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WEAKENED CONDITION FOR THE STABILITY TO
SOLUTIONS OF PARABOLIC EQUATIONS WITH

“MAXIMA”

D. KOLEV1, T. DONCHEV2, K. NAKAGAWA3

Abstract. A class of reaction-diffusion equations with nonlinear reac-
tion terms perturbed with a term containing ”maxima” under initial and
boundary conditions is studied. The similar problems that have no ”max-
ima” have been studied during the last decade by many authors. It would
be of interest the standard conditions for the reaction function to be weak-
ened in the sense that the partial derivative of the reaction function, w.r.t.
the unknown, to be bounded from above by a rational function containing
(1 + t)−1, where t is the time. When we slightly weaken the standard
condition imposed on the reaction function then the solution still decays
to zero not necessarily in exponential order. Then we have no exponen-
tial stability for the solution of the considered problem. We establish a
criterion for the nonexponential stability. The asymptotic behavior of the
solutions when t → +∞ is discussed as well. The parabolic problems
with ”maxima” arise in many areas as the theory of automation control,
mechanics, nuclear physics, biology and ecology.
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1. Introduction

We investigate an initial and boundary value problem (IBVP) for a reaction
diffusion equation ut − Lu = F with a reaction function

F = F (t, x, u(t, x), max
s∈[t−σ,t]

u(s, x)),
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where F has the form F ≡ f(t, x, u(t, x)) + R(t, x, max
s∈[t−σ,t]

u(s, x)), and the

functions f , R are sufficiently smooth. Such equations belong to the class of
parabolic partial differential equations (PDE) with ”maxima” or may say in
more general sense PDE with functional argument. Here F depends not only
on u taken in the instantaneous time t and space x, but also on the function
max

s∈[t−σ,t]
u(s, x) defined in the time interval [t−σ, t] that begins at t−σ to t, and

t ∈ [0, T ) with some positive number T that in some cases could be replaced
by infinity. Then the domain of existence of the solution must be taken as
[−σ, T )× Ω, where Ω is a bounded domain with a smooth boundary.

The study of differential equations with ”maxima” or both delay and ”max-
ima” starts many years ago with the pioneer works of A. R. Magomedov [10],
[11], where were studied linear differential equations with ”maxima” in the con-
nection with the theory of the automatic control to different physical systems.
In lots of applications the ”maxima” is applied when the control corresponds
to the maximal deviation of the regulated quantity that could be for instance
temperature, heat, current density, pressure and so on. Meanwhile, the study
of differential equations with ”maxima” continue in several directions - exis-
tence and uniqueness of the solutions, oscillation, stability, asymptotic behav-
ior of the solutions etc. The oscillation properties for the solutions of ODEs
with ”maxima” were studied by D. Bainov and his associates [1], [3] - [6], and
of parabolic PDEs in [2] and [12]. The theory of neutral partial differential
equations of hyperbolic and parabolic type with ”maxima” was represented
for the first time in [2] (see also [12]). Results of existence, oscillation and blow
up for functional PDEs can be seen in [9], [13]-[15]. However, above stated
parabolic and hyperbolic PDEs with ”maxima” are not profoundly studied.
The stability of the solutions of parabolic PDEs with ”maxima” are investi-
gated only in particular cases. In the present paper we study the stability of
the solutions for parabolic PDEs in the form similar to this in [7].

As a typical example we may consider the mathematical model with ”max-
ima” describing a dynamical hit system with feed back so that as the temper-
ature reaches certain critical value then a sensor transfers the information to
the heat source and a regulation effect hold.

2. Preliminary results and notations

In the parabolic equations which arise in some mathematical models de-
scribing phenomena in physics and biology the time evolution of the system

is expressed by the partial derivative
∂u

∂t
≡ ut of the unknown density func-

tion u = u(t, x), that means concentration, temperature, population, etc. In
most cases the evolutionary process is described by an initial and boundary
value problem (IBVP), where the unknown density function u starts at some
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fixed initial moment t0 and after passing a finite period of time describes the
changes in the quantity u(t, x). The basic question here is whether, as time t
increases, the time-dependent unknown function u remains in a neighborhood
of a steady-state solution us = us(x), that is, a solution that does not depend
on the time t. Other question is whether the solution u(t, x) converges to the
steady state (steady-state solution) as t → +∞. It is important to know for a
given steady state us what is the set of initial functions whose corresponding
time-dependent solutions converge to us as t → +∞. This leads to the prob-
lem of stability, often called Lyapunov stability, and asymptotic stability of a
steady-state solution and its stability region. More details about this can be
seen in [13].

Introduce the notations:

DT ≡ (0, T ]× Ω, ST ≡ (0, T ]× ∂Ω, D−σ ≡ [−σ, 0]× Ω,

D∞ ≡ (0,+∞)× Ω, ET ≡ [−σ, T ]× Ω.

In the work [15] the parabolic equation studied there has a reaction function
of the form F (t, x, u(t, x), u(t− σ, x)) with delay σ > 0. A similar problem is
studied in [13]. The following functional equation with delay under the initial
and boundary conditions has the form (see [2], [13], [14]):

(a) ut − Lu = F (t, x, u(t, x), u(t− σ, x)) in DT ,

(b) Bu = h(x) on ST ,

(c) u(t, x) = η0(t, x) in D−σ.

(1)

Here T > 0, σ > 0, the initial function η0 is Hölder continuous in D−σ with
η0(0, x) ∈ Cθ(Ω̄), h(x) is assumed in the class C1+θ(∂Ω), and the operator

L ≡
n∑

i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

n∑

j=1

bj(x)
∂

∂xj
(2)

is uniformly elliptic in the sense that the matrix {aij(x)} is positive definite on
Ω̄. We assume that the coefficients of L are in the class C1+θ(Ω̄) (0 < θ < 1).
The boundary operator B is defined by B ≡ α0(x) ∂

∂ν + β0(x), where α0(x)
and β0(x) are nonnegative functions also in C1+θ(∂Ω) and not identically zero
on ∂Ω; ∂/∂ν is the outward normal derivative on ∂Ω. We assume that L and
B are self-adjoint. The source F is Hölder continuous in DT × R× R.
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In the present paper we consider the case when the reaction function F in
(1) (a) has the form F = f(t, x, u(t, x)) + R(t, x, max

s∈[t−σ,t]
u(s, x)),

(a) ut − Lu = f(t, x, u(t, x)) + R(t, x, max
s∈[t−σ,t]

u(s, x)) in DT ,

(b) Bu = h(x) on ST ,

(c) u(t, x) = η0(t, x) in D−σ,

(3)

where σ is a given positive constant representing the delay by which is deter-
mined the third argument max

s∈[t−σ,t]
u(s, x) of the function R. Both functions

f(·, ·, η) and R(·, ·, η) are assumed to be C1-functions in η, and Hölder contin-
uous with respect to t and x; R(t, x, ·) is a monotone nondecreasing function.

Recall some basic definitions.

Definition 1. A function ũ ∈ Lipθ(ET ) ∩ C1,2(DT ) is called:
i) a solution of IBVP (3) if it satisfies (3)(a)-(c) for every (t, x) in their

domains
ii) an upper solution of IBVP if it satisfies (3) with = replaced by ≥ in (a),

(b) and (c)
iii) a lower solution of IBVP if it satisfies (3) with = replaced by ≤ in (a),

(b) and (c)

Introduce the notation Lipθ(ET ) - the space of all Lipschitz continuous
functions which are at the same time C0,θ (Hölder continuous) and defined on
the bounded set ET .

The following proposition is obvious:

Proposition 1. ũ ∈ Lipθ(ET ) ∩ C1,2(DT ) is a solution of IBVP (3) if and
only if it is simultaneously upper and lower solution.

Definition 2. A function u is said to be a solution of (3) if it is simultane-
ously upper and lower solution. Evidently every solution of (3) satisfies this
equation.

Definition 3. A pair ũ = ũ(t, x), û = û(t, x) is called ordered if ũ ≥ û in ET .
Then the set of all functions z = z(t, x) such that û ≤ z ≤ ũ in ET is denoted
by 〈û, ũ〉 and is called sector.

We note that the problem (3) may have some solution us = us(x) that does
not depend on the time t. Such a solution is called a steady-state solution or
steady-state.

Definition 4. A steady state solution us(x) of (3) is said to be stable if for
any ε > 0 there exists δ > 0 such that

|u(t, x)− us(x)| < ε in DT (4)
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whenever |η0(0, x)− us(x)| < δ in Ω.
us(·) is said to be asymptotically stable if it is stable for each T , including

T = ∞, and
lim
t→∞ |u(t, x)− us(x)| = 0, x ∈ Ω̄, (5)

The steady-state solution us is called unstable if (4) does not hold.

The above definition implies that if us is asymptotically stable then it is an
isolated steady-state solution in the sense that there is a neighborhood Us of
us in C(Ω̄) such that us is the only steady-state solution in Us.

Definition 5. The set

A ≡ {η0(t, x) ∈ ⋃
θ∈(0,1) Lipθ, the corresponding solution u(t, x)

satisfying (4) and (5)}
is called stability region of (3). IBVP (3) is said to be globally asymptotically
stable if A ≡

⋃

θ∈(0,1)

Lipθ.

Assume that following hypotheses are satisfied:
(H1) f(t, x, 0) = R(t, x, 0) = 0 for (t, x) ∈ DT , h(x) ≡ 0 and β0(x) 6= 0 for

x ∈ ∂Ω.

Let λ0 and Φ(x) in Ω be the principal eigenvalue and corresponding nor-
malized eigenfunction, respectively, of the elliptic problem

−Lu = λu in Ω,

Bu = 0, on Ω.
(6)

We remind that 0 < Φ(x) ≤ 1 and λ0 > 0.

Let α (λ0 > α) and ρ be some positive constants.

(H2) The partial derivative fη(t, x, η) satisfies the estimate

fη(t, x, η) ≤ λ0 − α for |η| ≤ ρ, ((t, x) ∈ DT ). (7)

Let α ≥ A > 0 for some A > 0 and 1 > σ > 0. Define the continuous function
m = m(t) in the interval [0, T ) (T > 0), where T can be infinity and then
m : [0, +∞) → R,

m(t) = (1 + t)−1β(t), (8)
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and the function β(t) satisfies the inequality

0 < β(t) ≤ A(1− σ)α−A for all t ∈ [0, T ). (9)

Obviously, it makes sense that

0 < β(t) ≤ A

(
1− σ

1 + t

)α−A

for t ∈ [0, T ). (10)

(H3) Suppose that the partial derivative Rξ(t, x, ξ) of the function R(t, x, ξ)
satisfies the inequality

Rξ(t, x, ξ) ≤ m(t)

for |ξ| ≤ ρ, ((t, x) ∈ DT ). (11)

Next consider the inequality

dz

dt
≥ −α(1 + t)−1z + m(t) max

s∈[t−σ,t]
z(s), t ∈ [0, T ). (12)

Lemma 2. Let the condition (8), (9) be satisfied. Then the function z =
ρ(1 + t)−α+A satisfies the differential inequality (12).

Proof. We have
dz

dt
= (A−α)ρ(1 + t)−α+A−1. Thus the differential inequality

(12) becomes:

(A−α)ρ(1+t)−α+A−1 ≥ −ρα(1+t)−1(1+t)−α+A+ρm(t)(1+t−σ)−α+A, t ∈ [0, T ).

Suppose (12) is not true, hence

A(1 + t)−α+A−1 < m(t)(1 + t− σ)−α+A, and

m(t) > A(1 + t)−1

(
1− σ

1 + t

)α−A

.

Having in mind this and also (8) - (10) it turns out that the latter contradicts
to (10). ¤

3. Main results

First, we consider the regularity of U(t, x) ≡ max
s∈[t−σ,t]

u(s, x).

Lemma 3. If u ∈ Lipθ(ET ) then (t, x) → max
s∈[t−σ,t]

u(s, x) is in Lipθ(DT ).

Proof. Let us choose any points (t1, x1), (t2, x2) ∈ [0, T ]× Ω. Since

|u(t1 + s, x1)− u(t2 + s, x2)|+ u(t2 + s, x2) ≥ u(t1 + s, x1),
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we have

max
s∈[−σ,0]

|u(t1 +s, x1)−u(t2 +s, x2)|+ max
s∈[−σ,0]

u(t2 +s, x2) ≥ max
s∈[−σ,0]

u(t1 +s, x1).

Similarly we have

max
s∈[−σ,0]

|u(t1 +s, x1)−u(t2 +s, x2)|+ max
s∈[−σ,0]

u(t1 +s, x1) ≥ max
s∈[−σ,0]

u(t2 +s, x2).

Then obtain
max

s∈[−σ,0]
|u(t1 + s, x1)− u(t2 + s, x2)| ≥

≥ | max
s∈[−σ,0]

u(t1 + s, x1)− max
s∈[−σ,0]

u(t2 + s, x2)|.
(13)

Next we have by admission that

|u(t1, x1)− u(t2, x2)| ≤ H(|t1 − t2|+ |x1 − x2|)θ,

where H is the Hölderian constant which is independent of t1, t2, x1 and x2.
Due to (13) one has that

|U(t1, x1)− U(t2, x2)|
(|t1 − t2|+ |x1 − x2|)θ

≤ max
s∈[−σ,0]

|u(t1 + s, x1)− u(t2 + s, x2)|
(|t1 − t2|+ |x1 − x2|)θ

≤ H,

for t1, t2 ∈ [0, T ], x1, x2 ∈ Ω.

Hence U(t, x) is in Lipθ(DT ). ¤

Remark 1. Evidently Lemma 3 is true when Hölder is replaced with Lipschitz.
However (t, x) → max

s∈[t−σ,t]
u(s, x) is not continuously differentiable (but only

Lipschitz) even for analitic u(·, ·). Indeed let u(x) = x2. If t <
σ

2
, then

max
s∈[x−σ,x]

u(s) = (x − σ)2. When x ≥ σ

2
, then max

s∈[x−σ,x]
u(s) = x2. The left

derivative of max
s∈[x−σ,x]

u(s) at
σ

2
is −σ while the right one is σ.

We notice that f and R are C1−functions in the sector 〈û, ũ〉. For a given
pair of ordered upper and lower solutions ũ, û, we use u(0) = ũ and u(0) = û
as two independent initial iterations and construct their respective sequences
from the iteration process

u
(k)
t − Lu(k) + cu(k) = cu(k−1) + f(t, x, u(k−1))+

+R(t, x, max
s∈[t−σ,t]

u(k−1)(s, x)) in DT ,

Bu(k) = h(t, x) on ST ,

u(k)(t, x) = η0(t, x) in D−σ,
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where c(t, x) = sup{−fu(t, x, u); û ≤ u ≤ ũ}. Denote these two sequences by
{ū(k)} and {u(k)}, respectively, and refer to them as upper and lower sequences.

The following statement is known as Theorem 1 of [7].

Theorem 4. Under the above assumptions, the sequences {ū(k)}, {u(k)} con-
verge monotonically to a unique solution u to (3), and û ≤ u ≤ ũ in ET .

We have the following.

Theorem 5. Let the hypotheses (H1)-(H3) be satisfied. Then a unique solu-
tion u = u(t, x) of (3) exists and satisfies the inequality

|u(t, x)| ≤ ρ(1 + t)−α+AΦ(x), (t, x) ∈ ET , (14)

whenever |η0(t, x)| ≤ ρ(1+ t)−α+AΦ(x) in D−σ. And the steady-state solution
u ≡ 0 is asymptotically stable.

Proof. We should prove that u ≡ 0 is the steady-state solution to (3)(a),(b)
and that there exist upper and lower solutions of (3) i.e., ũ ≡ z(t)Φ(x) and
û ≡ −z(t)Φ(x) respectively. Here z(t) = ρ(1+t)−α+A and Φ(x) is defined in Ω
(see (7)). Obviously, the first statement is trivial. We substitute the function
ũ in the left side of (3) and obtain the inequality

ũt − Lũ = z′(t)Φ(x)− z(t)LΦ(x) = {z′(t) + λ0z(t)}Φ(x) ≥
≥ {λ0 − α(1 + t)−1}Φ(x)z(t) + m(t)Φ(x) max

s∈[t−σ,t]
z(s),

which follows from Lemma 2. Since |z(t)Φ(x)| ≤ ρ in DT , the hypotheses
(H1) and (H2) assert that

f(t, x, z(t)Φ(x)) = f(t, x, z(t)Φ(x))− f(t, x, 0) = fη(t, x, η∗(t, x))z(t)Φ(x) ≤
≤ (λ0 − α)z(t)Φ(x) ≤ (λ0 − α(1 + t)−1)z(t)Φ(x) in DT ,

where 0 ≤ η∗(t, x) ≤ z(t)Φ(x). Thus we similarly obtain from (H1) and (H3)
that

R(t, x, max
s∈[t−σ,t]

z(s)Φ(x)) = R(t, x, max
s∈[t−σ,t]

z(s)Φ(x))−R(t, x, 0) =

= Rξ(t, x, ξ∗(t, x)) max
s∈[t−σ,t]

z(s)Φ(x) ≤ m(t)Φ(x) max
s∈[t−σ,t]

z(s),

where 0 ≤ ξ∗(t, x) ≤ Φ(x) max
s∈[t−σ,t]

z(s). Next, we get

f(t, x, z(t)Φ(x)) + R(t, x, max
s∈[t−σ,t]

z(s)Φ(x)) ≤
≤ (λ0 − α(1 + t)−1)z(t)Φ(x) + m(t)Φ(x) max

s∈[t−σ,t]
z(s).

This shows that

ũt − Lũ ≥ f(t, x, z(t)Φ(x)) + R(t, x, max
s∈[t−σ,t]

z(s)Φ(x)).
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For the boundary and initial conditions we have.

Bũ(t, x) = z(t)BΦ(x) = 0 on ST ,

ũ(t, x) ≡ z(t)Φ(x) ≥ η0(t, x) in D−σ.

Therefore we verified that ũ is a desired upper solution.
Furthermore, we show that û(t, x) = −z(t)Φ(x) is a lower solution when

|η0(t, x)| ≤ ρ(1 + t)−α+AΦ(x). For this purpose substitute the function û in
the left hand side of (3). Thus we obtain

ût − Lû = −z′(t)Φ(x) + z(t)LΦ(x) = −{z′(t) + λ0z(t)}Φ(x) ≤
≤ −{λ0 − α(1 + t)−1}Φ(x)z(t)−m(t)Φ(x) max

s∈[t−σ,t]
z(s) ≤

≤ {λ0 − α(1 + t)−1}Φ(x){−z(t)}+ m(t)Φ(x) max
s∈[t−σ,t]

{−z(s)}.

Since |z(t)Φ(x)| ≤ ρ in DT , the hypotheses (H1) and (H2) assert that

f(t, x,−z(t)Φ(x)) = f(t, x,−z(t)Φ(x))− f(t, x, 0) =

= fη(t, x, η∗(t, x))(−z(t))Φ(x) ≥ (λ0 − α)(−z(t))Φ(x) ≥
≥ (λ0 − α(1 + t)−1)(−z(t))Φ(x) in DT ,

where 0 ≥ η∗(t, x) ≥ −z(t)Φ(x). And we similarly obtain from (H1) and (H3)
that

R(t, x, max
s∈[t−σ,t]

{−z(s)}Φ(x)) = R(t, x, max
s∈[t−σ,t]

{−z(s)}Φ(x))−R(t, x, 0) =

= Rξ(t, x, ξ∗(t, x))Φ(x) max
s∈[t−σ,t]

{−z(s)} ≥ m(t)Φ(x) max
s∈[t−σ,t]

{−z(s)}.

Hence
f(t, x,−z(t)Φ(x)) + R(t, x, max

s∈[t−σ,t]
{−z(s)}Φ(x)) ≥

≥ (λ0 − α(1 + t)−1){−z(t)}Φ(x) + m(t)Φ(x) max
s∈[t−σ,t]

{−z(s)}.

This shows that

ût − Lû ≤ f(t, x,−z(t)Φ(x)) + R(t, x, max
s∈[t−σ,t]

{−z(s)}Φ(x)).

For the boundary and initial conditions we have

Bũ(t, x) = −z(t)BΦ(x) = 0 on ST ,

ũ(t, x) ≡ −z(t)Φ(x) ≤ η0(t, x) in D−σ.

Thus we verified that û is a desired lower solution. Therefore, by Theorem 4,
we have a unique solution u = u(t, x) to (3) and it satisfies the inequality

|u(t, x)| ≤ ρ(1 + t)−α+AΦ(x), (t, x) ∈ ET , (15)
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whenever |η0(t, x)| ≤ ρ(1+t)−α+AΦ(x) in D−σ. This suggests that the steady-
state solution u ≡ 0 is asymptotically stable.
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