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SOME RESULTS OF ACCRETIVE OPERATORS AND
CONVEX SETS IN 2-PROBABILISTIC NORMED SPACE

P. K. HARIKRISHNAN?, K. T. RAVINDRAN?

ABSTRACT. In this paper we introduce the concept of accretive opera-
tors, discuss some properties of resolvents of an accretive operator in 2-
probabilistic normed spaces and focusing on the results of convex sets in
2-probabilistic normed spaces.
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1. INTRODUCTION

An interesting and important generalisation of the notion of metric space
was introduced by K.Menger [6] under the name of statistical metric space,
which is now called Probabilistic Metric Space. In the same way, in K.Menger
[6] proposed the probabilistic concept of distance by replacing the number
d(p,q), as the distance between points p, q, by a distribution function F,,.
This idea led to development of probabilistic analysis. An important fam-
ily of probabilistic metric spaces is probabilistic normed spaces (briefly, PN-
spaces).The concept of probabilistic normed spaces was introduced by Sertnev
A. N.n 1963 [8] . The theory of probabilistic normed spaces is important as
a generalization of deterministic results of linear normed spaces and also in
the study of random operator equations. PN spaces may also provide us a
tool to study the geometry of nuclear physics and have applications in quan-
tum particle physics particularly in string and £(°) theory. The concept of
2-probabilistic normed spaces is introduced by the authors I. Golet [5] and
Kouroush Nourouzi, Fatemeh Lael [2] independently, extended many results
in best approximations and compact operators in linear 2 - normed spaces to
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2 - probabilistic normed spaces. In this paper we are discussing the properties
of accretive operators and convex sets in 2 - probabilistic normed spaces.

2. PRELIMINARIES
Definition 1. [7] A function f : R — [0, 1) is said to be a distribution function
if it is non decreasing and right continuous with %glf&f(t) =0 and ig}g ft) =
The set of all distribution functions is denoted by D.
Definition 2. [2] Define the distribution function H(t) by,

1, #t>0
H(t):{ 0, ift<0

Definition 3. [2] A pair (X, N) is called a Menger’s 2- Probabilistic Normed
space (briefly Menger’s 2-PN space) if X is a real vector space of dimX > 1,
N is a mapping from X x X into D(for each x € D, the distribution function
N(z,y) is denoted by N, and Ny (t) is the value of Ny att € R ) satisfying
conditions

Al: Ny y(0) =0 forallz,y € X
A2: Nyy(t) = for all t > 0 iff ¢ and y are linearly dependent.
A3 2y (t) = Ny z(t) for allz,y € X

AY: Nax y(t) = Nﬂmy(ﬁ) for all « € R — {0} and for all x,y € X

A5: Nty (s +1t) > Min{Nyy(s), Ny (t)} for all x,y,z € X and s,t € R.
We call the mapping (x,y) — Ny, a 2-probabilistic norm on X.
From the axioms (A1) and (A2) of the above definition, it is clear that

Ny y(t) = H(t) iff x and y are linearly dependent.

Example 1. [2] Let (X, |.,.|]|) be a 2-normed space. Every 2-norm induces a
2-PN norm on X as follows:

1 .
— t>0
N, () = = ¥
ey ={ o 1
This 2-probabilistic norm is called the standard 2-PN norm.
Example 2. [2] Let (X, ||.,.]|) be a 2-normed space. Define
0, ift<|z,y
t) = ;
) { Lif el
where z,y € X andt € R then (X, N) is a 2-PN space.

Definition 4. [2] Let (X, N) be a 2-PN space, and {x,} be a sequence of X.
Then the sequence {x,} is said to be convergent to = if lim Ny, o .(t) =1

forall z € X and t > 0.

Y

z,Y
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Definition 5. [2] Let (X, N) be a 2-PN space then a sequence {x,} inX is
said to be a Cauchy sequence if lim Ny _, .(t) =1 forall z € X,t >0
n,Mm—00

and m > n.

Definition 6. [2] A 2-PN space is said to be complete if every Cauchy sequence
i X is convergent to a point of X.
A Complete 2-PN space is called 2-Probabilistic Banach space.

Definition 7. [2] Let (X, N) be a 2-PN space, E be a subset of X then the
closure of Eis E = {x € X; there is a sequence {zn} of E such that x, — x}.
We say, F is sequentially closed if £ =

Definition 8. [1] Let E be a subset of a real vector space X then E is said to
be a convez set if \e + (1 — Ny € E for allz,y € E and 0 < X\ < 1.

Definition 9. [2] Let (X,N) be a 2-PN space, for e,x € X, € (0,1) and
r > 0 we define the locally ball by,
Beolz,r] ={y € X : Ny_ye(r) > a}

Definition 10. [2] Let (X, N) and (Y,N') be two 2-PN spaces, T : X —
Y then a mapping is said to be sequentially continuous if x, — x implies

T(z,) — T(x).

3. MAIN RESULTS

3.1. Accretive Operators in 2-PN space. Let (X, N) be a 2-PN space and
A: D(A) C X — X be an operator with domain D(A) = {z € X; Az # 0}
and range R(A) = U{Az;z € D(A)}. We may identify A with its graph and
the closure of A with the closure of its graph.

Definition 11. : Let (X, N) be a 2-PN space. An operator A: D(A) C X —
X is said to be accretive if for every z € D(A)

Nu—y2(t) > Ng—y)ysr(Ae—Aay),-(t) for all z,y € D(A) and X > 0.

Throughout this article [z,y] € A means z,y € X such that y = Ax.

Let A be an accretive operator in a 2-PN space (X, V). Define the resolvent
of A by Jy = (1+ AA)~! and the Yosida approximation Ay = 3(I — J)) for
every A > 0. Then D(Jy) = R(I + MA), R(J\) = D(A), D(A)) = D(J),) for
t>0.

Next we have some properties of J).

Lemma 1. Let A be an accretive operator in a 2-PN space (X, N) ,J is single
valued and

(1) Niy@)—dx(),2(t) = No—y (1)
(2) Nl[Jn z)— x] (t) = Ny (2)—2.2(1)
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for all z,y € D(J\),A >0,z € X

Proof. Let x,y € D(Jy),A > 0,t € R. Suppose y; = Jx(x),y2 = Jx(x)
Since A is accretive,

Ny—oz(t) 2 Ny )32 @—y0) - @)= (D)
= Ny.(t)=H(t) forall z € X
implies y1 — ys, 2z are linearly independent for every z € X
implies y; — y2 = 0 implies y; = yo.
Therefore, there exists [z1,y1], [T2,y2] € A such that x1 + A\y1 = x2 + Ay2
then Jy(z) = z1, JA(y) = 2.
() Since A is accretive,

NJA(m)*JA(y)vz(t) = Ny —Iz,Z(t)
N[(ﬁ —z2)+A(y1—y2)],2 (t)

= Nt (@ata2)2 (1)
Ny—y . (t) for every z € X

v

(ii))We have,
Niirp(@)a).2 ()

NJ;\’ (z)—z,2 (nt)

N[J;L(x)_«]:_l(ac)-i—J;}_l(x)—xLz[t + (n — 1)t]
Mind Nz =12y, () Npyn1@)—ap o [( = Dt}

> Min{Nj, (2)—z:(), Min{Nj, 2)-a),-(¢)--. }Min{ N s, (2) 2] = ().} }} [by ()]
> Ny (2)-2,(t) for every z € X

O

Definition 12. Let (X, N) be a 2-PN space. An operator A: D(A) C X — X
is said to be m-accretive if R(I + \A) = X for A > 0.

An operator A: D(A) C X — X and B : D(B) C X — X be two operators
then B is said to be an extension of A if D(A) C D(B) and Az = Bz for
every © € D(A), denote it by A C B.

Definition 13. Let (X, N) be a 2-PN space. An operator A: D(A) C X — X

s said to be a maximal accretive operator in X if A is an accretive operator
in X and for every accretive operator B of X with A C B then A = B.

Theorem 1. Let (X, N) be a 2-PN space. If A is an m-accretive operator in
X then A is a maximal accretive operator.
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Proof. Let B be an accretive operator with A C B. Let A > 0 and [z,y] € B.
Since A is m- accretive we have x + Ay € R(I + A\A) implies there exists
[z1,11] € A such that = + Ay = z1 + Ays
Since B is accretive and [z1,y1] € B we have,

Nﬂﬂ—wl,z (t> > N(x—:cl)+)\(B:(:—Bx1),z (t)
= N—z)+a@-n). ()
= N(a:+)\y)—(a:1+/\y1),z(t) = N07z(t) for every z € X
= H(t) for every z € X
implies x — 1 = 0 implies z = 21
Therefore y = y; implies [z,y] € A. So A=B.
Hence A is a maximal accretive operator. ]

Lemma 2. Let A be an accretive operator in a 2-PN space (X, N) and let
(u,v) € XxX then A is mazimal accretive in X iff Nz_y) - (t) = Nig—u)4r(y—v),z(t)
for every [x,y] € A,z € X and XA > 0 implies [u,v] € A

Proof. Let A be a maximal accretive operator in X. Put T'= A U [u, v]

Suppose N(g_y) - (t) = Nig—u)4r(y—v),z(t) for every [z,y] € A,z € X and
A>0

then T is accretive in X and A C T implies [u,v] € A

Conversly, Suppose that if A is accretive operator in X and

Nig—u),z(t) = Ng—wyr@—v),z(t) for every [z,y] € A,z € X and A > 0
implies [u,v] € A

Let B be accretive in X with A C B and [z1,y1] € B

Since Bis accretive in X, we have for every [z,y] € A,z € X and A > 0 with

Nx—rhz(t) 2 N(x—xl)-l—)\(Bz—B:cl),z(t) = N(x—z1)+)\(y—y1),z

implies [z1,y1] € A. Therefore B C A. So A = B.

Hence A is maximal accretive in X. ]

Theorem 2. Let A be an accretive operator in a 2-PN space (X, N) then the
closure A of A is accretive.

Proof. Let [x1,41], [12,y2] € A then there exists sequences {[zy, Yn]}, {[Tm, Ym]}
in A such that x, — 21;%n — Y1;Zm — T2;Ym — y2 and A >0 .
Since A is accretive we have,

Nip—zmz2(t) = Nizp—zp) 4\ (Azn—Azm),z(t) for every z € X
= N(xn—rm)-‘r)\(yn—ym),z(t) for every z € X
as n — 00, Ny —uy2(t) = Nz —ao)4A(y1—ya),2(t) for every z € X

implies A is accretive in X. O

Theorem 3. Let A be a mazimal accretive operator in a 2-PN space (X, N)
then A is sequentially closed.



Some results of accretive operators and convex sets 81

Proof. For all x,,y, € D(A), Let {[zn,yn]} in A such that z, — u,y, — v
and A >0
Since A is accretive in X and [z,y] € A
implies Ny, 2(t) = Ng—z,)+A(y—yn),z(t) for every z € X
as n — 00 we have Ny—y »(t) > Ng_u)4a(y—o),-(t) for every z € X
Therefore,by Lemma (2) [u,v] € A. Hence A is sequentially closed. O

Corollary 1. If A is an m-mazimal accretive operator in a 2-PN space (X, N)
then A is sequentially closed.

Proof. We have an m-accretive operator A in X is a maximal accretive operator
in X. Hence by Theorem (3), A is sequentially closed. O

Theorem 4. Let (X, N) be a complete 2-PN space. Let A be a sequentially
continuous accretive operator on X. If A is closed then R(I+ \A) is closed for
A>0.

Proof. Let {z,} be a sequence in R(I + AA) with z, — 2" in X then {z,} is a
Cauchy sequence in X.

{zn} € R(I + AA) implies there exists [x,,y,] € A such that z, = =, + Ay,
implies Jy(zpn) = @,

Therefore for every t € R and z € X,

anfzm,Z(t) = NJ)\(zn)—JA(zm),z(t) > Nznfzm,Z(t)

implies lim,, .., oo Na,, —z,,,2(t) = H(t) = 1 for every t > 0

implies . }ﬁIEoo Ng, (t) =1foreveryt>0and z € X

—Tm,%

Therefore {xz,} is a Cauchy sequence in X.
Since X is complete, there exists z € X such that z,, — x and
_1
Yn = X(Zn - "L'n)
implies y,, — %(z' —x)asn — oo
Since Az, =y, and A is sequentially continuous, Ax = %(2/ —x)
implies z° = z+ AAz € R(I+\A). Hence R(I+ AA) is closed for A > 0. [

3.2. Convex sets in 2-PN space. In this section we are discussing about
some properties of convex sets in 2-PN spaces.

Theorem 5. Every open ball in a 2-PN space (X, N) is Convez.
Proof. We have the locally ball is Be o [z,7] = {y € X : Ny—y (1) > a}

Let z € X,r € (0,1),e e X
Choose z,y € and 0 < A <1 then Ny, (1) > a,Np—y(r) >
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We have,

No—pyr(1=2)2e(1) = Ne_pyra-nze([A+ (1= A)]r)
N(@—p)+1-N)(@—2),e([A + (1T = A)]r)
Min{Ny(z—y),e(A1); Na-x)(z—2),e (1 = A)7)}
Min{N(z_y).e(1), Ng—2),e(T)}
Min{a,a} =«
Therefore Ay + (1 — X\)z € Be o [z, 7] for all z,y € Be o [z, 7]

So, every locally ball in a 2-PN space is Convex O

Y

Y

Theorem 6. The closure of a closed convex set in a 2-PN space (X, N) is
convex

Proof. Let E be a closed convex set in a 2-PN space (X, N) then we have to
prove that E is convex.

Let 2,y € E then there exists sequences {z,}, {y,} € F such that z,, — =
and yp, — y

Since, {z,},{yn} € F and E is convex implies Az, + (1 — \)y, € E for all
0<A<l1

as n — oo we get Az + (1 — Ny € E. The facts \x + (1 — \)y € E and
E = E imply E is convex. O

Definition 14. Let E be a subset of a 2-PN space (X, N) then an element
x € FE is called a interior point of E if there are r > 0,e € X such that
Beo [z, 7] C E.

The set of all interior points of E is denoted by int(E).

Definition 15. A subset E of a 2-PN space (X,N) is said to be open if
E =int(E).

For any two points x,y in the real vector space X denote,
(z,y) ={Az+ (1= Ny; A€ (0,1)}

Theorem 7. Let E be a convex subset of a 2-PN space (X,N) . Leta € E and
z is an interior point of E then every point in (a,z) = {Aa+(1—A)x; A € (0,1)}
s an interior point of F.

Proof. Let u € (a,x) then u = Az + (1 — X)a for some X\ € (0,1)

Since x is an interior point of E then there exists ro > 0,e € X and a € (0,1)
such that Be o [z,70] C E.

So it is enough to show that B o [u, Arg] C E for Arg € (0, 1).

Let y € Be o [u, Aro] then Ni,_y (A10) >

Therefore, N)\—1(y_u)7e(’l”o) = N(u,y%e()\T‘o) >«

implies  + A~ (y — u) € Be g [, 70)
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Let w =2 + A7 (y — u) then Aw = Az + (y — )

implies y = A(w — x) + u

implies y = AM(w —z) + Az + (1 — X)a impies y = (1 — N)a+w with w,a € E
Since E is convex, y = (1 = N)a+w € E

Hence any point in (a,x) is an interior point of E. O

Corollary 2. Let E be a convex subset of a 2-PN space (X,N) . Let z be an
interior point of E and y € E then (z,y) C int(E).

Proof. Suppose x is an interior point of E and y € E then there exists a
sequence {y,} € E such that y, — v.

Let z € (z,y) then z = Az + (1 — \)y for some A € (0,1)

Define z, = Az + (1 — Ny,

Since x is an interior point of E then there exists ro > 0,e € X and a € (0, 1)
such that Be o [z,79] C E.

By Theorem (7), Be o [2n, Aro] C E for Arg € (0,1) and z, — z.

Since N is continuous for the first component,z, — 2z means that

limp—ooN,,—2y(t) =1for ye X and t > 0

ie; there exists ng € N such that z, € Be q [z, Aro] for every n > ng

Now N, . 4(t) = N,_,, ,(t) and we can say that z € Be o [2n, AT9] C E .

Hence (z,y) C int(FE). O

Corollary 3. Let E be a non empty convex subset of a 2-PN space (X, N)
then int(E) = E.

Proof. Tt is obvious that, int(E) C E.
Let y € E and take x € int(E) then by Corollary (2), (z,y) C int(E).
If A\, € (0,1) with A\, — 0 then {\,z + (1 — \,,)y} is a sequence in (z,y)
Then N[)\nm+(1—)\n)y]—y,z(t) = N)\n(x—y),z(t) = N07z(t)f0r every z € X,
as A\, — 0
ie; N[)\nx+(17)\n)y]fy,z(t) = H(t) implies N[)\nz+(17>\n)y]fy,z(t) =1fort>0
implies A,z 4+ (1 — A\)y — y as n — o0
So,y € int(E) implies E C int(E)
Hence int(E) = E. O
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