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ON TWO FAMILIES OF GRAPHS WITH CONSTANT
METRIC DIMENSION

M. ALI1, M. T. RAHIM1, G. ALI1

Abstract. If G is a connected graph, the distance d(u, v) between two
vertices u, v ∈ V (G) is the length of a shortest path between them. Let
W = {w1, w2, ...., wk} be an ordered set of vertices of G and let v be a
vertex of G. The representation r(v|W ) of v with respect to W is the
k-tuple (d(v, w1), d(v, w2), ....., d(v, wk)). If distinct vertices of G have dis-
tinct representations with respect to W , then W is called a resolving set
or locating set for G. A resolving set of minimum cardinality is called a
basis for G and this cardinality is the metric dimension of G, denoted by
dim(G).
A family G of connected graphs is a family with constant metric dimen-
sion if dim(G) does not depend upon the choice of G in G. In this paper,
we show that the graphs D∗

n and Dp
n, obtained from prism graph have

constant metric dimension.
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1. Introduction

If G is a connected graph, the distance d(u, v) between two vertices u, v ∈
V (G) is the length of a shortest path between them. Let W = {w1, w2, ...., wk}
be an ordered set of vertices of G and let v be a vertex of G. The representa-
tion of v with respect to W denoted by r(v|W ) is the k-tuple
(d(v, w1), d(v, w2), ....., d(v, wk)). If distinct vertices of G have distinct repre-
sentations with respect to W , then W is called a resolving set or locating set
for G [2]. A resolving set of minimum cardinality is called a metric basis for
G and this cardinality is the metric dimension of G, denoted by dim(G).
For a given ordered set of vertices W = {w1, w2, ...., wk} of a graph G, the
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ith component of r(v|W ) is 0 if and only if v = wi. Thus, to show that W
is a resolving set it suffices to verify that r(x|W ) 6= r(y|W ) for each pair of
distinct vertices x, y ∈ V (G)\W .
By denoting G+H the join of G and H, a fan is fn = K1 +Pn for n ≥ 1 and
Jahangir graph J2n, (n ≥ 2) (also known as gear graph) is obtained from
the wheel W2n by alternately deleting n spokes. Caceres et al. [1] found the
metric dimension of fan fn and Tomescu et al.[13] found the metric dimension
of Jahangir graph J2n. Also Tomescu et al. [14] evaluated the partition and
connected partition dimension of wheels.
In [2] Chartrand et al. proved that a graph has metric dimension 1 if and
only if it is a path, hence paths on n vertices constitute a family of graphs
with constant metric dimension. Similarly, cycles with n(≥ 3) vertices also
constitute such a family of graphs as their metric dimension is 2. The prisms
Dn are the trivalent plane graphs obtained by the cross product of the path
P2 with a cycle Cn; they also constitute a family of 3-regular graphs with
constant metric dimension. Also Javaid et al. proved in [5] that the set of
antiprisms An constitutes a family of regular graphs with constant metric
dimension as dim(An) = 3 for every n ≥ 5.
In this paper, we extend this study by considering some prism related graphs.
We define the graph D∗

n as an extension of the prism graph defined as follows.
For each vertex bi, of the outer cycle we introduce a new vertex ai, and join
ai to bi and bi−1, i = 1, 2, ..., n, where b0 = bn. Thus V (D∗

n) =
⋃n

i=1{ai, bi, ci}.
Here {ci}, are inner cycle vertices and {bi}, are outer cycle vertices and {ai},
i = 1, 2, ..., n are adjacent vertices to outer cycle. We define the graph Dp

n

as an extension of the prism graph defined as follows. For each vertex bi,
for i = 1, 2, ..., n, of the outer cycle we introduce a new vertex ai and join
ai to bi, i = 1, 2, ..., n. Thus V (Dp

n) =
⋃n

i=1{ai, bi, ci}. Here {ci} are inner
cycle vertices, {bi} are outer cycle vertices and {ai}, are vertices pendant to
outer cycle for i = 1, 2, ..., n. We show that these graphs constitute families of
graphs with constant metric dimension.

2. Prism Related Graphs with Constant Metric Dimension

In this section we show that D∗
n, Dp

n have constant metric dimension.

Theorem 1. For n ≥ 6 we have dim(D∗
n) = 3

Proof. We consider two cases.
Case(1). Suppose n = 2k, k ≥ 3, k ∈ IN . We consider W = {c1, c2, ck+1} ⊂
V (D∗

n). We show that W is a resolving set for V (D∗
n). The representations of

the vertices of V (D∗
n) \W with respect to W are:

r(ci|W ) =
{

(i− 1, i− 2, 1 + k − i), for 3 ≤ i ≤ k;
(2k − i + 1, 2k + 2− i, i− 1− k), k + 2 ≤ i ≤ n.
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Figure 1. Graphs D∗
6 and Dp

6

r(bi|W ) =





(1, 2, k + 1), for i = 1;
(i, i− 1, k + 2− i), for 2 ≤ i ≤ k + 1;
(2k + 2− i, 3 + 2k − i, i− k), for k + 2 ≤ i ≤ n.

r(ai|W ) =





(2, 3, k + 2), i = 1;
(2, 2, k + 1), i = 2;
(i, i− 1, k + 3− i), 3 ≤ i ≤ k + 1;
(k + 1, k + 1, 2), i = k + 2;
(2k + 3− i, 2k + 4− i, i− k), k + 3 ≤ i ≤ n.

We note that there are no two vertices having the same representation imply-
ing that dim(D∗

n) ≤ 3.
Now we show that dim(D∗

n) ≥ 3, by proving that there is no resolving set W
with |W | = 2. We have the following possibilities:
(1). Both vertices of W are on the inner cycle. Without loss of generality we
suppose that one resolving vertex is c1, and the other is ct, (2 ≤ t ≤ k + 1).
For 2 ≤ t ≤ k, we have
r(cn|W ) = r(b1|W ) = (1, t).
And for t = k + 1, we get
r(c2|W ) = r(cn|W ) = (1, k − 1), a contradiction.
(2). Both vertices of W are on the outer cycle. Without loss of generality we
suppose that one resolving vertex is b1, and the other is bt, (2 ≤ t ≤ k + 1).
For 2 ≤ t ≤ k + 1, we have
r(c1|W ) = r(a1|W ) = (1, t),
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a contradiction.
(3). Both vertices of W are adjacent to outer cycle. We suppose that one
resolving vertex is a1, and the other is at, (2 ≤ t ≤ k + 1). For 2 ≤ t ≤ k, we
have
r(cn|W ) = r(an|W ) = (2, t + 1).
And for t = k + 1, we get
r(b1|W ) = r(bn|W ) = (1, k), a contradiction.
(4). One vertex on the inner cycle and the other is on the outer cycle. Consider
one resolving vertex is c1, and the other is bt, (1 ≤ t ≤ k + 1). For 1 ≤ t ≤ k,
we have
r(a1|W ) = r(bn|W ) = (2, t).
And for t = k + 1, we deduce
r(bn|W ) = r(b2|W ) = (1, k − 1), a contradiction.
(5). One vertex on the inner cycle and the other is the adjacent vertices
to outer cycle. Consider one resolving vertex is c1, and the other is at,
(1 ≤ t ≤ k + 1). For 1 ≤ t ≤ k − 1, we have
r(an|W ) = r(bn−1|W ) = (3, t + 1).
And for t = k, we get
r(b1|W ) = r(c2|W ) = (1, k − 1), similarly for t = k + 1, the representation is
r(b1|W ) = r(c2|W ) = (1, k − 1) a contradiction.
(6). One vertex on the outer cycle and the other is adjacent to outer cycle.
Consider one resolving vertex is b1, and the other is at, (1 ≤ t ≤ k + 1). For
1 ≤ t ≤ k, we have
r(an|W ) = r(cn|W ) = (2, t + 1).
And for t = k + 1, the representation is
r(ck|W ) = r(ak+2|W ) = (k, 2), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
for V (D∗

n) implying that dim(D∗
n) = 3.

Case(2). Suppose n = 2k + 1, k ≥ 3, k ∈ IN . Consider the set W =
{c1, c2, ck+1} ⊂ V (D∗

n). We show that W is a resolving set for V (D∗
n). For

this we take the representations of vertices of V (D∗
n) \W with respect to W :

r(ci|W ) =





(i− 1, i− 2, k + 1− i), for 3 ≤ i ≤ k;
(2k + 2− i, 2k + 2− i, 1), for i = k + 2;
(2k + 2− i, 2k + 3− i, i− k − 1), for k + 3 ≤ i ≤ n.

r(bi|W ) =





(1, 2, k + 1), for i = 1;
(i, i− 1, k + 2− i), for 2 ≤ i ≤ k + 1;
(k + 1, k + 1, 2), for i = k + 2;
(2k + 3− i, 2k + 4− i, i− k), for k + 3 ≤ i ≤ n.
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r(ai|W ) =





(2, 3, k + 2), i = 1;
(2, 2, k + 1), i = 2;
(i, i− 1, k + 3− i), 3 ≤ i ≤ k + 1;
(k + 2, k + 1, 2), i = k + 2;
(2k + 4− i, 2k + 5− i, i− k), k + 3 ≤ i ≤ n.

Proceeding on same line as in (1) we observe that there are no two vertices
having the same representations, implying that dim(D∗

n) ≤ 3.
Now we show that dim(D∗

n) ≥ 3. Consider that dim(D∗
n) = 2, then there are

the same possibilities as in case(1) and contradiction can be deduced analo-
gously. This implies that dim(D∗

n) ≥ 3 in this case . Finally from case(1) and
(2), we get dim(D∗

n) = 3. Which completes the proof. ¤
Theorem 2. For n ≥ 3

dim(Dp
n) =

{
2, if n = 2k + 1;
3, n = 2k.

Proof. Case(1). When n = 2k+1, k ∈ IN . Suppose W = {c1, ck+1} ⊂ V (Dp
n),

we show that W is resolving set for V (Dp
n). For this we take the representation

of any vertex of V (Dp
n)\W with respect to W :

r(ci|W ) =
{

(i− 1, k + 1− i), 2 ≤ i ≤ k;
(2k + 2− i, i− k − 1), k + 2 ≤ i ≤ n.

r(bi|W ) =
{

(i, k − i + 2), 1 ≤ i ≤ k + 1;
(2k + 3− i, i− k), k + 2 ≤ i ≤ n.

r(ai|W ) =
{

(i + 1, k − i + 3), 1 ≤ i ≤ k + 1;
(2k + 4− i, i− k + 1), k + 2 ≤ i ≤ n.

Since these representations are pair wise distinct it follow,s that dim(Dp
n) ≤ 2

By [2] it is clear that dim(Dp
n) ≥ 2. Which implies that dim(Dp

n) = 2, for odd
n.
Case(2). When n = 2k, k ∈ IN . Suppose W = {c1, c2, ck+1} ⊂ V (Dp

n), we
show that W is resolving set for V (Dp

n). The representation of any vertex of
V (Dp

n)\W with respect to W :

r(ci|W ) =
{

(i− 1, i− 2, k + 1− i), 3 ≤ i ≤ k;
(2k + 1− i, 2k + 2− i, i− k − 1), k + 2 ≤ i ≤ n.

r(bi|W ) =





(1, 2, k + 1), for i = 1;
(i, i− 1, k + 2− i), for 2 ≤ i ≤ k + 1;
(2k + 2− i, 2k + 3− i, i− k), for k + 2 ≤ i ≤ n.

r(ai|W ) =





(2, 3, k + 2), for i = 1;
(i + 1, i, k + 3− i), for 2 ≤ i ≤ k + 1;
(2k − i + 3, 2k − i + 4, i− k + 1), for k + 2 ≤ i ≤ n.
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We note that there are no two vertices having the same representations im-
plying that dim(Dp

n) ≤ 3.
Now we show that dim(Dp

n) ≥ 3, by proving that there is no resolving set W
with |W | = 2, then there are the following possibilities to be discussed,
(1). Both vertices of W are on the inner cycle. Without loss of generality we
suppose that one resolving vertex is c1, and the other is ct, (2 ≤ t ≤ k + 1).
For 2 ≤ t ≤ k, we have
r(cn|W ) = r(b1|W ) = (1, t).
And for t = k + 1,
r(c2|W ) = r(cn|W ) = (1, k − 1), a contradiction.
(2). Both vertices of W are on the outer cycle. Without loss of generality we
suppose that one resolving vertex is b1, and the other is bt, (2 ≤ t ≤ k + 1).
For 2 ≤ t ≤ k + 1, we have
r(c1|W ) = r(a1|W ) = (1, t).
a contradiction.
(3). Both vertices of W are pendant to the outer cycle. We suppose that one
resolving vertex is a1, and the other is at, (2 ≤ t ≤ k + 1). For 2 ≤ t ≤ k, we
have
r(c1|W ) = r(bn|W ) = (2, t + 1).
And for t = k + 1,
r(c2|W ) = r(an|W ) = (3, k + 1), a contradiction.
(4). One vertex on the inner cycle and the other is on the outer cycle. Consider
one resolving vertex is c1, and the other is bt, (1 ≤ t ≤ k + 1). For 1 ≤ t ≤ k,
we have
r(a1|W ) = r(bn|W ) = (2, t).
And for t = k + 1,
r(bn|W ) = r(b2|W ) = (2, k − 1), a contradiction.
(5). One vertex on the inner cycle and the other is the pendant vertex to outer
cycle. Consider one resolving vertex is c1, and the other is at, (1 ≤ t ≤ k +1).
For 1 ≤ t ≤ k − 1, we have
r(an|W ) = r(bn−1|W ) = (3, t + 2).
And for t = k,
r(b1|W ) = r(c2|W ) = (1, k), similarly for t = k + 1,
r(b1|{c1, at}) = r(c2|{c1, at}) = (1, k + 1) a contradiction.
(6). One vertex on the outer cycle and the other is pendant vertex to exterior
cycle. Consider one resolving vertex is b1, and the other is at, (1 ≤ t ≤ k +1).
For 1 ≤ t ≤ k, we have
r(an|{b1, at}) = r(cn|{b1, at}) = (2, t + 2).
And for t = k + 1,
r(bk|{b1, at}) = r(bk+2|{b1, at}) = (k − 1, 2), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
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for V (Dp
n) implying that dim(Dp

n) = 3.
¤
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