[λy+(1−λ)z],e([λ + (1− λ)]r)
= Nλ(x−y)+(1−λ)(x−z),e([λ + (1− λ)]r)

≥ Min{Nλ(x−y),e(λr), N(1−λ)(x−z),e((1− λ)r)}
= Min{N(x−y),e(r), N(x−z),e(r)}
≥ Min{α, α} = α

Therefore λy + (1− λ)z ∈ Be,α [x, r] for all z, y ∈ Be,α [x, r]
So, every locally ball in a 2-PN space is Convex ¤

Theorem 6. The closure of a closed convex set in a 2-PN space (X, N) is
convex

Proof. Let E be a closed convex set in a 2-PN space (X, N) then we have to
prove that E is convex.

Let x, y ∈ E then there exists sequences {xn}, {yn} ∈ E such that xn −→ x
and yn −→ y

Since, {xn}, {yn} ∈ E and E is convex implies λxn + (1 − λ)yn ∈ E for all
0 < λ < 1

as n −→ ∞ we get λx + (1 − λ)y ∈ E. The facts λx + (1 − λ)y ∈ E and
E = E imply E is convex. ¤

Definition 14. Let E be a subset of a 2-PN space (X,N) then an element
x ∈ E is called a interior point of E if there are r > 0, e ∈ X such that
Be,α [x, r] ⊆ E.

The set of all interior points of E is denoted by int(E).

Definition 15. A subset E of a 2-PN space (X,N) is said to be open if
E = int(E).

For any two points x,y in the real vector space X denote,
(x, y) = {λx + (1− λ)y; λ ∈ (0, 1)}

Theorem 7. Let E be a convex subset of a 2-PN space (X,N) . Let a ∈ E and
x is an interior point of E then every point in (a, x) = {λa+(1−λ)x; λ ∈ (0, 1)}
is an interior point of E.

Proof. Let u ∈ (a, x) then u = λx + (1− λ)a for some λ ∈ (0, 1)
Since x is an interior point of E then there exists r0 > 0, e ∈ X and α ∈ (0, 1)

such that Be,α [x, r0] ⊆ E.
So it is enough to show that Be,α [u, λr0] ⊆ E for λr0 ∈ (0, 1).
Let y ∈ Be,α [u, λr0] then N(u−y),e(λr0) ≥ α
Therefore, Nλ−1(y−u),e(r0) = N(u−y),e(λr0) ≥ α

implies x + λ−1(y − u) ∈ Be,α [x, r0]
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Let w = x + λ−1(y − u) then λw = λx + (y − u)
implies y = λ(w − x) + u
implies y = λ(w−x)+λx+(1−λ)a impies y = (1−λ)a+w with w, a ∈ E
Since E is convex, y = (1− λ)a + w ∈ E
Hence any point in (a, x) is an interior point of E. ¤

Corollary 2. Let E be a convex subset of a 2-PN space (X, N) . Let x be an
interior point of E and y ∈ E then (x, y) ⊆ int(E).

Proof. Suppose x is an interior point of E and y ∈ E then there exists a
sequence {yn} ∈ E such that yn −→ y.

Let z ∈ (x, y) then z = λx + (1− λ)y for some λ ∈ (0, 1)
Define zn = λx + (1− λ)yn

Since x is an interior point of E then there exists r0 > 0, e ∈ X and α ∈ (0, 1)
such that Be,α [x, r0] ⊆ E.

By Theorem (7), Be,α [zn, λr0] ⊆ E for λr0 ∈ (0, 1) and zn −→ z.
Since N is continuous for the first component,zn −→ z means that
limn→∞Nzn−z,y(t) = 1 for y ∈ X and t > 0
ie; there exists n0 ∈ N such that zn ∈ Be,α [zn, λr0] for every n ≥ n0

Now Nzn−z,y(t) = Nz−zn,y(t) and we can say that z ∈ Be,α [zn, λr0] ⊆ E .
Hence (x, y) ⊆ int(E). ¤

Corollary 3. Let E be a non empty convex subset of a 2-PN space (X, N)
then int(E) = E.

Proof. It is obvious that, int(E) ⊆ E.
Let y ∈ E and take x ∈ int(E) then by Corollary (2), (x, y) ⊆ int(E).
If λn ∈ (0, 1) with λn → 0 then {λnx + (1− λn)y} is a sequence in (x, y)
Then N[λnx+(1−λn)y]−y,z(t) = Nλn(x−y),z(t) = N0,z(t)for every z ∈ X,
as λn → 0
ie; N[λnx+(1−λn)y]−y,z(t) = H(t) implies N[λnx+(1−λn)y]−y,z(t) = 1 for t > 0
implies λnx + (1− λn)y −→ y as n →∞
So,y ∈ int(E) implies E ⊆ int(E)
Hence int(E) = E. ¤
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